

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0617 of 11 December 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection system ESSVE ONE or ESSVE ONE-ICE for concrete

Bonded fastener for use in concrete

ESSVE Produkter AB Esbogatan 14 164 74 KISTA SCHWEDEN

ESSVE Plant No. 671

31 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601

ETA-18/0617 issued on 15 February 2019

European Technical Assessment ETA-18/0617

Page 2 of 31 | 11 December 2019

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-18/0617

Page 3 of 31 | 11 December 2019

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Injection System ESSVE ONE, ESSVE ONE-ICE for concrete" is a bonded anchor consisting of a cartridge with injection ESSVE ONE or ESSVE ONE-ICE and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \varnothing 8 to \varnothing 32 mm or an internal threaded anchor rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex
(static and quasi-static loading)	C 1 to C 3, C 5, C 7
Characteristic resistance to shear load	See Annex
(static and quasi-static loading)	C1, C 4, C 6, C 8
Displacements	See Anne
(static and quasi-static loading)	C 9 to C 11
Characteristic resistance and displacements for seismic	See Anne
performance categories C1	C 12 to C 16
Characteristic resistance and displacements for seismic performance categories C2	No performance assessed
Durability	See Annex B 1

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-18/0617

Page 4 of 31 | 11 December 2019

English translation prepared by DIBt

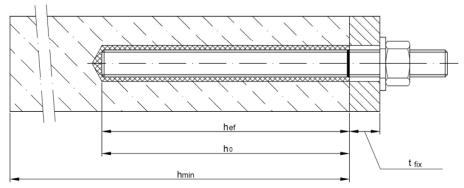
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

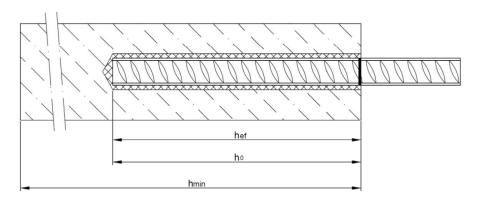
The system to be applied is: 1

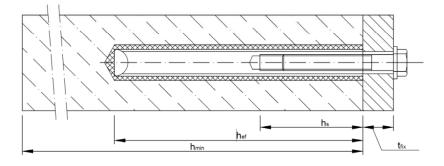
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 11 December 2019 by Deutsches Institut für Bautechnik

Dr.-Ing. Lars Eckfeldt p.p. Head of Department


beglaubigt: Baderschneider


Installation threaded rod M8 up to M30

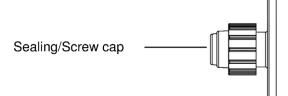
Installation reinforcing bar Ø8 up to Ø32

Installation internal threaded anchor rod IG-M6 up to IG-M20

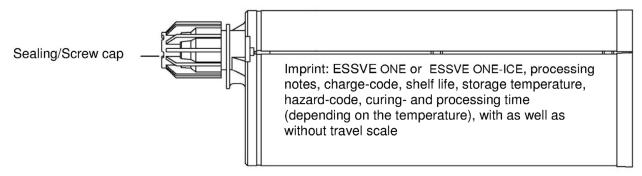
 t_{fix} = thickness of fixture

h_{ef} = effective anchorage depth

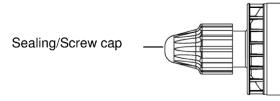
 h_0 = depth of drill hole


 h_{min} = minimum thickness of member

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Product description Installed condition	Annex A 1


Cartridge: ESSVE ONE or ESSVE ONE-ICE

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)



Imprint: ESSVE ONE or ESSVE ONE-ICE, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

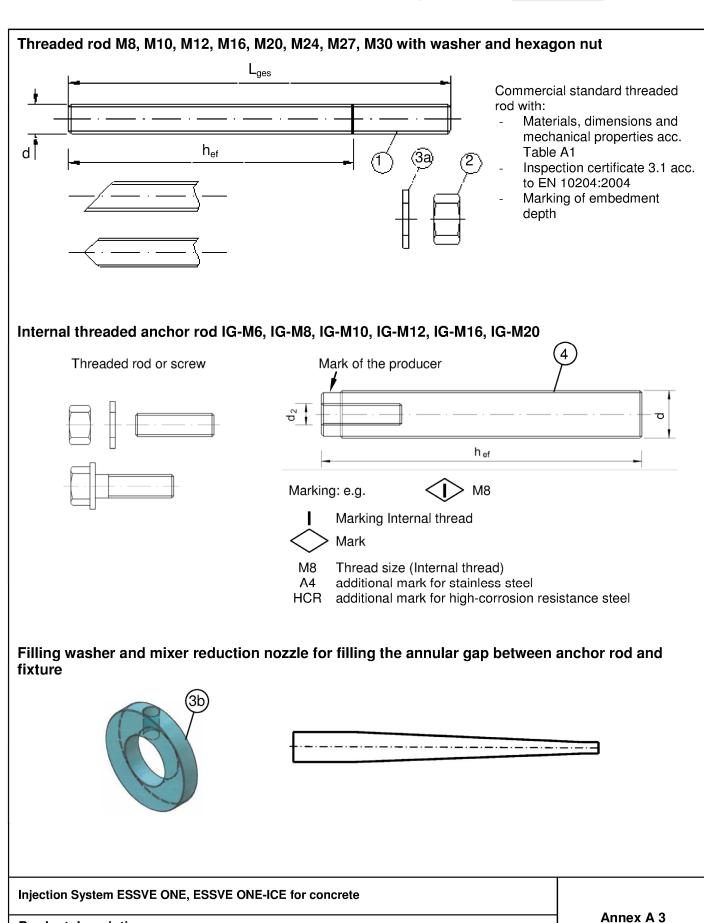
235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

165 ml and 300 ml cartridge (Type: "foil tube")

Imprint: ESSVE ONE or ESSVE ONE-ICE, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete

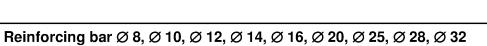
Product description

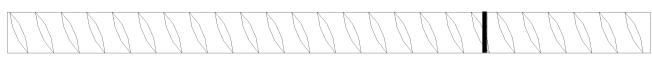

Injection system

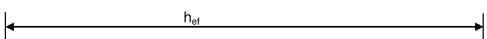
Annex A 2

Product description

Threaded rod, internal threaded rod and filling washer


English translation prepared by DIBt




	Designation	Material				
ziı	I, zinc plated (Steel acc. to E nc plated ≥ 5 μm a ot-dip galvanised ≥ 40 μm a	acc. to EN ISO 4042:1999	or	,	-AC:2009 or	
sh	erardized ≥ 45 μm a	acc. to EN ISO 17668:2016 Property class	<u> </u>	Characteristic	Characteristic	Elongation at
		1 Toperty class	4.6	tensile strength f _{uk} = 400 N/mm ²	yield strength $f_{VK} = 240 \text{ N/mm}^2$	fracture A ₅ > 8%
				$f_{uk} = 400 \text{ N/mm}^2$	$f_{vk} = 320 \text{ N/mm}^2$	$A_5 > 6\%$
1	Threaded rod	acc. to		$f_{uk} = 500 \text{ N/mm}^2$	$f_{vk} = 300 \text{ N/mm}^2$	$A_5 > 8\%$
		EN ISO 898-1:2013		f _{uk} = 500 N/mm ²	f _{vk} = 400 N/mm ²	A ₅ > 8%
				f _{Uk} = 800 N/mm ²	f _{vk} = 640 N/mm ²	A ₅ ≥ 8%
			4	for threaded rod c	1 7	1 2
2	Hexagon nut	acc. to EN ISO 898-2:2012	5	for threaded rod c		
	_	EN 130 090-2.2012	8	for threaded rod c	lass 8.8	
3а	Washer	Steel, zinc plated, hot-di (e.g.: EN ISO 887:2006,				N ISO 7094:200
3b	Filling washer	Steel, zinc plated, hot-di	p galva			_
	Internal threaded anchor rod	Property class		Characteristic tensile strength	Characteristic yield strength	Elongation at fracture
4		acc. to		$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 400 \text{ N/mm}^2$	A ₅ > 8%
		EN ISO 898-1:2013	8.8	f _{uk} = 800 N/mm ²	f _{yk} = 640 N/mm ²	A ₅ > 8%
	nless steel A2 (Material 1.43					
	nless steel A4 (Material 1.44 corrosion resistance steel					
					14) Characteristic yield strength	Elongation at fracture
ligh		(Material 1.4529 or 1.4565) Property class		to EN 10088-1: 20 Characteristic	Characteristic	
ligh	corrosion resistance steel	(Material 1.4529 or 1.4565) Property class acc. to	5, acc.	to EN 10088-1: 20 Characteristic tensile strength	Characteristic yield strength	fracture
ligh	corrosion resistance steel	(Material 1.4529 or 1.4565) Property class	5, acc. 50	to EN 10088-1: 20 Characteristic tensile strength f _{uk} = 500 N/mm ²	Characteristic yield strength $f_{yk} = 210 \text{ N/mm}^2$	fracture A ₅ ≥ 8%
ligh	Threaded rod ¹⁾³⁾	(Material 1.4529 or 1.4565) Property class acc. to EN ISO 3506-1:2009	50 70	to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod co	Characteristic yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ lass 50	fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$
ligh 1	corrosion resistance steel	(Material 1.4529 or 1.4565 Property class acc. to EN ISO 3506-1:2009 acc. to	50 70 80 50 70	to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod control for threaded rod c	Characteristic yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ lass 50 lass 70	fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$
	Threaded rod ¹⁾³⁾	(Material 1.4529 or 1.4565 Property class acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009	5, acc. 50 70 80 50 70 80 80	to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod contraction for	Characteristic yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ lass 50 lass 70 lass 80	fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$
1 2	Threaded rod ¹⁾³⁾	(Material 1.4529 or 1.4565 Property class acc. to EN ISO 3506-1:2009 acc. to	50 70 80 50 70 80 80 1307 / 1 1404 / 1 1 1.4569	to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod continued for threaded rod continued	Characteristic yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ lass 50 lass 70 lass 80 1.4541, acc. to EN 1.4578, acc. to EN 1.2014	fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_{5} \ge 8\%$ $10088-1:2014$ $10088-1:2014$
ligh 1	Threaded rod ¹⁾³⁾ Hexagon nut ¹⁾³⁾	(Material 1.4529 or 1.4565) Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or	50 70 80 50 70 80 4307 / 1 4404 / 1 1.4566 EN ISO	to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod continued for threaded rod continued	Characteristic yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ $lass 50$ $lass 70$ $lass 80$ $1.4541, acc. to EN 3-1: 2014$ $SO 7093:2000 \text{ or E}$	fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_{5} \ge 8\%$ $10088-1:2014$ $10088-1:2014$
1 2 3a	Threaded rod ¹⁾³⁾ Hexagon nut ¹⁾³⁾ Washer	(Material 1.4529 or 1.4565 Property class acc. to EN ISO 3506-1:2009 acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or (e.g.: EN ISO 887:2006,	50 70 80 50 70 80 80 80 1307 / 1 1404 / 1 1 1.4568 EN ISI	to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod conthreaded rod contract rotation in resistance stee Characteristic tensile strength	Characteristic yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ $lass 50$ $lass 70$ $lass 80$ $1.4541, acc. to EN 3-1: 2014$ $SO 7093:2000 \text{ or E}$	fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_{5} \ge 8\%$ $10088-1:2014$ $10088-1:2014$
1 2 3a	Threaded rod ¹⁾³⁾ Hexagon nut ¹⁾³⁾ Washer	(Material 1.4529 or 1.4565) Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or (e.g.: EN ISO 887:2006, Stainless steel A4, High	50 70 80 50 70 80 80 80 1307 / 1 1404 / 1 1 1.4568 EN ISI	to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod conthreaded rod contract to EN 10086 CO 7089:2000, EN ISO 7089:2000, EN	Characteristic yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ $lass 50$ $lass 70$ $lass 80$ $1.4541, acc. to EN 1.4578, acc. to EN 3-1: 2014 SO 7093:2000 or E 1 Characteristic$	fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ 10088-1:2014 10088-1:2014 N ISO 7094:200 Elongation at

³⁾ Property class 80 only for stainless steel A4	

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Product description Materials threaded rod and internal threaded rod	Annex A 4

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: Materials

ŀ	Part	Designation	Material
ŀ	Reinf	orcing bars	
	1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Product description	Annex A 5
Materials reinforcing bar	

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30, Rebar Ø8 to Ø32.

