

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0617 of 15 February 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Injection system ESSVE ONE or ESSVE ONE ICE
Product family to which the construction product belongs	Bonded fastener for use in concrete
Manufacturer	ESSVE Produkter AB Esbogatan 14 164 74 KISTA SCHWEDEN
Manufacturing plant	ESSVE Plant No. 671
This European Technical Assessment contains	25 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330499-00-0601
This version replaces	ETA-18/0617 issued on 12 July 2018

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-18/0617 English translation prepared by DIBt

Page 2 of 25 | 15 February 2019

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 25 | 15 February 2019

Specific Part

1 Technical description of the product

The "Injection system ESSVE ONE or ESSVE ONE ICE for concrete" is a bonded anchor consisting of a cartridge with injection mortar ESSVE ONE or ESSVE ONE ICE and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter \emptyset 8 to \emptyset 32 mm or internal threaded rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex
(static and quasi-static loading)	C 1, C 2, C 4 and C 6
Characteristic resistance to shear load	See Annex
(static and quasi-static loading)	C 1, C 3, C 5 and C 7
Displacements	See Annex
(static and quasi-static loading)	C 8 to C 10
Characteristic resistance for seismic performance	See Annex
category C1	C 2, C 3, C 6 and C 7
Characteristic resistance and displacements for seismic performance category C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Page 4 of 25 | 15 February 2019

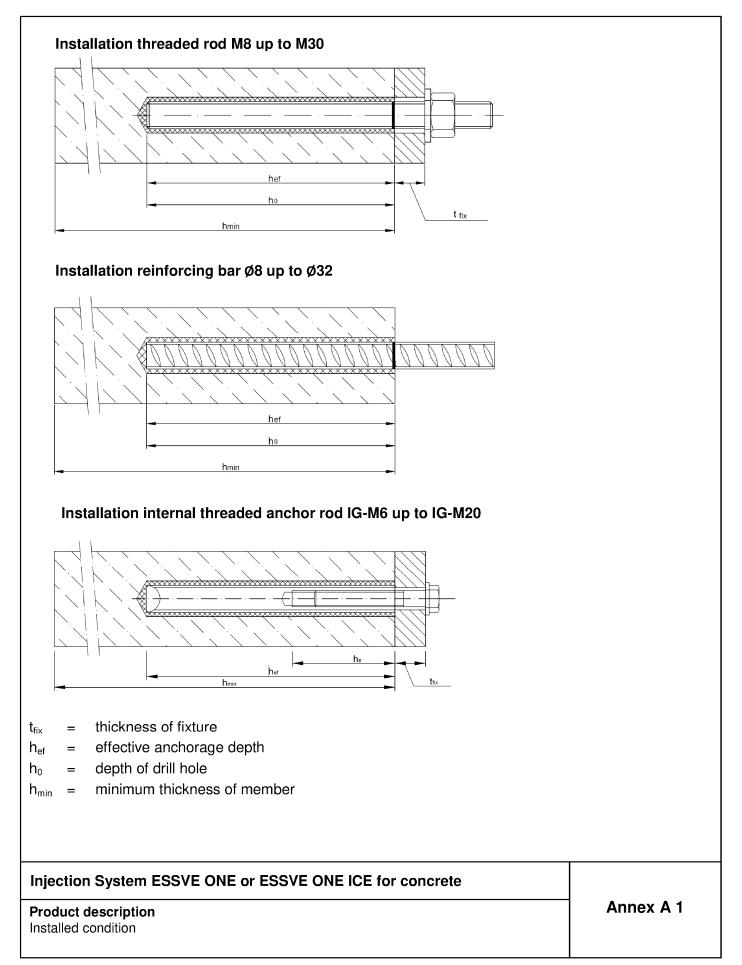
European Technical Assessment ETA-18/0617

English translation prepared by DIBt

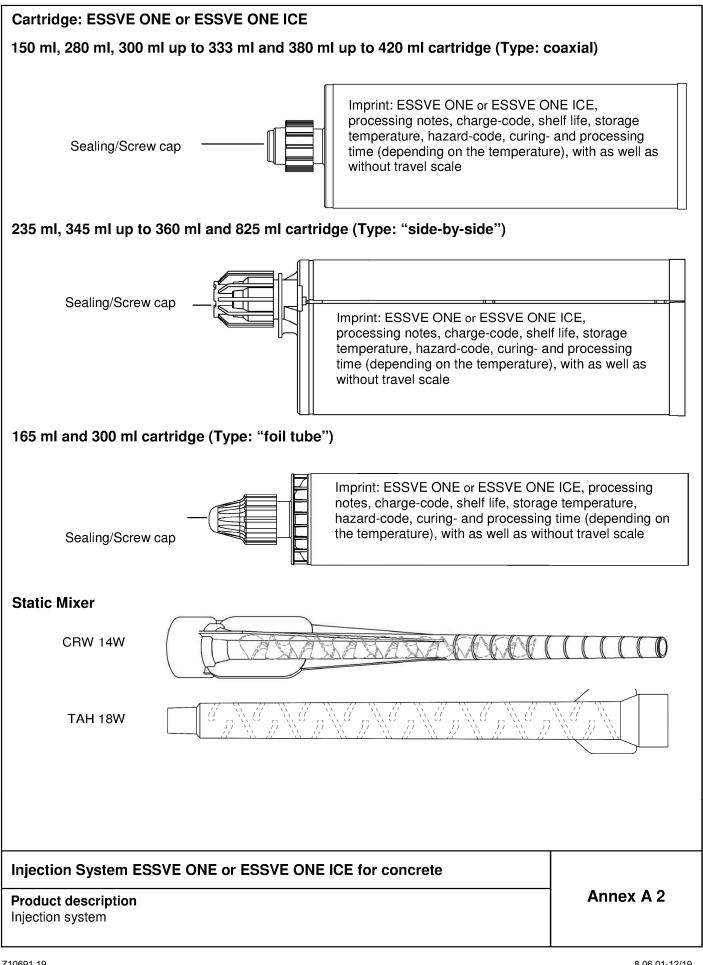
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 15 February 2019 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider

Threaded rod M8, M10, M12, M16, M20), M24, M27, M30 with washer and hexag	on nut
	rod with: - Mater mech Table - Inspect to EN	ction certificate 3.1 acc. 10204:2004 ng of embedment
Internal threaded anchor rod IG-M6, IC Threaded rod or screw	G-M8, IG-M10, IG-M12, IG-M16, IG-M20 Mark of the producer	4
		σ
	Marking: e.g. Marking Internal thread Mark	
	M8 Thread size (Internal thread) A4 additional mark for stainless steel HCR additional mark for high-corrosion res	istance steel
Filling washer and mixer reduction no fixture	zzle for filling the annular gap between	anchor rod and
Injection System ESSVE ONE or ESS	/E ONE ICE for concrete	Annex A 3
Threaded rod, internal threaded rod and fillin	g washer	

	Designation	Material							
tee	I, zinc plated (Steel acc. to EN 10		:2001)	I					
inc	plated ≥ 5 µm acc. to EN ISO 4042:	1999 odr hot-dip galvan	ised ≥́	40 µm acc. to EN ISO 1461:2009	9 and				
IN I	SO 10684:2004+AC:2009 or sherar	dized ≥ 40 µm acc. to El	N ISO						
			4.6	f _{uk} =400 N/mm ² ; f _{yk} =240 N/mm ² ; A	$A_5 > 8\%$ fracture elongation				
	Anchor rod	Property class	4.8	f _{uk} =400 N/mm ² ; f _{yk} =320 N/mm ² ; A	$A_5 > 8\%$ fracture elongation				
1		acc. to	5.6	f _{uk} =500 N/mm ² ; f _{yk} =300 N/mm ² ; A	$\Lambda_5 > 8\%$ fracture elongation				
		EN ISO 898-1:2013			; $A_5 > 8\%$ fracture elongatio				
			8.8	f _{uk} =800 N/mm ² ; f _{yk} =640 N/mm ² ; A	$A_5 > 8\%$ fracture elongation				
		Property class	4	for anchor rod class 4.6 or 4.8					
2	Hexagon nut	acc. to	5	for anchor rod class 5.6 or 5.8					
		EN ISO 898-2:2012	8	for anchor rod class 8.8					
3а	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Steel, zinc plated, hot-	dip gal	vanised or sherardized					
3b	Filling washer	Property class	5.8	f _{uk} =500 N/mm ² ; f _{vk} =400 N/mm ² ;	· A - > 9% fracture clongatic				
4	Internal threaded anchor rod	acc. to	0.0						
		EN ISO 898-1:2013	8.8	f _{uk} =800 N/mm ² ; f _{yk} =640 N/mm ² ;	$A_5 > 8\%$ fracture elongation				
taiı	nless steel A2 (Material 1.4301 / 1	.4303 / 1.4307 / 1.4567	oder 1	4541, acc. to EN 10088-1:2014	1)				
nd		4404 / 4 4574 / 4 4000							
tall	nless steel A4 (Material 1.4401 / 1				00/ freshurs slavestice				
4	Another red ^{1}) ³	Property class	50	f_{uk} =500 N/mm ² ; f_{yk} =210 N/mm ² ; A					
1 Anchor rod ¹⁾³⁾		acc. to EN ISO 3506-1:2009	70 80	$ \begin{array}{l} f_{uk} = 700 \ N/mm^2; \ f_{yk} = 450 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \\ f_{uk} = 800 \ N/mm^2; \ f_{yk} = 600 \ N/mm^2; \ A_5 > 8\% \ fracture \ elongation \end{array} $					
			50	for anchor rod class 50					
2 He	Hexagon nut 1)3)	Property class acc. to	70	for anchor rod class 70					
2		EN ISO 3506-1:2009	80	for anchor rod class 80					
3a 3b	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁴⁾			/ 1.4307 / 1.4567 or 1.4541, EN / 1.4571 / 1.4362 or 1.4578, EN					
00		Property class	50	f _{uk} =500 N/mm ² ; f _{yk} =210 N/mm ²	$A_{\rm r} > 8\%$ fracture elementi				
4	Internal threaded anchor rod ¹⁾²⁾	acc. to			-				
		EN ISO 3506-1:2009	70	$f_{uk}=700 \text{ N/mm}^2$; $f_{yk}=450 \text{ N/mm}^2$; $A_5 > 8\%$ fracture elongation				
ligh	corrosion resistance steel (Mate	erial 1.4529 or 1.4565, a	acc. to						
	1)	Property class	50	f _{uk} =500 N/mm ² ; f _{yk} =210 N/mm ² ; A					
1	Anchor rod ¹⁾	acc. to	70	f _{uk} =700 N/mm ² ; f _{yk} =450 N/mm ² ; A					
		EN ISO 3506-1:2009	80	f _{uk} =800 N/mm ² ; f _{yk} =600 N/mm ² ; A	$A_5 > 8\%$ fracture elongation				
_	1,	Property class	50	for anchor rod class 50					
2	Hexagon nut 1)	acc. to EN ISO 3506-1:2009	70	for anchor rod class 70					
3a	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000,		80 565 ac	for anchor rod class 80					
3b	EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer		555, at						
50		Property class	50	f _{uk} =500 N/mm ² ; f _{vk} =210 N/mm ² ;	; A ₅ > 8% fracture elongati				
4	Internal threaded anchor rod ^{1) 2)}	acc. to EN ISO 3506-1:2009	70	f _{uk} =700 N/mm ² ; f _{yk} =450 N/mm ²					
2) 3)	Property class 70 for anchor rods up to for IG-M20 only property class 50 Property class 80 only for stainless stee Filling washer only with stainless steel A	M24 and Internal threaded	anchor	,					
	ection System ESSVE ONE	or ESSVE ONE IC	E for	concrete					
Inj									

Reir	nforcing bar Ø 8, Ø 10, Ø 12, Ø 14, Ø 1	6, Ø 20, Ø 25, Ø 28, Ø 32									
	▲ h _{ef}										
	 Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010 Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d 										
	(d: Nominal diameter of the bar; h: Rip he										
Tab	le A2: Materials										
Part	Designation	Material									
Reinf	orcing bars										
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	1992-1-1/NA								
	ction System ESSVE ONE or ESSVE O	INE ICE for concrete									
	luct description rials reinforcing bar		Annex A 5								
	-										

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.

