

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-18/0974 vom 20. Juni 2019

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Deutsches Institut für Bautechnik

Hilti Hinterschnittdübel HDA

Post-installed fasteners in concrete under fatigue cyclic loading

HILTI Corporation
Feldkircherstraße 100
9494 SCHAAN
FÜRSTENTUM LIECHTENSTEIN

Hilti Plants

22 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330250-00-0601

Europäische Technische Bewertung ETA-18/0974

Seite 2 von 22 | 20. Juni 2019

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-18/0974

Seite 3 von 22 | 20. Juni 2019

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Hilti Hinterschnittdübel HDA besteht aus einem Hilti Konusbolzen HDA-P oder HDA-T, mit einem Ring, Hülse, Bolzen und Kappe, einer Hilti Verschlussscheibe, einer Kugelscheibe, Sechskantmutter und einer Sicherungsmutter und einem Injektionsmörtel Hilti HIT-HY 200-A oder Hilti HIT-HY 200-R.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird. Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angaben zur Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich ein Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung	
Charakteristischer Ermüdungswiderstand unter zyklischer Zugbeanspruchung (Bewertungsmethode A)		
Charakteristischer Stahlermüdungswiderstand		
Charakteristischer Ermüdungswiderstand für Betonversagen, Herausziehen, Spalten und lokaler Betonausbruch	Siehe Anhänge C1 und C4	
Charakteristischer Ermüdungswiderstand für kombiniertes Herausziehen-/Betonversagen		
Charakteristischer Ermüdungswiderstand unter zyklischer Querbeanspruchung (Bewertungsmethode A)		
Charakteristischer Stahlermüdungswiderstand	Siehe	
Charakteristischer Ermüdungswiderstand für Betonkantenbruch	Anhänge C2	
Charakteristischer Ermüdungswiderstand für Betonausbruch	bis C5	

Europäische Technische Bewertung ETA-18/0974

Seite 4 von 22 | 20. Juni 2019

Wesentliches Merkmal	Leistung							
Charakteristischer Ermüdungswiderstand unter kombinierter zyklischer Zug- und Querbeanspruchung (Bewertungsmethode A)								
Charakteristischer Stahlermüdungswiderstand	Siehe Anhang C5							
Lastumlagerungsfaktor für zyklische Zug- und Querbeanspruchung (Bewertung	smethode A)							
Lastumlagerungsfaktor	Siehe Anhänge C1 bis C5							
Dauerhaftigkeit	Siehe Anhang B1							

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

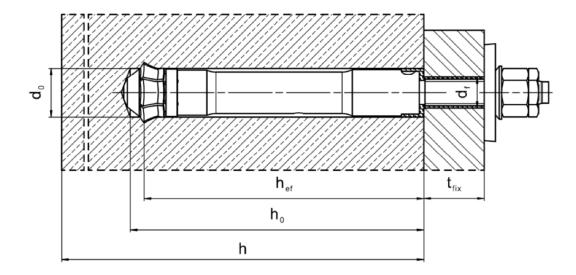
Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330250-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

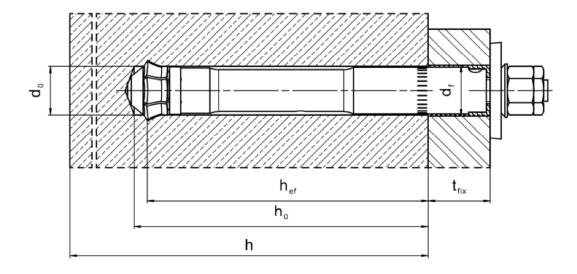
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 20. Juni 2019 vom Deutschen Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter

Beglaubigt

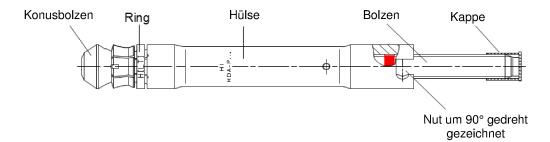


Produkt und Einbauzustand

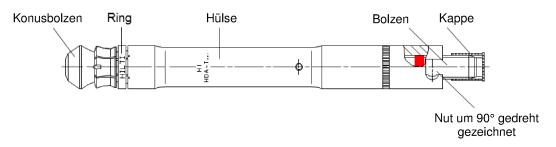
Hilti HDA-P installiert mit Hilti Verfüllset (Vorsteckmontage)

Hilti HDA-T installiert mit Hilti Verfüllset (Durchsteckmontage)

