

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-19/0483 of 30 August 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Injection system VME plus

Bonded fastener for use in concrete

MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach DEUTSCHLAND

Werk 1,D und Werk 2,D

29 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601

European Technical Assessment ETA-19/0483

Page 2 of 29 | 30 August 2019

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z54749.19 8.06.01-218/19

European Technical Assessment ETA-19/0483

Page 3 of 29 | 30 August 2019

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Injection System VME plus is a bonded anchor consisting of a cartridge with injection mortar Injection mortar VME plus and a steel element. The steel element consists of a threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter $\emptyset 8$ to $\emptyset 32$ mm or internal threaded rod VMU-IG-M6 to VMU-IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1, C 3, C 4, C 7, C 9
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2, C 5, C 8, C 10
Displacements (static and quasi-static loading)	See Annex C 12, C 13, C 14
Characteristic resistance for seismic performance category C1 and C2 and displacements	See Annex C 6, C 11, C 12
Durability	See Annex B 1

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z54749.19 8.06.01-218/19

European Technical Assessment ETA-19/0483

Page 4 of 29 | 30 August 2019

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

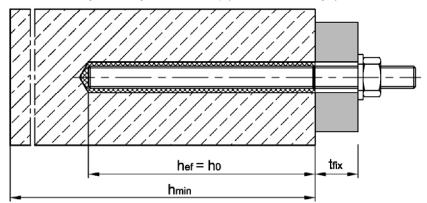
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

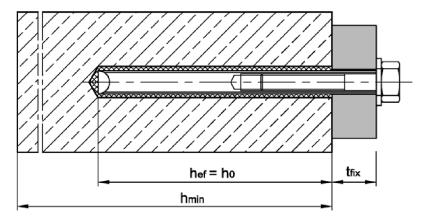
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 30 August 2019 by Deutsches Institut für Bautechnik

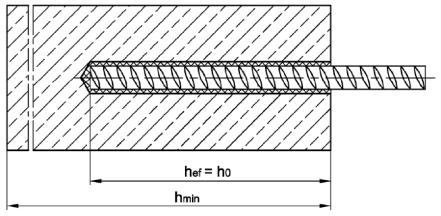
BD Dipl.-Ing. Andreas Kummerow Head of Department


beglaubigt: Baderschneider

Z54749.19 8.06.01-218/19



Installation threaded rod M8 to M30


Pre-setting installation or through-setting installation (optional annular gap filled with mortar)