Base materials:

- · Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel A2 resp. A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR055

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16, IG-M6 to IG-M10.
- Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection System ESSVE ONE or ESSVE ONE ICE for concrete

Intended Use Specifications Annex B 1

Anchor size				M 8	M	10	Μ	12	M 1	6	М 20	М :	24	M 27	M 3
Outer diameter of anchor		d _{nom} [mm] =	8	1	0	-	12	16	3	20	24	4	27	30
Nominal drill hole diameter		d ₀ [mm] =	10	1	2		14	18	3	24	28	3	32	35
Effective embedment denth		h _{ef,min} [mm] =	60	6	0	-	70	80)	90	96	6	108	120
Effective embedment depth		h _{ef,max} [mm] =		160	20	0	2	240	32	0	400	48	0	540	600
Diameter of clearance hole in the fixture		d _f [mm]≤	9	1	2		14	18	3	22	26	6	30	33
Diameter of steel brush		d _b [mm]≥	12	1	4	-	16	20)	26	30	C C	34	37
Maximum torque moment		T _{inst} [Nm]≤	10	2	0	4	40	80)	120	16	0	180	200
Minimum thickness of memb	er	h _{min} [m	m]	h _{ef} + 3	30 mm	ı ≥ 1	00 ו	mm		•	ł	n _{ef} +	2d ₀		
Minimum spacing		s _{min} [m	m]	40	5	0	(60	80)	100	12	20	135	150
Minimum edge distance		c _{min} [m	m]	40	5	0	(60	80)	100	12	20	135	150
Table B2: Installation Rebar size Installation			Ø	8 Q	5 10	Ø1		Ø1		Ø 16	Ø 20	_	25	Ø 28	
Outer diameter of anchor	d _{nc}	_{om} [mm] =	8		10	12	2	14		16	20		25	28	32
Nominal drill hole diameter	C	d ₀ [mm] =	12	2	14	16	5	18		20	24		32	35	40
Effective embedment depth	h _{ef,m}	_{nin} [mm] =	60) (60	70)	75		80	90	1	00	112	12
Effective embedment depth	h _{ef,m}	_{ax} [mm] =	16	0 2	200	24(0	280)	320	400	5	500	580	64
Diameter of steel brush	C	d _b [mm] ≥	14		16	18	3	20		22	26		34	37	41,
Minimum thickness of member		h _{min} [mm]			30 mm)0 mm				h _{ef} + 2d ₀						
Minimum spacing		s _{min} [mm]	40)	50	60)	70		80	100	1	25	140	16
Minimum edge distance		c _{min} [mm]	40) :	50	60)	70		80	100	1	25	140	16
Table B3: Installation	on pai	rameters	s fo	r inte	rnal	thre	ead	ded a	ancł	nor r	od				
Size internal threaded anchor	rod			10	Э-М 6	- 1	G-N	8 N	IG-N	/ 10	IG-M	12	IG-N	/ 16	IG-M 2
Internal diameter of anchor			mm]		6		8			0	12		16		20
Outer diameter of anchor ¹⁾		d _{nom} [-		10	_	12		1		20			4	30
Nominal drill hole diameter			<u>mm]</u>		12	_	14			8	22		2		35
Effective embedment depth	-	h _{ef,min} [h _{ef,max} [60 200	+	7(24		8 32	0	90 400			6 30	120 600
Diameter of clearance hole in the fixture			 mm]		7		9			2	14			8	22
Maximum torque moment		T _{inst}	[Nm]	≤	10	+	10	5	2	0	40		6	0	100
Thread engagement length min/max			mm]		8/20		8/2			/25	12/3	0		/32	20/40
Minimum thickness of memb	er	h _{mi}	_n [mr	n]	h _{ef} + ≥ 1(30 r 30 m					ŀ	ι _{ef} +	2d ₀		
Minimum spacing			_n [mr	-	50		60		8		100			20	150
Minimum edge distance			_n [mr		50		60	ן כ	8	0	100		12	20	150

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Injection System ESSVE ONE or ESSVE ONE ICE for concrete

Intended Use Installation parameters

Annex B 2

Threaded Rod	Rebar	Internal threaded Anchor rod	d₀ Drill bit - Ø HD, HDB, CA			d _{b,min} min. Brush - Ø	Piston plug	Installation direction and u of piston plug						
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		Ļ		1				
M8			10	RBT10	12	10,5		1	1					
M10	8	IG-M6	12	RBT12	14	12,5	1							
M12	10	IG-M8	14	RBT14		14,5	1	No piston plug required						
	12		16	RBT16	18	16,5	1							
M16	14	IG-M10	18	RBT18		18,5	VS18							
	16		20	RBT20	22	20,5	VS20	-						
M20	20	IG-M12	24	RBT24	26	24,5	V820	-						
M24	20	IG-M12	28	RBT28	30	24,5	VS28	h _{ef} >	h _{ef} >	all				
M27	25		32	RBT32	34	32,5	VS20 VS32	250 mm	250 mm	an				
M30	25	IG-M20	32	RBT35	34	35,5	VS32 VS35	4						
10130	32	10-10/20	40	RBT40		40,5	V335 VS40	-						
Drill bit dia Drill hole c						- Rec. com bit diameter (d			(min 6 ba	r)				
			norizontal		⊐[≥ ≎t	eel brush R		///// /	WW	∃ ↓ d _b				

