

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-19/0206 of 9 July 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

HUS-H 12

Mechanical fasteners for use in concrete

Hilti Aktiengesellschaft Business Unit Anchors 9494 Schaan FÜRSTENTUM LIECHTENSTEIN

Hilti plants

14 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601

European Technical Assessment ETA-19/0206 English translation prepared by DIBt

Page 2 of 14 | 9 July 2019

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-19/0206

Page 3 of 14 | 9 July 2019

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Hilti screw anchor HUS-H 12 is an anchor made of galvanized steel in of size 12. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the concrete screw is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the concrete screw of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	see Annex C 1
Characteristic resistance to shear load (static and quasi-static loading)	see Annex C 2
Displacements (static and quasi-static loading)	see Annex C 3
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed
Durability	See Annex B 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 4 and C 5

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Documents EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

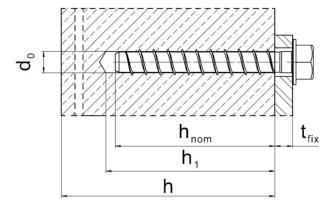
European Technical Assessment ETA-19/0206

Page 4 of 14 | 9 July 2019

English translation prepared by DIBt

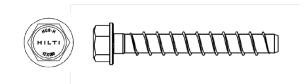
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 9 July 2019 by Deutsches Institut für Bautechnik

Dr.-Ing. Lars Eckfeldt p.p. Head of Department

beglaubigt: Baderschneider



Installed condition

HUS-H (hexagon head size 12)

Table A1: Screw types

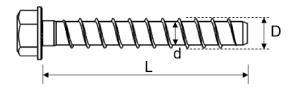
1) Hilti HUS-H, size 12, hexagon head zinc coated

Table A2: Materials

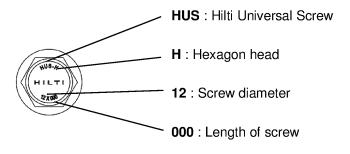
electronic copy of the eta by dibt: eta-19/0206

Designation	Part	Material	
HUS-H 12 screw anchor	Size 12 all lengths	Steel 10B21 acc. To SAE-J403 $f_{yk} \ge 750 \text{ N/mm}^2$, $f_{uk} \ge 850 \text{ N/mm}^2$	Electroplated zinc coated (> 5µm) or mechanical plated (> 30µm)

Hilti screw anchor HUS-H 12


Product description
Installed condition, screw types and material

Annex A1


Table A3: Fastener dimensions and marking

Fastener size HUS			12
Туре			н
Nominal embedment depth	h _{nom}	[mm]	95
Langth of factoriar	min L	[mm]	100
Length of fastener	max L	[mm]	150
Outer diameter of thread	D	[mm]	14,3
Core diameter	d	[mm]	11,3
Thread pitch	р	[mm]	8,1

Reverse Locking Serrations

Hilti screw anchor HUS-H 12	
Production description	Annex A2
Fastener dimensions	

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

- · Static and quasi static loading.
- · Fire exposure.

Base material:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016.
- · Cracked and uncracked concrete.

Use conditions (Environmental conditions):

 Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- The anchorages are designed in accordance with:
 EN 1992-4:2018 and EOTA Technical Report TR 055, February 2016.

Installation:

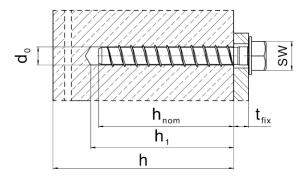
electronic copy of the eta by dibt: eta-19/0206

- Hammer drilling only.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- After installation further turning of the fastener shall not be possible.
- The head of the fastener must be fully engaged on the fixture and show no signs of damage.

Hilti screw anchor HUS-H 12

Intended Use Specifications

Annex B1

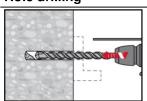

Table B1: Installation parameters

Fastener size HUS			12
Туре			Н
Diameter of drill bit	d ₀	[mm]	12
Nominal embedment depth	h_{nom}	[mm]	95
Min. hole depth in concrete	h₁ ≥	[mm]	105
Effective embedment depth	h _{ef} ≤	[mm]	75,4
Clearance hole in the fixture	df	[mm]	15
Fixture thickness	t _{fix}	[mm]	5-55
Installation torque moment	T _{inst}	[Nm]	80
Wrench size	SW	[mm]	19
Max. power output, machine setting	T _{max} ≤	[Nm]	350
Setting tool ¹⁾ Strength class	≥ C20/25		Hilti SIW 22-A or Hilti 6AT-A22

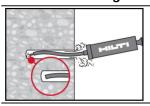
¹⁾ Installation with other impact screw driver of equivalent power is possible.