Hilti Hinterschnittdübel HDA

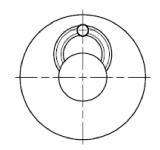

Produktbeschreibung
Einbauzustand

Anhang A1



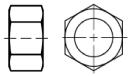
Produktbeschreibung

Hilti Hinterschnittdübel HDA-P


Hilti Hinterschnittdübel HDA-T

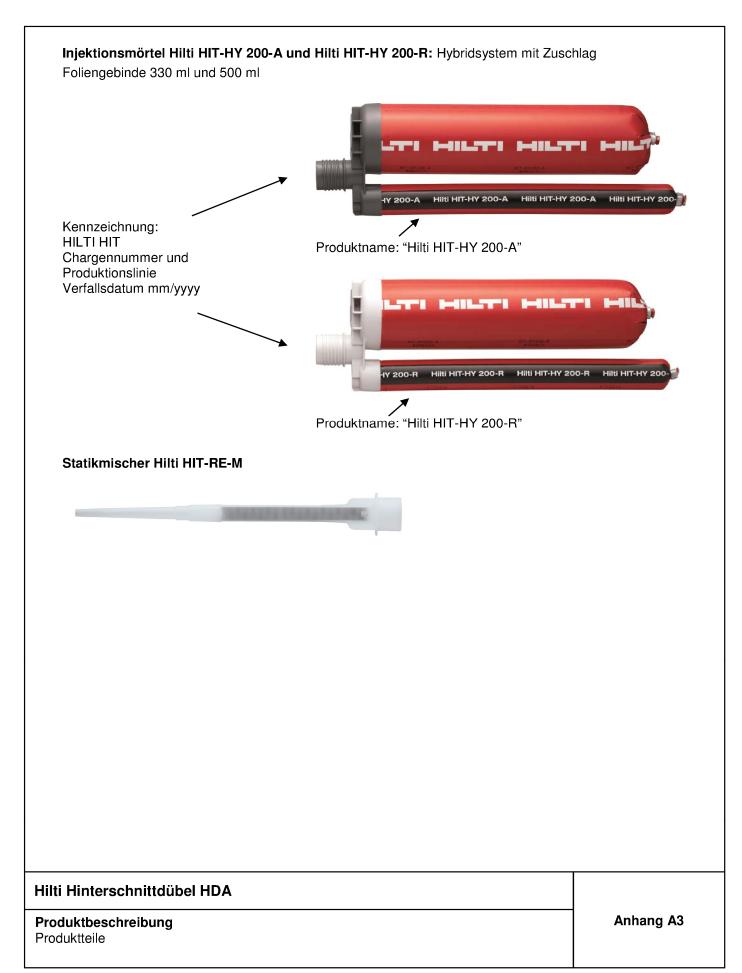
Hilti Verfüllset

Verschlussscheibe



Sechskantmutter

Sicherungsmutter


Hilti Hinterschnittdübel HDA

Produktbeschreibung

Produktteile

Anhang A2

Z39470.19

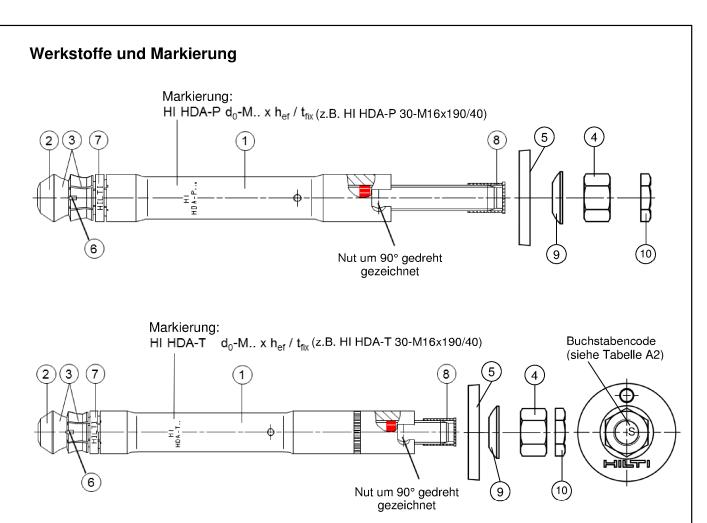
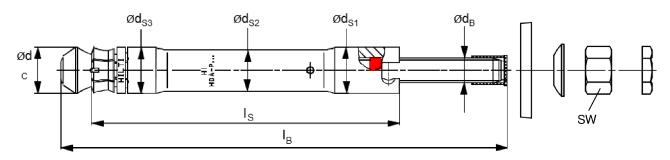
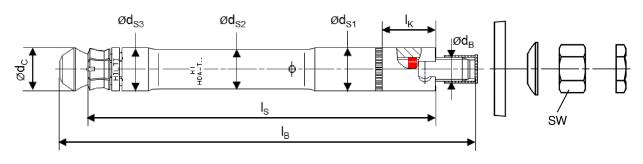