Intended Use Cleaning and setting tools Annex B 3

Installation instr	uctions	
Drilling of the bore	hole	
	1. Drill with hammer drill a hole into the base material to the size and required by the selected anchor (Table B1, B2, or B3), with hammer or compressed air (CD) drilling. The use of a hollow drill bit is only sufficient vacuum permitted. In case of aborted drill hole: The drill hole shall be filled with mort	ner (HD), hollow (HDB) y in combination with a
	Attention! Standing water in the bore hole must be removed before	ore cleaning.
MAC: Cleaning for b	pore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ (und	cracked concrete only!
4x	 2a. Starting from the bottom or back of the bore hole, blow the hole c (Annex B 3) a minimum of four times. 	ean by a hand pump ¹⁾
<u>*********</u> **	 Check brush diameter (Table B4). Brush the hole with an appropr d_{b,min} (Table B4) a minimum of four times in a twisting motion. If the bore hole ground is not reached with the brush, a brush ext 	
	2c. Finally blow the hole clean again with a hand pump (Annex B 3) a	a minimum of four times.
4x	¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm up to 10d _{nom} also in cracked concrete with hand-pump.	and an embedment depth
CAC: Cleaning for a	II bore hole diameter in uncracked and cracked concrete	
4x	2a. Starting from the bottom or back of the bore hole, blow the hole c compressed air (min. 6 bar) (Annex B 3) a minimum of four times stream is free of noticeable dust. If the bore hole ground is not reaextension must be used.	until return air
<u>***********</u> 4x	 2b. Check brush diameter (Table B4). Brush the hole with an appropr > d_{b,min} (Table B4) a minimum of four times in a twisting motion. If the bore hole ground is not reached with the brush, a brush external 	
4x)	2c. Finally blow the hole clean again with compressed air (min. 6 bar minimum of four times until return air stream is free of noticeable ground is not reached an extension must be used.	
	After cleaning, the bore hole has to be protected against re-co an appropriate way, until dispensing the mortar in the bore ho the cleaning has to be repeated directly before dispensing the In-flowing water must not contaminate the bore hole again.	ole. If necessary,
Injection System	ESSVE ONE or ESSVE ONE ICE for concrete	
Intended Use	าร	Annex B 4

Installation inst	ructions (continuation)	
	3. Attach the supplied static-mixing nozzle to the cartridge and load th correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended work well as for new cartridges, a new static-mixer shall be used.	
hef	Prior to inserting the anchor rod into the filled bore hole, the position depth shall be marked on the anchor rods.	on of the embedment
min. 3 full stroke	5. Prior to dispensing into the anchor hole, squeeze out separately a r strokes and discard non-uniformly mixed adhesive components unt consistent grey colour. For foil tube cartridges it must be discarded strokes.	il the mortar shows a
	6. Starting from the bottom or back of the cleaned anchor hole, fill the approximately two-thirds with adhesive. Slowly withdraw the static mole fills to avoid creating air pockets. If the bottom or back of the a reached, an appropriate extension nozzle must be used. Observe t given in Annex B 6.	mixing nozzle as the nchor hole is not
	 ✓ Piston plugs and mixer nozzle extensions shall be used according to following applications: Horizontal assembly (horizontal direction) and ground erection direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 2 Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 	(vertical downwards 250mm
	8 Push the threaded rod or reinforcing bar into the anchor hole while ensure positive distribution of the adhesive until the embedment de The anchor shall be free of dirt, grease, oil or other foreign material	pth is reached.
	9. Be sure that the anchor is fully seated at the bottom of the hole and visible at the top of the hole. If these requirements are not maintain to be renewed. For overhead application the anchor rod shall be fixed application the anchor rod shall be fixed application.	ned, the application has
+20°C	10. Allow the adhesive to cure to the specified time prior to applying an not move or load the anchor until it is fully cured (attend Annex B 6	
Tinst.	11. After full curing, the add-on part can be installed with up to the mate (Table B1 or B3) by using a calibrated torque wrench. It can be op- gap between anchor and fixture with mortar. Therefor substitute the washer and connect the mixer reduction nozzle to the tip of the mix- filled with mortar, when mortar oozes out of the washer.	tional filled the annular e washer by the filling
Injection System	ESSVE ONE or ESSVE ONE ICE for concrete	
Intended Use Installation instruction	ons (continuation)	Annex B 5

electronic copy of the eta by dibt: eta-18/0617

	Maximum woi ESSVE ONE	king time and minimum curing	time
Concrete t	emperature	Gelling- / working time	Minimum curing time in dry concrete ¹⁾
0 °C t	o +4°C	45 min	7 h
+5 °C t	o +9°C	25 min	2 h
+ 10 °C t	o +19°C	15 min	80 min
+ 20 °C t	o +29°C	6 min	45 min
+ 30 °C t	o +34°C	4 min	25 min
+ 35 °C t	o +39°C	2 min	20 min
+ 4	O°C	1,5 min	15 min
Cartridge t	emperature	+5°C to	+40°C
Concrete te	emperature	Gelling- / working time	Minimum curing time in dry concrete ¹⁾
Concrete to	-	Gelling- / working time 10 min	Minimum curing time in dry concrete ¹⁾ 2,5 h
) +4°C		in dry concrete ¹⁾
0 °C to	0 +4°C 0 +9°C	10 min	in dry concrete ¹⁾ 2,5 h
0 °C to +5 °C to + 10 Cartridge to	0 +4°C 0 +9°C	10 min 6 min 6 min 0°C to -	in dry concrete ¹⁾ 2,5 h 80 Min 60 Min
0 °C to +5 °C to + 10 Cartridge to	o +4°C o +9°C °C emperature	10 min 6 min 6 min 0°C to -	in dry concrete ¹⁾ 2,5 h 80 Min 60 Min