Table B2: Minimum thickness of concrete member, minimum edge distance and spacing

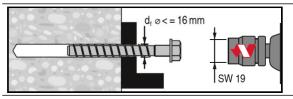
Fastener size HUS			12
Туре			н
Nominal embedment depth	h _{nom}	[mm]	95
Minimum member thickness	h _{min}	[mm]	160
Minumum edge distance	Cmin	[mm]	70
Minumum spacing	Smin	[mm]	70



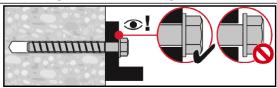
Hilti screw anchor HUS-H 12	
Intended Use Installation parameters	Annex B2


Installation instruction

Hole drilling


Hammer drilling.

Drill hole cleaning


Clean the drill hole.

Anchor installation

Use torque wrench or impact screw driver. Torque wrench: T_{inst} acc. to Table B1. Impact screw driver: T_{max} acc. to Table B1.

Checking of correct setting

Ensure that the head of the fastener is fully supported on the fixture and it is not damaged.

Hilti screw anchor HUS-H 12

Intended Use Installation instructions

electronic copy of the eta by dibt: eta-19/0206

Annex B3

Table C1: Essential characteristics HUS-H under tension load

Fastener size HUS			12
Туре			Н
Nominal embedment depth	h _{nom}	[mm]	95
Installation factor	γinst	[-]	1,2
Steel failure		•	
Characteristic resistance	N _{Rk,s}	[kN]	83,0
Partial factor	γMs,N ¹⁾	[-]	1,4
Pull-out failure			
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	25,0
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	12,0
	_	C30/37	1,22
Increasing factors for N _{Rk,p} in cracked or uncracked concrete	Ψο	C40/50	1,41
		C50/60	1,58
Concrete cone failure			
Effective embedment depth	h _{ef}	[mm]	75,4
Factor for cracked concrete	$k_{\text{cr,N}}$	[-]	7,7
Factor for uncracked concrete	$k_{\text{ucr},N}$	[-]	11,0
Edge distance	Ccr,N	[mm]	1,5 h _{ef}
Spacing	S _{cr} ,N	[mm]	3 h _{ef}
Splitting failure			
Edge distance	Ccr,sp	[mm]	1,5 h _{ef}
Spacing	S _{cr,sp}	[mm]	3 h _{ef}

¹⁾ In absence of national regulations.

Hilti screw anchor HUS-H 12	
Performances Essential characteristics under tension load in concrete	Annex C1

Table C2: Essential Characteristics for HUS-H under shear loads

Fastener size HUS			12
Туре			Н
Nominal embedment depth	h_{nom}	[mm]	95
Effective embedment depth	h _{ef}	[mm]	75,4
Steel failure without level arm			
Characteristic resistance	$V^0_{Rk,s}$	[kN]	39,0
Factor for groups	k_7	[-]	0,8
Partial factor	γ Ms $^{1)}$	[-]	1,5
Steel failure with level arm			
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	138,8
Partial factor	$\gamma_{Ms}^{1)}$	[-]	1,5
Concrete pry-out failure		•	
Pry-out factor	k ₈	[-]	2,0
Partial factor	$\gamma \text{Mcp}^{1)}$	[-]	1,5
Concrete edge failure			
Effective length of fastener	$I_{f} = h_{ef}$	[mm]	75,4
Outside diameter of fastener	d_{nom}	[mm]	11,15
Partial factor	γMc ¹⁾	[-]	1,5

¹⁾ In absence of national regulations.