Tabelle A1: Werkstoffe für HDA-P / HDA-T und Hilti Verfüllset

Teil	Benennung	HDA-P / HDA-T (galvanisch verzinkt ≥ 5μm)					
1	Hülse	pearbeiter Stahl mit Wolframkarbid-Schneiden					
2	Konusbolzen	110 - M16: kalt verformter Stahl, Festigkeitsklasse 8.8 120: bearbeiter Konus, Gewindestange Festigkeitsklasse 8.8					
3	Konusbolzen- und Spreizhülsenbeschichtung	galvanisch verzinkt 5-25μm					
4	Sechskantmutter	M10 - M16: Klasse 8, h=1*d, galvanisch verzinkt M20: Klasse 8, galvanisch verzinkt					
5	Verschlussscheibe	galvanisch verzinkt ≥ 5 μm					
6	Schneiden	Wolframkarbid					
7	Ring	Kunststoffring					
8	Kappe	Kunststoffkappe					
9	Kugelscheibe	galvanisch verzinkt ≥ 5 μm					
10	Sicherungsmutter	galvanisch verzinkt $\geq 5~\mu m$					


Hilti Hinterschnittdübel HDA	
Produktbeschreibung Werkstoffe und Markierung	Anhang A4


Tabelle A2: Abmessungen

Dübelzeichnung	t _{fix,max}	Ι _Β	Buchsta-	Is	l _k	SW	d _{S1}	d _{S2}	d _{S3}	d _C	d _B
Dubeizeichhang	[mm]	[mm]	bencode	[mm]	[mm]		[mm]	[mm]	[mm]	[mm]	[mm]
HDA-P M10x100/20	20	150	I	100	-	17	19	16,8	18,5	19,5	10
HDA-T M10x100/20	20	150	I	120	17	17	19	16,8	18,5	19,5	10
HDA-P M12x125/30	30	190	L	125	1	19	21	18,8	20,5	21,4	12
HDA-P M12x125/50	50	210	N	125	-	19	21	18,8	20,5	21,4	12
HDA-T M12x125/30	30	190	L	155	27	19	21	18,8	20,5	21,4	12
HDA-T M12x125/50	50	210	N	175	47	19	21	18,8	20,5	21,4	12
HDA-P M16x190/40	40	275	R	190	-	24	29	26	29	29	16
HDA-P M16x190/60	60	295	S	190	-	24	29	26	29	29	16
HDA-T M16x190/40	40	275	R	230	35,5	24	29	26	29	29	16
HDA-T M16x190/60	60	295	S	250	55,5	24	29	26	29	29	16
HDA-P M20x250/50	50	360	٧	250	-	30	35	32	35	36	20
HDA-P M20x250/100	100	410	Х	250	-	30	35	32	35	36	20
HDA-T M20x250/50	50	360	٧	300	45	30	35	32	35	36	20
HDA-T M20x250/100	100	410	Х	350	95	30	35	32	35	36	20

Vorsteckdübel HDA-P (Vorsteckmontage)

Durchsteckdübel HDA-T (Durchsteckmontage)

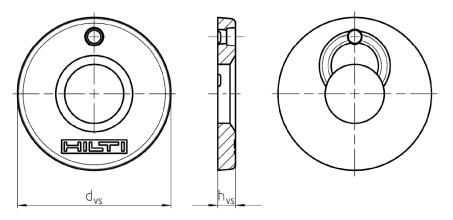

Hilti Hinterschnittdübel HDA	
Produktbeschreibung Abmessungen	Anhang A5

Tabelle A3: Abmessungen der Hilti Verschlussscheibe

Dübelgröße	Hilti Verfüllset Größe	Hilti Verschlussscheibe						
		Durchmesser d_{vs} [mm]	Dicke h _{vs} [mm]					
HDA-P M10	M10	42	5					
HDA-T M10	IVITO	42	5					
HDA-P M12	M12	44	5					
HDA-T M12	IVITZ	44	5					
HDA-P M16	M16	52	6					
HDA-T M16	IVITO	52	0					
HDA-P M20	M20	60	6					
HDA-T M20	IVI∠U	60	6					

Hilti Verschlussscheibe

Hilti Hinterschnittdübel HDA	
Produktbeschreibung Abmessungen der Hilti Verschlussscheibe	Anhang A6

Spezifizierung des Verwendungszwecks

Befestigung unter:

· Ermüdungsbeanspruchung.

Anmerkung: Statische und quasistatische Beanspruchung nach ETA-99/0009.

Verankerungsgrund:

- Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern nach EN 206:2013 + A1:2016.
- Festigkeitsklasse C20/25 bis C50/60 nach EN 206:2013 + A1:2016.
- Gerissener und ungerissener Beton.