Г

Size				M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Cross	section area	A _s	[mm ²]	36,6	58	84,3	157	245	353	459	561
	acteristic tension resistance, Steel failure 1)	Ů	1	, '		,					
	, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Steel,	, Property class 5.6 and 5.8	N _{Rk,s}	[kN]		29 (27)	42	78	122	176	230	280
Steel,	, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
Stainl	less steel A2, A4 and HCR, Property class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Stainl	less steel A2, A4 and HCR, Property class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	-	-
Stainl	less steel A4 and HCR, Property class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	-	-
Chara	acteristic tension resistance, Partial factor ²⁾	1	I	1						<u> </u>	
Steel,	, Property class 4.6	γ _{Ms,V}	[-]				2	,0			
Steel,	, Property class 4.8	γMs,V	[-]				1	,5			
Steel,	, Property class 5.6	γMs,V	[-]				2	,0		<u> </u>	
Steel,	, Property class 5.8	γ _{Ms,V}	[-]				1	,5			
Steel,	, Property class 8.8	γMs,V	[-]				1	,5			
Stainl	less steel A2, A4 and HCR, Property class 50	γMs,V	[-]	2,86							
Stainl	less steel A2, A4 and HCR, Property class 70	γMs,V	[-]	1,87							
Stainl	less steel A4 and HCR, Property class 80	γMs,V	[-]				1	,6			
Chara	acteristic shear resistance, Steel failure 1)										
	Steel, Property class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
arm	Steel, Property class 5.6 and 5.8	V ⁰ _{Rk,s}	[kN]	9 (8)	15 (13)	21	39	61	88	115	140
ever	Steel, Property class 8.8	V ⁰ _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Without lever arm	Stainless steel A2, A4 and HCR, Property class 50	V ⁰ _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Vith	Stainless steel A2, A4 and HCR, Property class 70	V ⁰ _{Rk,s}	[kN]	13	20	30	55	86	124	-	-
-	Stainless steel A4 and HCR, Property class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	-	-
	Steel, Property class 4.6 and 4.8	M ⁰ _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
E	Steel, Property class 5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
ver a	Steel, Property class 8.8	M ⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
With lever arm	Stainless steel A2, A4 and HCR, Property class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561	832	1125
M	Stainless steel A2, A4 and HCR, Property class 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	-	-
	Stainless steel A4 and HCR, Property class 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	-	-
Chara	acteristic shear resistance, Partial factor ²⁾										
	, Property class 4.6	γ _{Ms,V}	[-]				1,	67			
Steel,	, Property class 4.8	γMs,V	[-]				1,	25			
Steel,	, Property class 5.6	γMs,V	[-]				1,	67			
Steel,	, Property class 5.8	γMs,V	[-]				1,	25			
	, Property class 8.8	γMs,V	[-]				1,	25			
Stainl	less steel A2, A4 and HCR, Property class 50	γMs,V	[-]				2,	38			
Stainl	less steel A2, A4 and HCR, Property class 70	γ _{Ms,V}	[-]				1,	56			
Stain	less steel A4 and HCR, Property class 80	γMs,V	[-]				1	33			

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hotdip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

²⁾ in absence of national regulation

Injection System ESSVE ONE or ESSVE ONE ICE for concrete

Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Annex C 1

Anchor size threaded	rod			M 8	M 10	M 12	M 16	M 20	M24	M27	M3
Steel failure		1	T N N						-		
Characteristic tension re	esistance	N _{Rk,s}	[kN]			A _s ·	f _{uk} (or se		C1)		
		N _{Rk,s, eq}	[kN]				1,0 •				
Partial factor		γMs,N	[-]				see Ta	ble C1			
Combined pull-out and											
	stance in non-cracked co	1			10						
Temperature range I: 40°C/24°C	dry and wet concrete	$\tau_{\rm Rk,ucr}$	[N/mm ²]	10	12	12	12	12	11	10	9
	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	7,5 7,5	8,5 9	8,5 9	8,5 9	9	10rmance 8.5	Assessed 7,5	6,
Temperature range II: 30°C/50°C	dry and wet concrete flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	7,5 5,5	9 6,5	9 6,5	9 6,5	-	- / -	Assessed	,
Temperature range III:	dry and wet concrete	$\tau_{\rm Rk,ucr}$ $\tau_{\rm Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6.5	5,5	5.0
120°C/72°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	4.0	5.0	5.0	5.0		,	Assessed	
Characteristic bond resi	stance in cracked concre	,	[[]	.,.	-,-	-,-	-,-				<u> </u>
		$\tau_{\rm Rk,cr}$	[N/mm ²]	4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,
Temperature range I:	dry and wet concrete	$\tau_{\rm Rk,eq}$	[N/mm ²]	2,5	3,1	3,7	3.7	3,7	3.8	4,5	4,5
40°C/24°C		τ _{Rk.cr}	[N/mm ²]	4,0	4,0	5,5	5,5	No Pe	rformance	Assessed	I (NPA
	flooded bore hole	$\tau_{\rm Rk,eq}$	[N/mm ²]	2,5	2,5	3,7	3,7	No Pe	rformance	Assessed	I (NPA
	dry and wat concrete	$\tau_{\text{Rk,cr}}$	[N/mm ²]	2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,
Temperature range II:	dry and wet concrete	$\tau_{\text{Rk,eq}}$	[N/mm ²]	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,
80°C/50°C	flooded bore hole	$\tau_{\text{Rk,cr}}$	[N/mm ²]	2,5	3,0	4,0	4,0	No Pe	rformance	Assessed	I (NPA
		$\tau_{\text{Rk,eq}}$	[N/mm ²]	1,6	1,9	2,7	2,7		rformance	Assessed	· ·
	dry and wet concrete	$\tau_{\text{Rk,cr}}$	[N/mm ²]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,
Temperature range III:	perature range III:		[N/mm ²]	1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,
120°0/72°0	flooded bore hole	$\tau_{\rm Rk,cr}$	[N/mm ²]	2,0	2,5	3,0	3,0			Assessed	
			[N/mm ²] 5/30	1,3	1,6	2,0	2,0		nomance	Assessed	
		C2				1,0					
Increasing factors for co		C3				1,0					
(only static or quasi-stat	tic actions)		0/50)8				
Ψc			5/55	1,09							
		C50	0/60				1,	10			
Concrete cone failure											
Non-cracked concrete		k _{ucr,N}	[-]				11	,0			
Cracked concrete		k _{cr,N}	[-]				7,	7			
Edge distance		C _{cr,N}	[mm]				1,5				
Axial distance		,	[mm]				2 c				
Splitting		S _{cr,N}	[[uuu]				20	cr,N			
Splitting	h/h _{ef} ≥ 2,0						1,0	h _{ef}			
Edge distance	$2,0 > h/h_{cf} > 1,3$	C _{cr,sp}	[mm]				$2 \cdot h_{ef} (2,$	$5-\frac{h}{h}$			
	h/h _{ef} ≤ 1,3	-					2,4	h _{ef}	/		
Axial distance		S _{cr,sp}	[mm]				2 c,	cr,sp			
Installation factor		I	I	1							
for dry and wet concrete		<u>.</u>	[-]	1,0				1,2			
	5	γinst		1,0							
for flooded bore hole		γinst	[-]		1,	,4		No Pe	rformance	Assessed	I (NPA
Injection System	m ESSVE ONE or	ESSVE O	NE ICE fo	r conc	rete						