Hilti screw anchor HUS-H 12	
Performances Essential characteristics under tension load in concrete	Annex C2

Table C3: Displacements under tension load for uncracked and cracked concrete

Fastener size HUS				12
Туре				Н
Cracked concrete C20/25	Tension Load	N	[kN]	4,8
	Displacement	δ _{N0}	[mm]	0,3
		δ _{N∞}	[mm]	1,2
Uncracked concrete C20/25	Tension Load	N	[kN]	9,9
	Displacement	δ_{N0}	[mm]	0,3
		δ _{N∞}	[mm]	1,2

Table C4: Displacements under shear load for uncracked and cracked concrete

Fastener size HUS				12
Туре				н
Cracked and uncracked concreteC20/25	Shear Load	٧	[kN]	18,6
	Displacement	δ_{N0}	[mm]	1,8
		δ _{N∞}	[mm]	2,7

Hilti screw anchor HUS-H 12	
Performances Displacements	Annex C3

Table C5: Essential Characteristics for HUS-H under tension load in case of fire exposure

Fastener size HUS				12
Туре				н
Nominal embedment depth		h _{nom}	[mm]	95
Steel failure				
	R30	$N_{Rk,s,fi}$	[kN]	2,0
Characteristic registance	R60	$N_{Rk,s,fi}$	[kN]	1,5
Characteristic resistance	R90	$N_{Rk,s,fi}$	[kN]	1,3
	R120	$N_{Rk,s,fi}$	[kN]	1,0
Pull-out failure				
	R30	$N_{Rk,p,fi}$	[kN]	
Characteristic resistance in	R60	$N_{Rk,p,fi}$	[kN]	3,0
concrete ≥ C20/25	R90	$N_{Rk,p,fi}$	[kN]	
	R120	$N_{Rk,p,fi}$	[kN]	2,4
Concrete cone failure				
	R30	N ⁰ Rk,c,fi	[kN]	8,5
Characteristic resistance in	R60	$N^0_{Rk,c,fi}$	[kN]	
concrete ≥ C20/25	R90	$N^0_{Rk,c,fi}$	[kN]	
	R120	$N^0_{Rk,c,fi}$	[kN]	6,8
Effective embedment depth		h _{ef}	[mm]	75,4
Minimum member thickness		h _{min}	[mm]	160
Spacing		C _{cr,N,fi}	[mm]	4 h _{ef}
		Smin	[mm]	70
Edge distance		Ccr,N,fi	[mm]	2 h _{ef}
Fire exposure from one side only		Cmin	[mm]	70
Fire exposure from more than	one side			≥ 300 mm

¹⁾ In absence of national regulations.

Hilti screw anchor HUS-H 12	
Performances Essential Characteristics under tension load in case of fire exposure	Annex C4

Essential Characteristics for HUS-H under shear load in case of fire Table C6: exposure

Fastener size HUS				12
Туре				Н
Nominal embedment depth		h _{nom}	[mm]	95
Steel failure without level arm	1			
	R30	$V_{Rk,s,fi}$	[kN]	2,0
Characteristic resistance	R60	$V_{Rk,s,fi}$	[kN]	1,5
Characteristic resistance	R90	$V_{Rk,s,fi}$	[kN]	1,3
	R120	$V_{Rk,s,fi}$	[kN]	1,0
Steel failure with level arm				
	R30	M ⁰ Rk,s,fi	[Nm]	3,4
Characteristic registance	R60	M ⁰ Rk,s,fi	[Nm]	2,5
Characteristic resistance	R90	$M^0_{Rk,s,fi}$	[Nm]	2,1
	R120	$M^0_{Rk,s,fi}$	[Nm]	1,6
Pry-out failure				
Pry-out factor		k ₈	[-]	2,0
	R30	$V_{Rk,cp,fi}$	[kN]	
Characteristic resistance	R60	$V_{Rk,cp,fi}$	[kN]	17,0
Characteristic resistance	R90	$V_{Rk,cp,fi}$	[kN]	
	R120	$V_{Rk,cp,fi}$	[kN]	13,6
Concrete edge failure				
	R30	$V_{Rk,c,fi}$	[kN]	0
	R60	$V_{Rk,c,fi}$	[kN]	$V^{0}_{Rk,c,fi} = 0,25$ · $V^{0}_{Rk,c}^{2}$
Characteristic resistance	R90	$V_{Rk,c,fi}$	[kN]	▼ ⊓K,C
	R120	$V_{Rk,c,fi}$	[kN]	$V^0_{Rk,c,fi} = 0,20$ · $V^0_{Rk,c}^{(2)}$

¹⁾

Hilti screw anchor HUS-H 12	
Performances	Annex C5
Essential Characteristics under shear load in case of fire exposure	

In absence of national regulations. $V^0_{Rk,c}$ = characteristic resistance for concrete edge failure in cracked concrete C20/25 under normal temperature calculated acc. to EN 1992-4:2018. 2)