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: -40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR055, Edition February 2018

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16, IG-M6 to IG-M10.
- · Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The injection mortar is assessed for installation at minimum concrete temperature of -10°C resp. -20°C, where subsequently the temperature in the concrete does not rise at a rapid rate, i.e. from the minimum installation temperature to 24°C within a 12-hour period.

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Intended Use Specifications	Annex B 1

Page 11 of European Technical Assessment ETA-18/0617 of 11 December 2019

English translation prepared by DIBt

Table B1: Installation parameters for threaded rod									
Anchor size		М8	M10	M12	M16	M20	M24	M27	M30
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	16	20	24	27	30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective embedment depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Enective embedment depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Maximum torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm			$h_{ef} + 2d_0$				
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

Rebar size		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
Effective and a descript	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Effective embedment depth	h _{ef,max} [mm] =	160	200	240	280	320	400	500	580	640
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm					h _{ef} + 2d ₀)		
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Table B3: Installation parameters for internal threaded anchor rod

Size internal threaded anchor rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Internal diameter of anchor	d ₂ [mm] =	6	8	10	12	16	20
Outer diameter of anchor 1)	d _{nom} [mm] =	10	12	16	20	24	30
Nominal drill hole diameter	$d_0 [mm] =$	12	14	18	22	28	35
Effective embedment depth	h _{ef,min} [mm] =	60	70	80	90	96	120
Enective embedment depth	$h_{ef,max} [mm] =$	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f [mm] =	7	9	12	14	18	22
Maximum torque moment	T _{inst} [Nm] ≤	10	10	20	40	60	100
Thread engagement length min/max	I _{IG} [mm] =	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min} [mm]	$h_{ef} + 30 \text{ mm}$ $h_{ef} + 2d_0$		- 2d ₀			
Minimum spacing	s _{min} [mm]	50	60	80	100	120	150
Minimum edge distance	c _{min} [mm]	50	60	80	100	120	150

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Intended Use Installation parameters	Annex B 2

Table B4:	Table B4: Parameter cleaning and setting tools											
7	and the second second			-								
Threaded Rod	Rebar	Internal threaded Anchor rod	d₀ Drill bit - Ø HD, HDB, CA	d Brusl		d _{b,min} min. Brush - Ø	Piston plug	Installatio of	n direction piston plu			
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1		1		
M8			10	RBT10	12	10,5						
M10	8	IG-M6	12	RBT12	14	12,5		No piston p	lua roquiro			
M12	10	IG-M8	14	RBT14	16	14,5		ινο ριδιστί μ	nug require	iu		
	12		16	RBT16	18	16,5						
M16	14	IG-M10	18	RBT18		18,5	VS18					
	16		20	RBT20	22	20,5	VS20					
M20	20	IG-M12	24	RBT24	26	24,5	VS24	h _{ef} >	h _{ef} >			
M24		IG-M16	28	RBT28	30	28,5	VS28	250 mm	250 mm	all		
M27	25		32	RBT32	34	32,5	VS32	230 111111	230 111111			
M30	28	IG-M20	35	RBT35	37	35,5	VS35]]		
	32		40	RBT40	41,5	40,5	VS40					

MAC - Hand pump (volume 750 ml)Drill bit diameter (d₀): 10 mm to 20 mm

Drill hole depth (h_0) : < 10 d_{nom} Only in non-cracked concrete

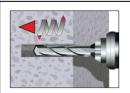
CAC - Rec. compressed air tool (min 6 bar)

Drill bit diameter (d₀): all diameters

Piston plug for overhead or horizontal installation VS

Drill bit diameter (d₀): 18 mm to 40 mm

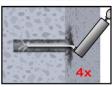
Steel brush RBT


Drill bit diameter (do): all diameters

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete Intended Use Cleaning and setting tools Annex B 3	
	Annex B 3

Installation instructions

Drilling of the bore hole

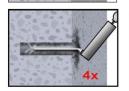


1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3), with hammer (HD), hollow (HDB) or compressed air (CD) drilling. The use of a hollow drill bit is only in combination with a sufficient vacuum permitted.

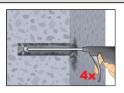
In case of aborted drill hole: The drill hole shall be filled with mortar

Attention! Standing water in the bore hole must be removed before cleaning.

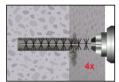
MAC: Cleaning for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ (uncracked concrete only!)



2a. Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump 1) (Annex B 3) a minimum of four times.


2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.

If the bore hole ground is not reached with the brush, a brush extension must be used.



2c. Finally blow the hole clean again with a hand pump (Annex B 3) a minimum of four times.

CAC: Cleaning for all bore hole diameter in uncracked and cracked concrete

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.

If the bore hole ground is not reached with the brush, a brush extension must be used.

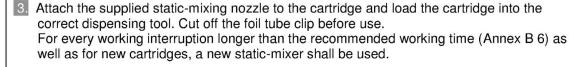
2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

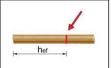
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete

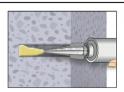
Intended Use

Installation instructions

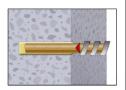

Annex B 4


¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an embedment depth up to 10d_{nom} also in cracked concrete with hand-pump.

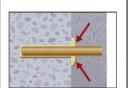
Installation instructions (continuation)



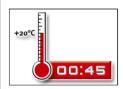
4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.