Table C3: Characteristi seismic actio						c, quas	si-stati	c actic	on and					
Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30				
Steel failure without lever arm														
Characteristic shear resistance Steel, strength class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]			0,6	• A _s • f _{uk} (or	r see Table	e C1)						
Characteristic shear resistance Steel, strength class 5.6, 5.8 and 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ _{Rk,s}	[kN]			0,5	• A _s • f _{uk} (oi	r see Table	e C1)						
Characteristic shear resistance	$V_{Rk,s,eq}$	[kN]				0,70 •	V ⁰ _{Rk,s}							
Partial factor	γMs,V	[-]				see Ta	able C1							
Ductility factor	k ₇	[-]				1	,0							
Steel failure with lever arm		1	1											
Characteristic handing moment	M ⁰ _{Rk,s}	[Nm]			1,2 •	$W_{el} \cdot f_{uk}$ (o	r see Tabl	e C1)						
Characteristic bending moment	M ⁰ _{Rk,s,eq}	[Nm]			No Pe	rformance	Assessed	(NPA)						
Partial factor	γMs,V	[-]				see Ta	able C1							
Concrete pry-out failure	·													
Factor	k ₈	[-]				2	,0							
Installation factor	γinst	[-]				1	,0							
Concrete edge failure														
Effective length of fastener	lf	[mm]			min(h _{ef} ;	12 · d _{nom})			min(h _{ef} ;	300 mm)				
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30				
Installation factor	γinst	[-]				1	,0							
Factor for annular gap	α_{gap}	[-]				0,5 (1,0) ¹⁾							

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Injection System ESSVE ONE or ESSVE ONE ICE for concrete

Performances

Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1) $\,$

Annex C 3

Anchor size internal th	readed anchor rods			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure ¹⁾									
Characteristic tension re	,	N _{Rk,s}	[kN]	10	17	29	42	76	123
Steel, strength class 5.8 Partial factor						1,	E		
Characteristic tension re	sistance	γMs,N	[-]			Í			
Steel, strength class 8.8		N _{Rk,s}	[kN]	16	27	46	67	121	196
Partial factor		γMs,N	[-]			1,	5		
Characteristic tension re		N _{Rk,s}	[kN]	14	26	41	59	110	124
Stainless Steel A4 and I Partial factor	non, Strength class 70	γ _{Ms,N}	[-]			1.87			2,86
	d concrete cone failure	/ MIS, IN				1,07			2,00
•	stance in non-cracked concre	ete C20/25							
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	12	12	12	12	11	9
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	8,5	8,5	8,5	No Perfor	mance Asses	sed (NPA)
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	9	9	9	9	8,5	6,5
80°C/50°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	6,5	6,5	6,5	No Perfor	mance Asses	sed (NPA)
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	6,5	6,5	6,5	6,5	6,5	5,0
120°C/72°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	5,0	5,0	5,0	No Perfor	mance Asses	sed (NPA)
Characteristic bond resi	stance in cracked concrete C	20/25							
Temperature range I:	dry and wet concrete	$\tau_{\text{Rk,cr}}$	[N/mm ²]	5,0	5,5	5,5	5,5	5,5	6,5
40°C/24°C	flooded bore hole	$\tau_{\text{Rk,cr}}$	[N/mm ²]	4,0	5,5	5,5	No Perfor	mance Asses	sed (NPA)
Temperature range II:	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm ²]	3,5	4,0	4,0	4,0	4,0	4,5
80°C/50°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm ²]	3,0	4,0	4,0		mance Asses	. ,
Temperature range III:	dry and wet concrete	$\tau_{\rm Rk,cr}$	[N/mm ²]	2,5	3,0	3,0	3,0	3,0	3,5
120°C/72°C	flooded bore hole	τ _{Rk,cr}	[N/mm ²]	2,5	3,0	3,0		mance Asses	sed (NPA)
			25/30			1,0			
			30/37			1,(
Increasing factors for co	oncrete		35/45 40/50			1,0			
Ψc			45/55			1,0			
			+0/00 50/60			1,			
Concrete cone failure			50,00			.,			
Non-cracked concrete		k _{ucr,N}	[-]			11	.0		
Cracked concrete		k _{cr,N}	[-]			7,	,		
Edge distance		C _{cr,N}	[mm]			1,5			
Axial distance		S _{cr,N}	[mm]			2 c			
Splitting failure									
	h/h _{ef} ≥ 2,0					1,0	h _{ef}		
						(<i>k</i>)		
Edge distance	$2,0 > h/h_{ef} > 1,3$	C _{cr,sp}	[mm]			$2 \cdot h_{ef} 2,$	$5-\frac{h}{h}$		
						l	n_{ef})		
	h/h _{ef} ≤ 1,3					2,4	h _{ef}		
Axial distance		S _{cr,sp}	[mm]			2 c	cr,sp		
Installation factor									
for dry and wet concrete)	γinst	[-]			1,	2		
for flooded bore hole			[-]		1,4	.,			
Fastening sc threaded rod and the faste	rews or threaded rods (incl. r . The characteristic tension r ening element. strength class 50 is valid		er) must con		e appropriat				
	m ESSVE ONE or Es	SSVE ON	E ICE fo	r concre	ete			Annex (