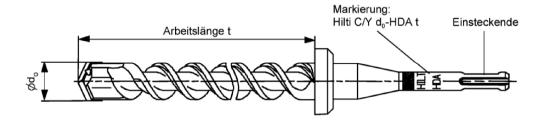
Anwendungsbedingungen (Umweltbedingungen):

In Bauteilen unter den Bedingungen trockener Innenräume.

Bemessung:

- Die Befestigungen m\u00fcssen unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs bemessen werden.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) anzugeben.
- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit: EN 1992-4:2018 und EOTA Technical Report TR 061.

Installation:


- Der Einbau erfolgt durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Der Einbau erfolgt nach den Angaben der Bedienungsanleitung unter Verwendung der angegebenen Werkzeuge (Bohrhammer, Setzwerkzeug, Bundbohrer und Verfüllset).
- Das Bohrloch wird mit dem spezifizierten Bundbohrer im Hammerbohrverfahren erstellt.
- Der Dübel wird von Hand in das gereinigte Bohrloch gesteckt.
- Mit Hilfe des spezifizierten Setzwerkzeuges und Bohrhammers wird der Dübel im Bohrloch verspreizt bis die Markierung des Setzwerkzeuges bündig mit der Oberkante des Betons (HDA-P) bzw. Oberkante des Anbauteils (HDA-T) ist.
- Der Dübel ist vollständig verspreizt, wenn der Farbring des Ankerbolzens über die Oberkante der Hülse herausragt. Ist der Farbring noch nicht sichtbar, ist der Setzvorgang fortzusetzen.
- Nach der vollständigen Verspreizung des Dübels muss der Unterstand der Hülse im Vergleich zur Betonoberfläche (HDA-P) bzw. Oberkante des Anbauteils (HDA-T) im spezifizierten Bereich nach Tabelle B3 Anhang B4 liegen.
- Das in Tabelle B3, Anhang B4 angegebene Anzugsdrehmoment wird mit einem kalibrierten Drehmomentschlüssel aufgebracht.

Hilti Hinterschnittdübel HDA	
Verwendungszweck Spezifikationen	Anhang B1

Tabelle B1: Bundbohrer für HDA

Dübel	Bundbo	Nominale Arbeitslänge	Durch- messer	
	TE-C Einsteckende	TE-Y Einsteckende	t [mm]	d ₀ [mm]
HDA-P M10x100/20	TE-C-HDA-B 20x100	TE-Y-HDA-B 20x100	107	20
HDA-T M10x100/20	TE-C-HDA-B 20x120	TE-Y-HDA-B 20x120	127	20
HDA-P M12x125/30 HDA-P M12x125/50	TE-C HDA-B 22x125	TE-Y HDA-B 22x125	133	22
HDA-T M12x125/30	TE-C HDA-B 22x155	TE-Y HDA-B 22x155	163	22
HDA-T M12x125/50	TE-C HDA-B 22x175	TE-Y HDA-B 22x175	183	22
HDA-P M16x190/40 HDA-P M16x190/60	-	TE-Y HDA-B 30x190	203	30
HDA-T M16x190/40	-	TE-Y HDA-B 30x230	243	30
HDA-T M16x190/60	-	TE-Y HDA-B 30x250	263	30
HDA-P M20x250/50 HDA-P M20x250/100	-	TE-Y HDA-B 37x250	266	37
HDA-T M20x250/50	-	TE-Y HDA-B 37x300	316	37
HDA-T M20x250/100	-	TE-Y HDA-B 37x350	366	37

Hilti Hinterschnittdübel HDA	
Verwendungszweck Bundbohrer	Anhang B2

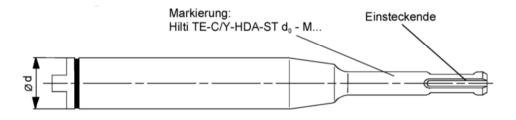


Tabelle B2: Setzwerkzeuge und Bohrhämmer für HDA

Dübel	Setzwerkzeug												
		[mm] pØ	Einsteckende	TE 24	TE 25 ¹⁾	TE 30-A36	TE 40 (AVR)	TE 56 ²⁾ TE 56-ATC ²⁾	TE 60 TE 60-ATC	TE 70 ^{2) 3)} TE 70-ATC ^{2) 3)}	TE 75 ²⁾	TE 76 ²⁾ TE 76-ATC ²⁾	TE 80 -ATC (AVR)
HDA-P/T M10x100/20	TE-C-HDA-ST 20-M10	20	TE-C										
	TE-Y-HDA-ST 20-M10	20	TE-Y		-								
HDA-P/T M12x125/30	TE-C-HDA-ST 22-M12	22	TE-C	•	•		-						
HDA-P/T M12x125/50	TE-Y-HDA-ST 22-M12	22	TE-Y					•					
HDA-P/T M16x190/40 HDA-P/T M16x190/60	TE-Y-HDA-ST 30-M16	30	TE-Y										•
HDA-P/T M20x250/50 HDA-P/T M20x250/100	TE-Y-HDA-ST 37-M20	37	TE-Y									-	•

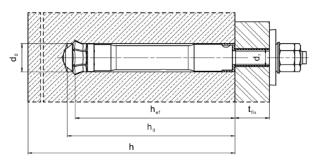
¹⁾ TE25: Verwendung im 1. Gang.