5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For foil tube cartridges it must be discarded a minimum of six full strokes.

6. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Annex B 6.



- 7. Piston plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications:
 - Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit- \emptyset d₀ \ge 18 mm and embedment depth h_{ef} > 250mm
 - Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm



8. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor shall be free of dirt, grease, oil or other foreign material.

9. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).

10. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Annex B 6).

11. After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. It can be optional filled the annular gap between anchor and fixture with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete

Intended Use

Installation instructions (continuation)

Annex B 5

Table B5:	Maximum working time and minimum curing time
	ESSVE ONE

Concrete temperature		perature	Gelling- / working time	Minimum curing time in dry concrete 1)				
-10 °C	to	-6°C	90 min ²⁾	24 h ²⁾				
-5 °C	to	-1°C	90 min	14 h				
0 °C	to	+4°C	45 min	7 h				
+5 °C	to	+9°C	25 min	2 h				
+ 10 °C	to	+19°C	15 min	80 min				
+ 20 °C	to	+29°C	6 min	45 min				
+ 30 °C	to	+34°C	4 min	25 min				
+ 35 °C	to	+39°C	2 min	20 min				
	+ 40 °C	;	1,5 min	15 min				
Cartride	Cartridge temperature		+5°C to	+40°C				

¹⁾ In wet concrete the curing time must be doubled.
2) Cartridge temperature must be at min. +15°C.

Maximum working time and minimum curing time ESSVE ONE-ICE Table B6:

Concret	Concrete temperature		Gelling- / working time	Minimum curing time in dry concrete 1)					
-20 °C	to	-16°C	75 min	24 h					
-15 °C	to	-11°C	55 min	16 h					
-10 °C	to	-6°C	35 min	10 h					
-5 °C	to	-1°C	20 min	5 h					
0 °C	to	+4°C	10 min	2,5 h					
+5 °C	to	+9°C	6 min	80 Min					
+	10 °C		6 min	60 Min					
Cartridg	je tem	perature	-20°C to +10°C						

In wet concrete the curing time must be doubled.

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Intended Use	Annex B 6
Curing time	

Т	able C1: Characteristic values for s rods	teel ten	sion re	esistand	e and s	teel sh	ear res	sistanc	e of th	readed	i
Si	ze			М8	M10	M12	M16	M20	M24	M27	M30
Cr	ross section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
CI	haracteristic tension resistance, Steel failure	e ¹⁾		•	•				•		
St	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
St	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
St	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	-	-
St	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	-	-
CI	haracteristic tension resistance, Partial facto	or ²⁾									
St	eel, Property class 4.6 and 5.6	γ _{Ms,N}	[-]				2,0)			
St	eel, Property class 4.8, 5.8 and 8.8	Y _{Ms,N}	[-]				1,5	5			
St	ainless steel A2, A4 and HCR, class 50	Y _{Ms,N}	[-]				2,8	6			
St	ainless steel A2, A4 and HCR, class 70	Y _{Ms,N}	[-]				1,8	i7			
St	ainless steel A4 and HCR, class 80	Y _{Ms,N}	[-]				1,6	3			
CI	haracteristic shear resistance, Steel failure	1)									
E	Steel, Property class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
arm	Steel, Property class 5.6 and 5.8	$V_{Rk,s}$	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
lever	Steel, Property class 8.8	$V_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
	Stainless steel A2, A4 and HCR, class 50	$V_{\text{Bk.s}}$	[kN]	9	15	21	39	61	88	115	140
Without	Stainless steel A2, A4 and HCR, class 70	V ⁰ _{Rk,s}	[kN]	13	20	30	55	86	124	-	-
≥	Stainless steel A4 and HCR, class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	-	-
	Steel, Property class 4.6 and 4.8	M ^o Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
	Steel, Property class 8.8	M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
With lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
Ĭ	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	-	-
	Stainless steel A4 and HCR, class 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	-	-
CI	haracteristic shear resistance, Partial factor	2)		•							
	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]	1,67							
St	eel, Property class 4.8, 5.8 and 8.8	Y _{Ms,V}	[-]				1,2	:5			
St	ainless steel A2, A4 and HCR, class 50	Y _{Ms,V}	[-]				2,3	8			
St	ainless steel A2, A4 and HCR, class 70	Y _{Ms,V}	[-]				1,5	6			
St	ainless steel A4 and HCR, class 80	Y _{Ms,V}	[-]				1,3	3			
_				<u> </u>							

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

²⁾ in absence of national regulation

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	Ammay O.4
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

Table C2: C	characteristic values	for Concrete	cone failure	and Splitting with all kind of action
Anchor size				All Anchor types and sizes
Concrete cone fa	ailure			
Non-cracked concrete		k _{ucr,N}	[-]	11,0
Cracked concrete		k _{cr,N}	[-]	7,7
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}
Splitting				
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Edge distance	$2.0 > h/h_{ef} > 1.3$	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Axial distance		s _{cr,sp}	[mm]	2 c _{cr,sp}

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances Characteristic values for Concrete cone failure and Splitting with all kind of action	Annex C 2