Anchor size for internal threade	d anchor ro	ods	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure without lever arm ¹⁾					1		LL	
Characteristic shear resistance, Steel, strength class 5.8	$V^0_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	[kN]	5	9	15	21	38	61
Partial factor	γм₅,∨	[-]		1		1,25	11	
Characteristic shear resistance, Steel, strength class 8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98
Partial factor	γ _{Ms,V}	[-]		1	1	1,25	II	
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾	V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40
Partial factor	γMs,V	[-]			1,56			2,38
Ductility factor	k ₇	[-]				1,0		
Steel failure with lever arm ¹⁾								
Characteristic bending moment, Steel, strength class 5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325
Partial factor	γ _{Ms,V}	[-]				1,25		
Characteristic bending moment, Steel, strength class 8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519
Partial factor	γ _{Ms,V}	[-]		ı	I	1,25		
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾	M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456
Partial factor	γ _{Ms,V}	[-]			1,56			2,38
Concrete pry-out failure								
Factor	k ₈	[-]				2,0		
Installation factor	γinst	[-]				1,0		
Concrete edge failure								
Effective length of fastener	l _f	[mm]		m	in(h _{ef} ; 12 • d _n	om)		min(h _{ef} ; 300 mm
Outside diameter of fastener	d _{nom}	[mm]	10	12	16	20	24	30
Installation factor	γinst	[-]		-		1,0		
 Fastening screws or the threaded rod. The char and the fastening elem For IG-M20 strength classical 	acteristic te ent.	nsion resist	ance for stee	el failure of th	e given stren	yth class are	valid for the in	ternal threaded rod

Anchor size reinforcir	ng bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø3
Steel failure													
Characteristic tension re	esistance		N _{Rk,s}	[kN]					$A_s \cdot f_{uk}^{(1)}$				
			N _{Rk,s, eq}	[kN]				1,0	$0 \cdot A_{s} \cdot f$	uk'	1		
Cross section area			As	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor			γMs,N	[-]					1,4 ²⁾				
Combined pull-out an				05									
Characteristic bond res					10	10	10	10	10	12	11	10	
Temperature range I: 40°C/24°C	dry and wet flooded bore		τ _{Rk,ucr}	[N/mm ²] [N/mm ²]	10 7,5	12 8,5	12 8.5	12 8,5	12 8,5		rformance		
Temperature range II:	dry and wet		$\tau_{\rm Rk,ucr}$ $\tau_{\rm Rk,ucr}$	[N/mm ²]	7,5	9	9	9	9	9	8,0	7,0	6,0
80°C/50°C	flooded bore		τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6.5	6.5	6,5	-	rformance	1	
Temperature range III:	dry and wet		τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
120°C/72°C	flooded bore		$\tau_{\rm Rk,ucr}$	[N/mm ²]	4,0	5,0	5,0	5,0	5,0	, ,	formance	,	,
Characteristic bond res	istance in crac	cked concre				,			,				
			$\tau_{\text{Rk,cr}}$	[N/mm ²]	4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5
Temperature range I:	dry and wet	concrete	$\tau_{Rk,eq}$	[N/mm ²]	2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5
40°C/24°C	flooded bore		$\tau_{\text{Rk,cr}}$	[N/mm²]	4,0	4,0	5,5	5,5	5,5	No Pe	rformance	Assesse	d (NPA
			$\tau_{Rk,eq}$	[N/mm²]	2,5	2,5	3,7	3,7	3,7	No Pe	rformance	Assesse	d (NPA
	dry and wet	concrete	$\tau_{Rk,cr}$	[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5
Temperature range II:		Sonorele	$\tau_{\text{Rk},\text{eq}}$	[N/mm ²]	1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1
80°C/50°C	flooded bore	e hole	$\tau_{\text{Rk,cr}}$	[N/mm ²]	2,5	3,0	4,0	4,0	4,0	No Pe	rformance	Assesse	d (NPA
			$\tau_{\text{Rk,eq}}$	[N/mm ²]	1,6	1,9	2,7	2,7	2,7		rformance	1	1 · · · ·
	dry and wet	concrete	$\tau_{\text{Rk,cr}}$	[N/mm ²]	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5
Temperature range III:			$\tau_{\text{Rk},\text{eq}}$	[N/mm ²]	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4
120°C/72°C	flooded bore	e hole	$\tau_{Rk,cr}$	[N/mm ²]	2,0	2,5	3,0	3,0	3,0		rformance		
	flooded bore hole		τ _{Rk,eq} C25	[N/mm ²]	1,3	1,6	2,0	2,0	2,0 1,02	No Pe	rformance	Assesse	d (NPA
			C30						1,02				
Increasing factors for co	oncrete		C35						1,04				
(only static or quasi-sta	tic actions)		C40						1,07				
Ψc			C45						1,00				
			C50						1,10				
Concrete cone failure			1						,				
Non-cracked concrete			k _{ucr,N}	[-]					11,0				
Cracked concrete			k _{cr,N}	[-]					7,7				
Edge distance			C _{cr,N}	[mm]					1,5 h _{ef}				
Axial distance			S _{cr,N}	[mm]					$2 c_{\text{cr,N}}$				
Splitting													
	h/h _{ef} ≥ 2,0								1,0 h _{ef}				
									(h			
Edge distance	2,0 > h/h _{ef} >	1,3	C _{cr,sp}	[mm]				$2 \cdot h_{\epsilon}$	_f 2,5 –	$\frac{h}{h}$			
	h/h + 1 0		-							••ef)			
	h/h _{ef} ≤ 1,3								2,4 h _{ef}				
Axial distance			S _{cr,sp}	[mm]					$2 c_{\text{cr,sp}}$				
Installation factor					_								
for dry and wet concrete	e		γinst	[-]	1,0				1	,2			
for flooded bore hole			γinst	[-]			1,4			No Pe	rformance	Assesse	d (NPA
¹⁾ f _{uk} shall be take ²⁾ in absence of n	n from the spe ational regula	ecifications tion	of reinforcin	g bars									
										1			
Injection System	m ESSVE	ONE or	ESSVE	ONE IC	E for	concre	ete						
										-	_	ex C (-