³⁾ TE70: nur mit Bauteildicke h_{min} ≥ 300 mm.

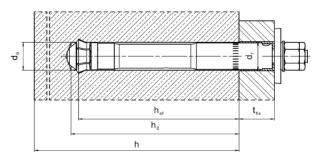
Hilti Hinterschnittdübel HDA	
Verwendungszweck Setzwerkzeuge und Bohrhämmer	Anhang B3

²⁾ TE56 (-ATC), TE70 (-ATC), TE75, TE76 (-ATC): Verwendung mit maximaler Schlagenergie.

Tabelle B3: Installationsparameter


Dübeltyp		HDA	M10	HDA	M12	HDA	M16	HDA	M20	
Vorsteck- / Durchsteckmontage			Р	Т	Р	Т	Р	Т	Р	Т
Bohrernenndurchmesser	d_0	[mm]	2	0	2	2	3	0	3	7
Bohrerschneidendurchmesser	$d_{cut}\!\leq\!$	[mm]	20	,55	22	,55	30	,55	37	,70
Bohrlochtiefe	h ₁	[mm]	107	≥107	133	≥133	203	≥203	266	≥266
Durchgangsloch im Anbauteil	d_{f}	[mm]	12	21	14	23	18	32	22	40
Minimale Dicke des Anbauteils	$t_{\text{fix,min}}$	[mm]	10	15	10	20	10	20	10	20
Maximale Dicke des Anbauteils	t _{fix,max}	[mm]	siehe Tabelle A2, Anhang A5							
Hülsenversenkung ¹⁾	hs	[mm]	$2 \le h_S \le 6$ $2 \le h_S \le 7$ $2 \le h_S \le 8$ $2 \le h_S \le 8$			ı _S ≤ 8				
Drehmoment beim Verankern	T _{inst}	[Nm]	5	0	8	0	12	20	30	00

 $^{^{1)}}$ Hülsenversenkung $h_{\rm s}$ nach Setzen des Dübels (Einbauzustand):


- a) Vorsteckdübel HDA-P:
 - Abstand Betonoberfläche bis Oberkante Spreizhülse, siehe Anhang A1.
- b) Durchsteckdübel HDA-T:

Abstand Oberfläche des Anbauteils bis Oberkante Spreizhülse, siehe Anhang A1.

Vorsteckdübel HDA-P (Vorsteckmontage)

Durchsteckdübel HDA-T (Durchsteckmontage)

Hilti Hinterschnittdübel HDA	
Verwendungszweck Installationsparameter	Anhang B4

Tabelle B4: Mindestbauteildicke, HDA-P

Dübeltyp		HDA-P M10	HDA-P M12	HDA-P M16	HDA-P M20	
Minimale Bauteildicke	h_{min}	[mm]	180	200	270	350

Tabelle B5: Mindestbauteildicke, HDA-T

Dübeltyp		HDA-T M10	HDA-	T M12	HDA-	T M16	HDA-	Т М20	
Maximale Anbauteildicke	t _{fix,max} 1)	[mm]	20	30	50	40	60	50	100
Minimale Bauteildicke	h _{min} ²⁾	[mm]	200-t _{fix}	230-t _{fix}	250-t _{fix}	310-t _{fix}	330-t _{fix}	400-t _{fix}	450-t _{fix}

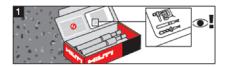
 $^{^{1)}\,}t_{\text{fix,max}}$ maximale Anbauteildicke, siehe Tabelle B3, Anhang B4.

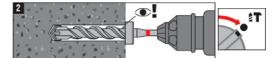
z.B. HDA-T 22-M12x125/50:
$$t_{fix} = 20mm \rightarrow h_{min} = 250-20 = 230mm$$
 $t_{fix} = 50mm \rightarrow h_{min} = 250-50 = 200mm$

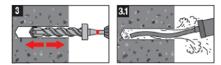
Tabelle B6: Minimale Achs- und Randabstände

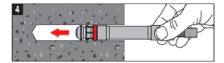
HDA-P / HDA-T			M10	M12	M16	M20
Gerissener Beton						
Minimaler Achsabstand 1)	S _{min}	[mm]	100	125	190	250
Minimaler Randabstand 2)	C _{min}	[mm]	80	100	150	200
Ungerissener Beton						
Minimaler Achsabstand 1)	S _{min}	[mm]	100	125	190	250
Minimaler Randabstand 2)	C _{min}	[mm]	80	100	150	200

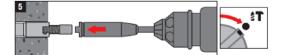
 $^{^{1)}}$ verhältnis $s_{min} / h_{ef} = 1,0$

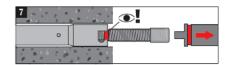

Hilti Hinterschnittdübel HDA	
Verwendungszweck Mindestbauteildicke und minimale Achs- und Randabstände	Anhang B5

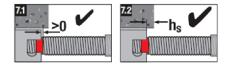

²⁾ h_{min} ist abhängig von der vorhandenen Dicke des Anbauteils t_{fix} (Verwendung eines Bundbohrers).