Electronic copy of the ETA by DIBt: ETA-18/0617

Page 18 of European Technical Assessment ETA-18/0617 of 11 December 2019

English translation prepared by DIBt

		ze threaded ro	od			M8	M10	M12	M16	M20	M24	M27	M30
Steel fa		e tic tension res	istance	N _{Rk,s}	[kN]			Δ • f.	u (or s	ee Tah	le C1)		
Partial			istance	γMs,N	[-]	A _s • f _{uk} (or see Table C1) see Table C1							
			concrete failure	/ IVIS,IN	[]				300 10	ible O1			
Charac	cteris	stic bond resist	ance in non-cracl	ked concrete C	20/25	ı	ı	1	ı	I	ı		
ω –	1:	40°C/24°C	Dry, wet concrete			10	12	12	12	12	11	10	9
	II:	80°C/50°C				7,5	9	9	9	9	8,5	7,5	6,5
iure r	III:	120°C/72°C		TDI	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
berat	<u>l:</u>	40°C/24°C		[⊤] Rk,ucr	[[W//////-]	7,5	8,5	8,5	8,5				
Tem	II:	80°C/50°C	flooded bore hole			5,5	6,5	6,5	6,5		lo Perfo ssesse		
·	III:	120°C/72°C				4,0	5,0	5,0	5,0			`	,
Charac	cteris	stic bond resist	ance in cracked o	concrete C20/2	5	· I		1	1	1	I		
<u> </u>	1:	40°C/24°C				4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5
	80°C/50°C	Dry, wet concrete			2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5	
	III:	120°C/72°C		TRk,cr	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5
	l:	40°C/24°C				4,0	4,0	5,5	5,5	No Performance Assessed (NPA)			
Temp	II:	80°C/50°C	flooded bore hole			2,5	3,0	4,0	4,0				
•	III:	120°C/72°C				2,0	2,5	3,0	3,0				
Reduk	tion	factor ψ ⁰ sus ir	racked and nor	n-cracked conc	rete C20/25			•	•	•			
	l:	40°C/24°C	Dry, wet concrete and		[-]	0,73							
Temperature range	— II:	80°C/50°C		Ψ ⁰ sus		0,65							
ra ra	— III:	120°C/72°C	flooded bore hole	June		0,57							
		120 0/12 0		C25/30	1,02								
lnoroo	oina	factors for son	oroto	C30/37		1,04							
пістеа: Чс	siriy	factors for con	crete	C35/45 C40/50		1,07 1,08							
				C45/55		1,09							
				C50/60					1,	10			
		cone failure arameter							see Ta	able C2			
Splittii	ng					l							
		arameter n factor							see Ta	able C2			
		wet concrete			F 1	1,0				1,2			
for floo	ded	bore hole		γinst	[-]		1	,4			N	PA	
			ONE, ESSVE ON	E-ICE for cond	crete						Anne	ex C 3	
Perfor	rmar	ices	nsion loads under			n						Anne	Annex C 3

Page 19 of European Technical Assessment ETA-18/0617 of 11 December 2019

English translation prepared by DIBt

Table C4: Characteristic value	s of shea	ar loads		1	-			1	Ι	
Anchor size threaded rod			М8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm										
Characteristic shear resistance Steel, strength class 4.6, 4.8, 5.6 and 5.8	V ⁰ Rk,s	[kN]			0,6 •	A _s ·f _{uk}	(or see	Table C	1)	
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ _{Rk,s}	[kN]			0,5 •	A _s ∙ f _{uk}	(or see	Table C	1)	
Partial factor	γMs,V	[-]				see	Table C	:1		
Ductility factor	k ₇	[-]	1,0							
Steel failure with lever arm	•									
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • '	W _{el} ∙ f _{uk}	(or see	Table C	C1)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γ _{Ms,V}	[-]				see	Table C	:1		
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γ _{inst}	[-]					1,0			
Concrete edge failure										
Effective length of fastener	If	[mm]	$\min(h_{ef}; 12 \cdot d_{nom})$ $\min(h_{ef}; 300r)$						300mm)	
Outside diameter of fastener	d _{nom}	[mm]	8 10 12 16 20 24 27						30	
Installation factor	γ _{inst}	[-]	1,0							

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 4

Page 20 of European Technical Assessment ETA-18/0617 of 11 December 2019

English translation prepared by DIBt

Anchor size internal threaded	d anchor rods			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Steel failure ¹⁾					•	•					
Characteristic tension resistand	e, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123		
Steel, strength class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196		
Partial factor, strength class 5.8	3 and 8.8	γMs,N	[-]		1,5						
Characteristic tension resistand Steel A4 and HCR, Strength cla		N _{Rk,s}	[kN]	14	26	41	59	110	124		
Partial factor		γ _{Ms,N}	[-]			1,87			2,86		
Combined pull-out and concrete cone failu											
Characteristic bond resistance	in non-cracked	concret	e C20/25	<u>, </u>							
l: 40°C/24°C	Dry wet			12	12	12	12	11	9		
II: 80°C/50°C II: 80°C/50°	Dry, wet concrete			9	9	9	9	8,5	6,5		
# 96 III: 120°C/72°C 1: 40°C/24°C	Concrete	ļ _{τ_} .	[N/mm ²]	6,5	6,5	6,5	6,5	6,5	5,0		
<u>ਰ</u> ਸ਼ੁ <u> </u> : 40°C/24°C	flooded bare	^τ Rk,ucr	[14/111111-]	8,5	8,5	8,5	No Dorf	. rmanaa 1			
Б II: 80°С/50°С	flooded bore			6,5	6,5	6,5	No Pend	ormance A	ssessea		
III: 120°C/72°C	hole			5,0	5,0	5,0		(NPA)			
Characteristic bond resistance	in cracked con	crete C2	20/25				•				
l: 40°C/24°C				5,0	5,5	5,5	5,5	5,5	6,5		
Ψ II: 80°C/50°C	Dry, wet			3,5	4,0	4,0	4,0	4,0	4,5		
탩 용 III: 120°C/72°C	concrete	^τ Rk,cr	[N/mm ²]	2,5	3,0	3,0	3,0	3,0	3,5		
II: 80°C/50°C II: 80°C/50°				4,0	5,5	5,5		Performance Asse			
□ II: 80°C/50°C	flooded bore			3,0	4,0	4,0	No Perfo		ssessec		
III: 120°C/72°C	hole			2,5 3,0 3,0		(NPA)					
Reduktion factor $\psi^0_{ extsf{Sus}}$ in crac	ked and non-cr	acked c	oncrete C	20/25	· · · · ·	,					
	Dry, wet					0,	73				
II: 40°C/24°C III: 120°C/72°C III: 120°C/72°C	concrete and flooded bore	ψ ⁰ sus	[-]	0,65							
E III: 120°C/72°C	hole			0,57							
		C2	5/30			1,	02				
		C3	0/37			1,	04				
Increasing factors for concrete		C3	5/45			1,	07				
$\Psi_{ extsf{c}}$		C4	0/50				08				
		C4	5/55			1,	09				
Concrete cone failure		C5	0/60			1,	10				
						200 To	abla CO				
Relevant parameter Splitting failure						see 18	able C2				
Relevant parameter						ean Ta	able C2				
Installation factor						500 T	101 0 02				
for dry and wet concrete						1	,2				
for flooded bore hole		γ _{inst}	[-]		1,4	I	, <u>~</u>	NPA			
a) Hooded bole Hole					1,7			1111 /7			