Table C7: Characteristic valu seismic action (per					tatic,	quas	i-stat	ic ac	tion a	ind	
Anchor size reinforcing bar			Ø8	<i>ø</i> 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm			1								
	V ⁰ _{Rk,s}	[kN]				0,5	50 • A _s •	f _{uk} ¹⁾			
Characteristic shear resistance	$V_{Rk,s,eq}$	[kN]				0,3	35 • A _s •	f _{uk} ¹⁾			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γмs,v	[-]					1,5 ²⁾				
Ductility factor	k ₇	[-]	-				1,0				
Steel failure with lever arm											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				1.2	$2 \cdot W_{el} \cdot i$	f _{uk} ¹⁾			
Characteristic bending moment	M ⁰ _{Rk,s, eq} [Nm] No Performance Assessed (NPA)										
Elastic section modulus	W _{el}	[mm ³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γms,v	[-]					1,5 ²⁾				
Concrete pry-out failure	·	•									
Factor	k ₈	[-]					2,0				
Installation factor	γinst	[-]					1,0				
Concrete edge failure											
Effective length of fastener	l _f	[mm]		r	min(h _{ef} ;	12 • d _{norr}	1)		min(h _{ef} ; 300	mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	γinst	[-]					1,0				
Factor for annular gap	$lpha_{gap}$	[-]				(D,5 (1,0)	1)			
 ¹⁾ f_{uk} shall be taken from the specifications of reir ²⁾ in absence of national regulation ³⁾ Value in brackets valid for filled annular gab be required 		nd clearar	nce hole	in the fi	xture. U	se of sp	ecial filli	ng wash	er Anne	x A 3 is	

Performances

Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)

Annex C 7

Anchor size thread	led rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked conc	rete C20/25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
40°C/24°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm ²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Cracked concrete	C20/25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,0)90			0,0)70		
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,1	05			0,1	05		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219			0,1	70		
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,2	255			0,2	245		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219			0,1	70		
120°C/72°Č	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,2	255			0,2	245		

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0} \text{-factor} \quad \tau; \qquad \tau: \text{ action bond stress for tension}$

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor $\cdot \tau$;

Table C9: Displacements under shear load¹⁾ (threaded rod)

Anchor size thre	eaded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
For non-cracked	l concrete C2	0/25							•	
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
For cracked con	crete C20/25									
All temperature	δ_{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
ranges	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10
$\delta_{V_{\infty}} = \delta_{V_{\infty}}$ -facto										
Injection System	em ESSVE (ONE or ESSVE ONE		r concr	ete				•	•
Performances	readed rade)							An	nex C	8

Displacements (threaded rods)

Anchor size reinfo	orcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked con	crete C20/2	25									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Cracked concrete	C20/25										
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,0)90				0,070			
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,1	05				0,105			
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219				0,170			
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,2	255				0,245			
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219				0,170			
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,2	255				0,245			
¹⁾ Calculation of th $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor	·τ;	nent τ: action bonc	l stress fo	r tension							

Table C11: Displacement under shear load¹⁾ (rebar)

Anchor size rei	nforcing bar		Ø 8	Ø10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked co	oncrete C20/2	25	÷.		-				-		•
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Cracked concre	ete C20/25			-	-			-	-	-	
All temperature	δ_{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
ranges	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor V; V: action shear load

$$\begin{split} \delta_{V0} &= \delta_{V0} \text{-factor} \quad V; \\ \delta_{V\infty} &= \delta_{V\infty} \text{-factor} \quad V; \end{split}$$

Injection System	ESSVE ONE o	r ESSVE ONE	ICE for concrete
-------------------------	-------------	-------------	------------------

Performances

Annex C 9

Displacements (rebar)

Table C12: Dis	splacements	s under tension	load ¹⁾ (lı	nternal t	hreaded	anchor	rod)	
Anchor size Interna	al threaded an	chor rod	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked concret	e C20/25 under	static and quasi-stati	c action	I	1			
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,023	0,026	0,031	0,036	0,041	0,049
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,033	0,037	0,045	0,052	0,060	0,071
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,056	0,063	0,075	0,088	0,100	0,119
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,081	0,090	0,108	0,127	0,145	0,172
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,056	0,063	0,075	0,088	0,100	0,119
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,081	0,090	0,108	0,127	0,145	0,172
Cracked concrete C2	0/25 under stati	c and quasi-static ac	tion					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,090			0,070		
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,105			0,105		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,219			0,170		
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,255			0,245		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,219			0,170		
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,255			0,245		

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor τ ; τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor} \quad \tau;$

Table C13: Displacements under shear load¹⁾ (Internal threaded anchor rod)

Anchor size Internal threaded anchor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked a	nd cracked cor	ncrete C20/25 un	der static a	and quasi-s	tatic action	้า		
All temperature ranges	δ_{V0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04
	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06
Inication Cur								
Injection System ESSVE ONE or ESSVE ONE ICE for concrete Performances Displacements (Internal threaded anchor rod)							Annex C 10	