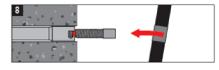

 $^{^{2)}}$ verhältnis $c_{min} / h_{ef} = 0.8$

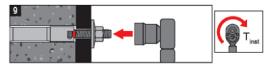



Setzanweisung: HDA-P (Vorsteckmontage)

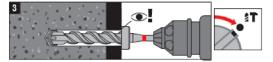


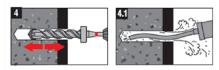


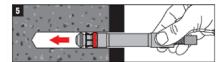


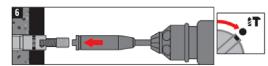


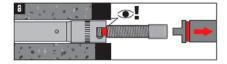


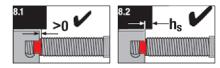


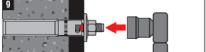


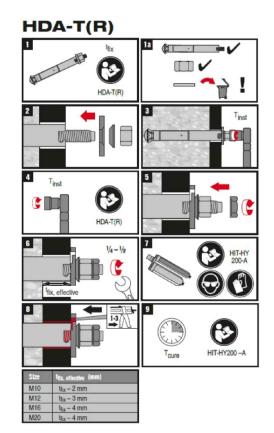

Setzanweisung: HDA-T (Durchsteckmontage)










Hilti Hinterschnittdübel HDA

Verwendungszweck Setzanweisung **Anhang B6**

Montageanweisung mit Hilti Verfüllset

HDA-P(R) I Tinst I

Tabelle B7: Maximale Verarbeitungszeit und minimale Aushärtezeit HY 200-A

Temperatur im Verankerungsgrund T	Maximale Verarbeitungszeit t _{work}	Minimale Aushärtezeit t _{cure}
>0°C bis 5°C	25 min	2 h
>5°C bis 10°C	15 min	75 min
> 10 °C bis 20 °C	7 min	45 min
> 20 °C bis 30 °C	4 min	30 min
> 30 °C bis 40 °C	3 min	30 min

Tabelle B8: Maximale Verarbeitungszeit und minimale Aushärtezeit HY 200-R

Temperatur im Verankerungsgrund T				
> 0 °C bis 5 °C	1 h	4 h		
>5°C bis 10°C	40 min	2,5 h		
> 10 °C bis 20 °C	15 min	1,5 h		
> 20 °C bis 30 °C	9 min	1 h		
> 30 °C bis 40 °C	6 min	1 h		

Hilti Hinterschnittdübel HDA	
Verwendungszweck Setzanweisung mit Hilti Verfüllset, maximale Verarbeitungszeit und minimale Aushärtezeit	Anhang B7

Tabelle C1: Wesentliche Merkmale unter Zug-Ermüdungsbeanspruchung in Beton (Bemessungsverfahren I nach TR 061)

HDA-P / HDA-T			M10	M12	M16	M20		
Stahlversagen								
Charakteristischer Wide	rstand	[kN]		ΔN_R	k,s,0,n			
		≤ 10 ⁴	25,8	31,3	86,2	109,0		
		≤ 3·10 ⁴	20,4	25,0	67,9	86,6		
Lastonialmahl		≤ 10 ⁵	15,4	20,3	48,3	64,9		
Lastspielzahl	n	≤ 3·10 ⁵	12,3	17,9	34,8	49,5		
		≤ 10 ⁶	10,4	16,8	26,5	38,0		
		∞	9,2	16,3	22,7	26,7		
Teilsicherheitsbeiwert	γ̃Ms,N,fa	[-]		nach TR 0	61, Eq. (3)			
Betonversagen								
Effektive Verankerungstiefe	h _{ef}	[mm]	100	125	190	250		
Abminderungsfaktor ¹⁾		[-]		$\eta_{k,c,l}$	N,fat,n			
		≤ 10 ⁴		0,	66			
		≤ 3·10 ⁴		0,	64			
Lastanialaski		≤ 10 ⁵		0,	64			
Lastspielzahl	n	≤ 3·10 ⁵		0,	,64			
		≤ 10 ⁶		0,64				
		∞	0,64					
Teilsicherheitsbeiwert	γ _{Mc,fat}	[-]	1,5					
Lastumlagerungsfaktor für Befestigungsgrupper	ι ^{ΨFN}	[-]		0,	77			