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.
2) For IG-M20 strength class 50 is valid

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 5

English translation prepared by DIBt

Table C6: Characteristic	values	of shear	loads	under sta	itic and q	uasi-stat	ic action		
Anchor size for internal thread	ed anch	or rods		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Steel failure without lever arm ¹⁾)					•	•	•	
Characteristic shear resistance,	5.8	V ⁰ _{Rk,s}	[kN]	5	9	15	21	38	61
Steel, strength class	8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98
Partial factor, strength class 5.8 a	Partial factor, strength class 5.8 and 8.8		[-]				1,25		
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ Rk,s	[kN]	7	13	20	30	55	40
Partial factor		$\gamma_{Ms,V}$	[-]			1,56			2,38
Ductility factor		k ₇	[-]				1,0		
Steel failure with lever arm ¹⁾									
Characteristic bending moment, Steel, strength class	5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325
	8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519
Partial factor, strength class 5.8 a	γ _{Ms,V}	[-]			•	1,25			
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456
Partial factor		γ _{Ms,V}	[-]			1,56			2,38
Concrete pry-out failure									
Factor		k ₈	[-]				2,0		
Installation factor		γinst	[-]				1,0		
Concrete edge failure		•							
Effective length of fastener		l _f	[mm]						min (h _{ef} ; 300mm)
Outside diameter of fastener d _{nom} [mm]					12	16	20	24	30
Installation factor		γ _{inst}	[-]				1,0		
1) =	.\	1 11					6.11		1 1 1

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

²⁾ For IG-M20 strength class 50 is valid

Electronic copy of the ETA by DIBt: ETA-18/0617

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 6

English translation prepared by DIBt

Anchor size reinforcing	bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure		T							41			
Characteristic tension res	istance	N _{Rk,s}	[kN]					۱ _s • f _{uk}	1			
Cross section area		A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor		γ _{Ms,N}	[-]					1,4 ²⁾				
Combined pull-out and	concrete fail	ure										
Characteristic bond resist	ance in non-c	racked conc	rete C20/2	25								
υ <u>I: 40°C/24°C</u>	Dry, wet			10	12	12	12	12	12	11	10	8,5
### ### ##############################	concrete			7,5	9	9	9	9	9	8,0	7,0	6,0
g iii: 120°C/72°C	001101010	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
를 <u>I: 40°C/24°C</u>	flooded	nk,uci	' '	7,5	8,5	8,5	8,5	8,5		lo Perf	ormanc	е
<u>II: 80°С/50°С</u>	bore hole			5,5	6,5	6,5	6,5	6,5	1	ssesse		
III: 120°C/72°C		<u> </u>	000/05	4,0	5,0	5,0	5,0	5,0		(****		-/
Characteristic bond resist	ance in crack	ed concrete	C20/25	4.0	T = 0	l			l = =	l = =	0.5	0.5
<u>l: 40°C/24°C</u>	Dry, wet			4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5
1.	concrete			2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5
## 20°C/72°C III: 120°C/72°C III: 120°C/72°C		τ _{Rk,cr}	[N/mm ²]	2,0	2,5	3,0	3,0	3,0	3,0 3,0 3,5 3 No Performance			3,5
ਹੁੰਦੂ <u>I: 40°C/24°C</u> II: 80°C/50°C	flooded	,		4,0	4,0	5,5	5,5	5,5				е
Φ <u>II: 80°C/30°C</u>	III: 120°C/72°C bore hole			2,5 2,0	3,0 2,5	4,0 3,0	4,0 3,0	4,0 3,0	A	ssesse	d (NPA	١)
Reduktion factor ψ ⁰ sus in	cracked and	non-cracke	d concrete		1	3,0	3,0	3,0				
		Tion ordered		020,2								
<u>9</u> I: 40°C/24°C	Dry, wet			0,73								
ange ange S.C.\2000 3.00\2	concrete and	ψ^0 sus	0.65									
лат — — — — — — — — — — — — — — — — — — —	flooded	Ψ sus	[-]	0,65								
II: 40°C/24°C	bore hole			0,57								
		C25	/30					1,02				
		C30	/37					1,04				
Increasing factors for con-	crete	C35	/45					1,07				
$\Psi_{\mathbf{C}}$		C40	/50					1,08				
		C45	/55					1,09				
		C50	/60					1,10				
Concrete cone failure												
Relevant parameter							see	Table	C2			
Splitting												
Relevant parameter		see Table C2										
Installation factor												
for dry and wet concrete			F 1	1,2								
for flooded bore hole		γinst	[-]			1,4				NI	PA	
1)												

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 7

Table C8: Characteristic val	ues of shea	r loads u	ınder s	static a	nd qu	asi-sta	tic act	ion			
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm			•	•	•	•	•	•			
Characteristic shear resistance	V ⁰ _{Rk,s}	[kN]				0,5	0 · A _s ·	f _{uk} 1)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,V}	[-]					1,5 ²⁾				
Ductility factor	k ₇	[-]	1,0								
Steel failure with lever arm											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				1.2	· W _{el} ·	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]			•	•	1,5 ²⁾				
Concrete pry-out failure											
Factor	k ₈	[-]					2,0				
Installation factor	γ _{inst}	[-]					1,0				
Concrete edge failure		-									
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mm					mm)			
Outside diameter of fastener	d _{nom}	[mm]	8 10 12 14 16 20 25 28				32				
Installation factor	γinst	[-]					1,0				