 $^{^{1)}\}Delta N_{Rk,(c,sp,cb),0,n} = \eta_{k,c,N,fat,n} \cdot N_{Rk,(c,sp,cb)} \ mit \ N_{Rk,(c,sp,cb)} \ nach \ ETA-99/0009.$

Hilti Hinterschnittdübel HDA	
Leistung Wesentliche Merkmale unter Zug-Ermüdungsbeanspruchung in Beton (Bemessungsverfahren I nach TR 061)	Anhang C1

Tabelle C2: Wesentliche Merkmale unter Querzug-Ermüdungsbeanspruchung in Beton (Bemessungsverfahren I nach TR 061)

HDA-P			M10	M12	M16	M20	
Stahlversagen							
Charakteristischer Widers	stand	[kN]		ΔV	Rk,s,0,n		
		≤ 10 ⁴	11,9	18,6	30,7	53,2	
		≤ 3·10 ⁴	8,2	13,4	22,0	40,5	
Lostopiolachi		≤ 10 ⁵	5,0	8,8	14,9	29,1	
Lastspielzahl	n	≤ 3·10 ⁵	3,3	6,7	11,2	22,4	
		≤ 10 ⁶	2,6	6,1	9,6	18,9	
		∞	2,5	6,0	9,0	17,5	
Teilsicherheitsbeiwert	γ̃Ms,V,fat	[-]		nach TR	061, Eq. (3)	•	
Betonversagen		'					
Effektive Ankerlänge	l _f	[mm]	70	88	90	120	
Effektiver Außendurchmesser des Befestigungselements	d _{nom}	[mm]	19	21	29	35	
Abminderungsfaktor 1)		[-]	Ŋk,c,V,fat,n				
	≤ 10 ⁴		0,57				
		≤ 3·10 ⁴	0,55				
L catanial sold		≤ 10 ⁵	0,55				
Lastspielzahl	n	≤ 3·10 ⁵		O	,55		
		≤ 10 ⁶	0,55				
		∞	0,55				
Teilsicherheitsbeiwert	γMc,fat	[-]	1,5				
Lastumlagerungsfaktor für Befestigungsgruppen	Ψεν	[-]	0,83				

 $^{^{1)} \}Delta V_{Rk,(c,cp),0,n} = \eta_{k,c,V,fat,n} \cdot V_{Rk,(c,cp)} \ \ mit \ V_{Rk,(c,cp)} \ nach \ ETA-99/0009.$

Hilti Hinterschnittdübel HDA	
Leistung Wesentliche Merkmale unter Querzug-Ermüdungsbeanspruchung in Beton (Bemessungsverfahren I nach TR 061)	Anhang C2

Tabelle C3: Wesentliche Merkmale unter Querzug-Ermüdungsbeanspruchung in Beton (Bemessungsverfahren I nach TR 061)

HDA-T			M10	M12	M16	M20	
Stahlversagen							
Charakteristischer Widers	stand	[kN]		ΔV_{\parallel}	Rk,s,0,n		
		≤ 10 ⁴	27,9	34,4	62,0	53,2	
		≤ 3·10 ⁴	21,4	27,4	46,3	40,5	
Lastanialzabl		≤ 10 ⁵	15,9	21,8	34,2	29,1	
Lastspielzahl	n	≤ 3·10 ⁵	12,6	18,5	27,7	22,4	
		≤ 10 ⁶	10,3	16,5	24,4	18,9	
		∞	8,5	15,0	23,0	17,5	
Teilsicherheitsbeiwert	γ̃Ms,V,fat	[-]		nach TR	061, Eq. (3)		
Betonversagen							
Effektive Ankerlänge	l _f	[mm]	70	88	90	120	
Effektiver Außendurchmesser des Befestigungselements	d_{nom}	[mm]	19	21	29	35	
Abminderungsfaktor 1)		[-]		$\eta_{k,c,V,fat,n}$			
		≤ 10 ⁴	0,57				
		≤ 3·10 ⁴	0,55				
Lastanialzahl	n	≤ 10 ⁵	0,55				
Lastspielzahl	n	≤ 3·10 ⁵	0,55				
		≤ 10 ⁶	0,55				
		∞	0,55				
Teilsicherheitsbeiwert	γMc,fat	[-]	1,5				
Lastumlagerungsfaktor für Befestigungsgruppen	Ψεν	[-]					

 $^{^{1)} \ \}Delta V_{Rk,(c,cp),0,n} = \eta_{k,c,V,fat,n} \cdot V_{Rk,(c,cp)} \ mit \ V_{Rk,(c,cp)} \ nach \ ETA-99/0009.$

Hilti Hinterschnittdübel HDA	
Leistung Wesentliche Merkmale unter Querzug-Ermüdungsbeanspruchung in Beton (Bemessungsverfahren I nach TR 061)	Anhang C3

Tabelle C4: Wesentliche Merkmale unter Zug-Ermüdungsbeanspruchung in Beton (Bemessungsverfahren II nach TR 061)

HDA-P / HDA-T			M10	M12	M16	M20	
Stahlversagen							
Charakteristischer Stahlwiderstand	$\Delta N_{\text{Rk,s,0,}\infty}$	[kN]	9,2	16,3	22,7	26,7	
Teilsicherheitsbeiwert	γ̃Ms,N,fat	[-]	1,35				
Betonversagen							
Effektive Verankerungstiefe	h _{ef}	[mm]	100	125	190	250	
Abminderungsfaktor ¹⁾	$\eta_{k,c,N,fat,\infty}$	[-]	0,64				
Teilsicherheitsbeiwert	γMc,fat	[-]	1,5				
Lastumlagerungsfaktor für Befestigungsgruppen	ΨFN	[-]	0,77				

¹⁾ $\Delta N_{Rk,(c,sp,cb),0,\infty} = \eta_{k,c,N,fat,\infty} \cdot N_{Rk,(c,sp,cb)}$ mit $N_{Rk,(c,sp,cb)}$ nach ETA-99/0009.

Tabelle C5: Wesentliche Merkmale unter Querzug-Ermüdungsbeanspruchung in Beton (Bemessungsverfahren II nach TR 061)

HDA-P			M10	M12	M16	M20	
Stahlversagen		•					
Charakteristischer Stahlwiderstand	$\Delta V_{Rk,s,0,\infty}$	[kN]	2,5	6,0	9,0	17,5	
Teilsicherheitsbeiwert	γ̃Ms,V,fat	[-]	1,35				
Betonversagen							
Effektive Ankerlänge	l _f	[mm]	70	88	90	120	
Effektiver Außendurchmesser des Befestigungselements	d_{nom}	[mm]	19	21	29	35	
Abminderungsfaktor ¹⁾	$\eta_{k,c,V,fat,\infty}$	[-]	0,55				
Teilsicherheitsbeiwert	γ _{Mc,fat}	[-]	1,5				
Lastumlagerungsfaktor für Befestigungsgruppen	Ψεν	[-]	0,83				

 $^{^{1)} \}Delta V_{Rk,(c,cp),0,\infty} = \eta_{k,c,V,fat,\infty} \cdot V_{Rk,(c,cp)} \text{ mit } V_{Rk,(c,cp)} \text{ nach ETA-99/0009}.$

Hilti Hinterschnittdübel HDA	
Leistung Wesentliche Merkmale unter Zug- und Querzug-Ermüdungsbeanspruchung in Beton (Bemessungsverfahren II nach TR 061)	Anhang C4

Tabelle C6: Wesentliche Merkmale unter Querzug-Ermüdungsbeanspruchung in Beton (Bemessungsverfahren II nach TR 061)

HDA-T			M10	M12	M16	M20	
Stahlversagen							
Charakteristischer Stahlwiderstand	$\Delta V_{Rk,s,0,\infty}$	[kN]	8,5	15,0	23,0	17,5	
Teilsicherheitsbeiwert	γMs,V,fat	[-]		1,	35		
Betonversagen							
Effektive Ankerlänge	l _f	[mm]	70	88	90	120	
Effektiver Außendurchmesser des Befestigungselements	d _{nom}	[mm]	19	21	29	35	
Abminderungsfaktor ¹⁾	$\eta_{k,c,V,fat,\infty}$	[-]	0,55				
Teilsicherheitsbeiwert	γMc,fat	[-]	1,5				
Lastumlagerungsfaktor für Befestigungsgruppen	Ψεν	[-]	0,83				

 $^{^{1)} \}Delta V_{\text{Rk},(c,cp),0,\infty} = \eta_{k,c,V,\text{fat},\infty} \cdot V_{\text{Rk},(c,cp)} \text{ mit } V_{\text{Rk},(c,cp)} \text{ nach ETA-99/0009}.$

Tabelle C7: Wesentliche Merkmale unter kombinierter Ermüdungsbeanspruchung in Beton (Bemessungsverfahren I und II nach TR 061)

HDA-P / HDA-T			M10	M12	M16	M20
Exponent für kombinierte	α_{sn}	[-]	1,0		1,25	
Belastung	α_{c}	[-]		1	,5	

Hilti Hinterschnittdübel HDA	
Leistung Wesentliche Merkmale unter Querzug- und kombinierter Ermüdungsbeanspruchung in Beton (Bemessungsverfahren I und II nach TR 061)	Anhang C5