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars 2) in absence of national regulation

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 8

Table C9: Dis	splacements	s under tension load ¹) (thread	ded rod)						
Anchor size thread	led rod		M8	M10	M12	M16	M20	M24	M27	M30	
Non-cracked concre	ete C20/25 u	nder static and quasi-	static ac	tion							
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049	
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071	
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Cracked concrete C	20/25 under	static and quasi-station	caction								
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,0	90			0,0	70			
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,1	05			0,1	05			
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219			0,1	70			
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,2	255	0,245						
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219	0,170						
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,2	255			0,2	245			

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \ \cdot \tau;$ τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot \tau;$

Displacements under shear load¹⁾ (threaded rod) Table C10:

Anchor size thread	Anchor size threaded rod			M10	M12	M16	M20	M24	M27	M30
Non-cracked concrete C20/25 under static and quasi-static action										
All temperature	δ_{v_0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Cracked concrete 0	220/25 under	static and quasi-station	action							
All temperature	δ_{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \cdot V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \cdot V; \end{split}$$
V: action shear load

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances	Annex C 9
Displacements (threaded rods)	

Table C11: Dis	Table C11: Displacements under tension load ¹⁾ (Internal threaded anchor rod)											
Anchor size Intern	al threaded and	chor rod	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20				
Non-cracked concre	ete C20/25 unde	er static and qua	si-static ac	tion								
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,023	0,026	0,031	0,036	0,041	0,049				
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,033	0,037	0,045	0,052	0,060	0,071				
Temperature range	δ_{No} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119				
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172				
Temperature range	δ_{No} -factor	[mm/(N/mm ²)]	0,056	0,063	0,075	0,088	0,100	0,119				
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,081	0,090	0,108	0,127	0,145	0,172				
Cracked concrete C	20/25 under sta	itic and quasi-st	atic action									
Temperature range	δ_{No} -factor	[mm/(N/mm ²)]	0,090			0,070						
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,105			0,105						
Temperature range	δ_{No} -factor	[mm/(N/mm ²)]	0,219			0,170						
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,255			0,245						
Temperature range	δ_{N0} -factor	[mm/(N/mm ²)]	0,219			0,170						
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,255			0,245						

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$

 τ : action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor } \cdot \tau;$

Displacements under shear load¹⁾ (Internal threaded anchor rod) Table C12:

Anchor size Inte	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20					
Non-cracked and cracked concrete C20/25 under static and quasi-static action											
All temperature ranges	δ_{V0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04			
	$\delta_{V\infty}$ -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06			

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} ~\cdot V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} ~\cdot V; \end{split}$$

V: action shear load

Electronic copy of the ETA by DIBt: ETA-18/0617

	Injection System ESSVE ONE, ESSVE ONE-ICE for concrete
Annex C 10	Performances Displacements (Internal threaded anchor rod)

Table C13: Di	Table C13: Displacements under tension load ¹⁾ (rebar)											
Anchor size reinfo	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Non-cracked conc	rete C20/25	under static an	nd quasi	-static a	ction							
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052	
range I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075	
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
range II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
range III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Cracked concrete	C20/25 und	ler static and qu	ıasi-stat	ic actior	1							
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,0	90				0,070				
range I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,1	05				0,105				
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219				0,170				
range II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,2	255				0,245				
Temperature	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,2	219				0,170				
range III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,2	255				0,245				

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}\text{-factor} \cdot \tau;$

τ: action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot\tau;$

Displacement under shear load (rebar) Table C14:

Anchor size reinforcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Non-cracked conc	Non-cracked concrete C20/25 under static and quasi-static action											
All temperature ranges	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	
	δ _{V∞} - factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04	
Cracked concrete	C20/25 und	ler static and qu	asi-stat	ic action	1							
All temperature	δ_{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06	
ranges	δ _{V∞} - factor	[mm/kN]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10	

¹⁾ Calculation of the displacement

V: action shear load

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \ \cdot \ V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \ \cdot \ V; \end{split}$$

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances Displacements (rebar)	Annex C 11

Ancho	r siz	e threaded ro	d			M8	M10	M12	M16	M20	M24	M27	M30	
Steel fa	ailure	9		1										
Charac	teris	tic tension resi	stance	N _{Rk,s,eq}	[kN]	1,0 • N _{Rk,s}								
Partial				γ _{Ms,N}	[-]				see Ta	ble C1				
			concrete failure			000/05								
Charac			ance in non-crac I	Ked and crack	kea concrete									
a .	<u> :</u>	40°C/24°C	_			2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5	
ange	II:	80°C/50°C	Dry, wet concrete			1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1	
ure r	III:	120°C/72°C		_	[N]/mamma2]	1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4	
eratı	1:	40°C/24°C		^{⊤ ₹} Rk,eq	[N/mm²]	2,5	2,5	3,7	3,7					
Temperature range	II:	80°C/50°C	flooded bore hole			1,6	1,9	2,7	2,7	No Performance Assessed (NPA)				
	III:	120°C/72°C				1,3	1,6	2,0	2,0	, 1000000 (1 11 11)				
Redukt	ion f	actor ψ ⁰ sus in	cracked and no	n-cracked cor	crete C20/25		•							
ure	1:	40°C/24°C	Dry, wet			0,73								
Temperature range	II:	80°C/50°C	concrete and flooded bore	Ψ^0 sus	[-]	0,65								
Tem	III:	120°C/72°C	hole						0,	57				
Increas	sing 1	factors for con	rete ψ _C	C25/30 to C	 C50/60				1	,0				
		one failure								, -				
Releva	nt pa	arameter							see Ta	ıble C2				
Splittir														
	_	arameter							see Ta	ıble C2				
		n factor wet concrete				1,0				1,2				
		bore hole		$-\gamma_{inst}$	[-]	1,0 1,2 NPA								

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances Characteristic values of tension loads under seismic action (performance category C1)	Annex C 12

Table C16: Characteristic va (performance ca		loads ι	ınder s	seismic	action	1				
Anchor size threaded rod			М8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm								•		
Characteristic shear resistance (Seismic C1)	V _{Rk,s,eq}	[kN]				0,70) • V ⁰ Rk	,s		
Partial factor	γ _{Ms,V}	[-]				see	Table C	21		
Ductility factor	k ₇	[-]					1,0			
Steel failure with lever arm	<u>'</u>									
Characteristic bending moment	M ⁰ Rk,s,eq	[Nm			No Pe	rforman	ce Asse	essed (N	IPA)	
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γ _{inst}	[-]					1,0			
Concrete edge failure										
Effective length of fastener	If	[mm		m	nin(h _{ef} ; ¹	12 · d _{noi}	m)		min(h _{ef} ;	300mm)
Outside diameter of fastener	d _{nom}	[mm	8	10	12	16	20	24	27	30
Installation factor	γ _{inst}	[-]		•	•	•	1,0	•		•
Factor for annular gap	$\alpha_{\sf gap}$	[-]				0,	5 (1,0) ¹⁾			

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances Characteristic values of shear loads under seismic action (performance category C1)	Annex C 13

English translation prepared by DIBt

Table C17: Characteristic value (performance categor	:	ı loads uı	nder s	eismic	actio	n					
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure	_										
Characteristic tension resistance	N _{Rk,s,eq}	[kN]	1,0 • A _s • f _{uk} ¹⁾								
Cross section area	A _s	[mm ²]	50	50 79 113 154 201 314 491 616					616	804	
Partial factor	γMs,N	[-]					1,4 ²⁾				
Combined pull-out and concrete fail											
Characteristic bond resistance in non-c	racked and	cracked co	ncrete	C20/25							
<u>υ</u> <u>I: 40°C/24°C</u> Dry, wet			2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5
II: 80°C/50°C concrete			1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1
The part of the	τ _{Rk, eq}	 [N/mm²]	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4
E I: 40°C/24°C flooded	TRK, eq	[[]]	2,5	2,5	3,7	3,7	3,7		lo Perf	ormano	:e
Φ II: 80°C/50°C boro bolo			1,6	1,9	2,7	2,7	2,7	Assessed (NPA)			
III: 120°C/72°C			1,3	1,6	2,0	2,0	2,0				7
Reduktion factor $\psi^0_{ sus}$ in cracked and	non-cracked	d concrete	C20/25	5							
I: 40°C/24°C Dry, wet concrete			0,73								
jög E II: 80°C/50°C and	Ψ ⁰ sus	[-]					0,65				
flooded bore hole							0,57				
Increasing factors for concrete ψ_{C}	C25/30 to	C50/60	1,0								
Concrete cone failure	•										
Relevant parameter						see	e Table	C2			
Splitting											
Relevant parameter			see Table C2								
Installation factor											
for dry and wet concrete		[-]	1,2				1	,2			
for flooded bore hole	γinst	[-]			1,4				NF	PA	

 $^{^{1)}}$ f_{uk} shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances Characteristic values of tension loads under seismic action (performance category C1)	Annex C 14

Table C18: Characteristic value (performance cate		loads u	nder s	eismic	actio	1					
Anchor size reinforcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure without lever arm			•								
Characteristic shear resistance	V _{Rk,s,eq}	[kN]				0,3	5 • A _s •	f _{uk} 2)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,V}	[-]					1,5 ²⁾				
Ductility factor	k ₇	[-]					1,0				
Steel failure with lever arm		•									
Characteristic bending moment	M ⁰ _{Rk,s,eq}	[Nm]			No Po	erforma	nce As	sessec	(NPA)		
Concrete pry-out failure											
Factor	k ₈	[-]					2,0				
Installation factor	γ _{inst}	[-]					1,0				
Concrete edge failure											
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mm)						mm)		
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	γ _{inst}	[-]	1,0								
Factor for annular gap	$\alpha_{\sf gap}$	[-]	0,5 (1,0) ³⁾								

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances Characteristic values of shear loads under seismic action (performance category C1)	Annex C 15

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars
2) in absence of national regulation
3) Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Table C19: Dis	splacemen	ts under tensio	n load¹) (threa	ded rod)							
Anchor size thread	led rod		М8	M10	M12	M16	M20	M24	M27	M30			
Cracked and non-c	racked con	crete C20/25 und	der seis	smic C1	action		•	•	•	•	•		
Temperature range δ_{N0} -factor [mm/(N/mm ²)]				0,090 0,070									
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	[mm/(N/mm²)]		0,105			0,	105				
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]		0,	219	0,170							
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]		0,	0,255		0,245						
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]		0,219		0,170							
III: 120°C/72°C	III 10000/7000		[mm/(N/mm²)]		0,255		0,245						
Table C20: Dis	splacement	ts under tensio	n load¹) (rebar)								
Anchor size reinfo	rcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Cracked and non-ci	acked cond	crete C20/25 und	der seis	mic C1	action								
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,0	090		0,070							
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,-	105	0,105								
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219	0,170								
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,255		0,245								
Temperature range III: 120°C/72°C	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219	0,170								
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,255		0,245								

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 $\tau\textsc{:}$ action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor} \quad \cdot \ \tau;$

Displacements under shear load²⁾ (threaded rod) Table C21:

Anchor size threaded rod				M10	M12	M16	M20	M24	M27	M30
Cracked and non-cracked concrete C20/25 under seismic C1 action										
All temperature	δ_{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10

Displacement under shear load¹⁾ (rebar) Table C22:

Anchor size rein	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Cracked and non-cracked concrete C20/25 under seismic C1 action											
All temperature	δ_{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

¹⁾ Calculation of the displacement

$$\begin{split} &\delta_{V0} = \delta_{V0}\text{-factor} \cdot V; \\ &\delta_{V\infty} = \delta_{V\infty}\text{-factor} \cdot V; \end{split}$$

V: action shear load

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances Displacements under seismic C1 action (threaded rods and rebar)	Annex C 16