Installation internally threaded anchor rod VMU-IG M6 to VMU-IG M20

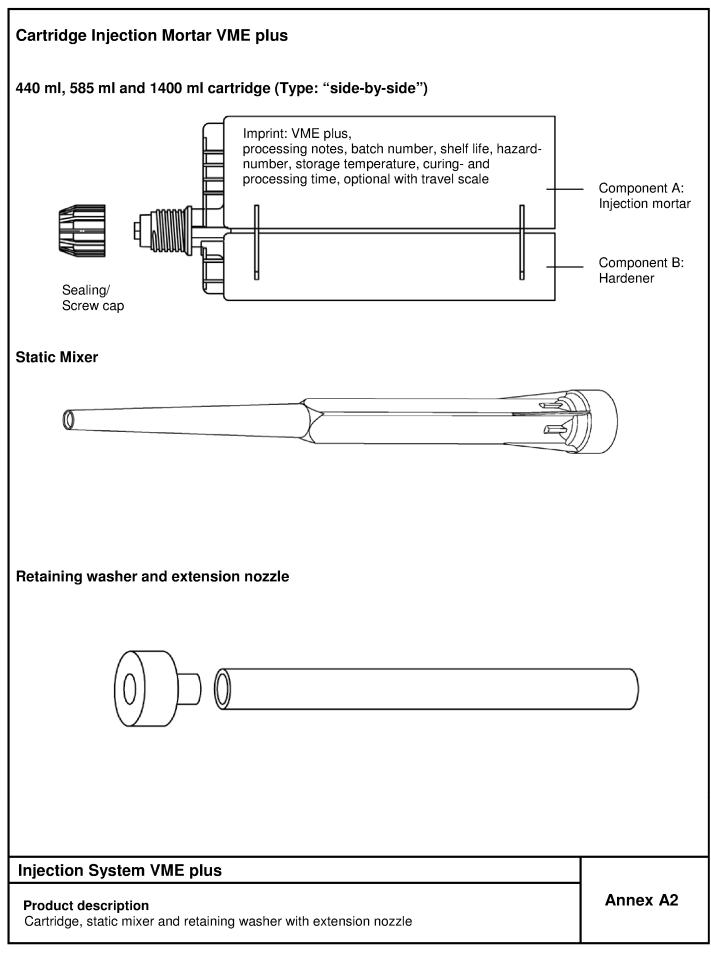
Installation reinforcing bar Ø8 to Ø32

 t_{fix} = thickness of fixture

h_{ef} = effective anchorage depth

 h_0 = depth of drill hole

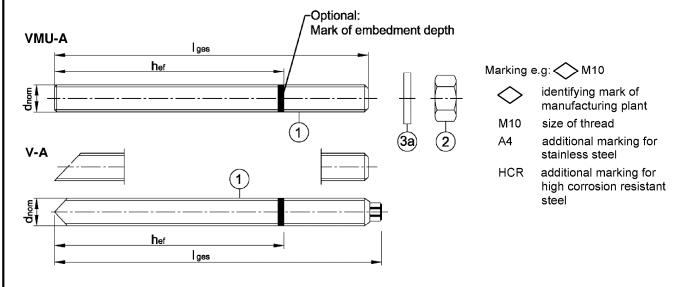
 h_{min} = minimum thickness of member


Injection System VME plus

Product description

Installation situation

Annex A1



Threaded rod

Threaded rod VMU-A, V-A with washer and hexagon nut M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A4, HCR)

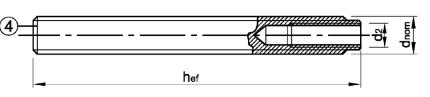
Threaded rod VM-A (material sold by the meter, to be cut at the required length) M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A2, A4, HCR)

Commercial standard threaded rod

M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A2, A4, HCR) with:

- Materials, dimensions and mechanical properties see Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004

Washer with bore and reducing adapter for filling the gap between threaded rod and fixture


Thickness of washer with bore for diameter

< M24: t = 5 mm ≥ M24: t = 6 mm

Internally threaded anchor rod

 $\mathsf{VMU\text{-}IG\ M6,\ VMU\text{-}IG\ M8,\ VMU\text{-}IG\ M10,\ VMU\text{-}IG\ M12,\ VMU\text{-}IG\ M16,\ VMU\text{-}IG\ M20}$

(zinc plated, A4, HCR)

Identifying mark of manufacturing plant

I Internal thread

M8 Size of internal thread

A4 additional marking for stainless

steel

HCR additional marking for high

corrosion resistant steel

Injection System VME plus

Product description

Threaded rod, internally threaded anchor rod and washer with bore

Annex A3

Table A1:	Materials -	Threaded rod ar	nd internally	threaded anchor rod
-----------	-------------	-----------------	---------------	---------------------

Part	Designation			Material					
electr hot-di	p galvanized ≥ 40) µm ac	c. to EN ISO c. to EN ISO c. to EN ISO	1461:2009	and EN	ISO 10684	1:2004+A	C:2009 or	
			Property class	charac steel u strer	Itimate	EN 10087:1998,			
		_	4.6		400		240	A ₅ > 8 %	EN 10263:2001;
1	Threaded rod	_	4.8	_	400		320	A ₅ > 8 %	commercial standard
		_	5.6	f _{uk} [N/mm²]	500	f _{yk} [N/mm²]	300	A ₅ > 8 %	threaded rod:
		_	5.8	ן נואיווווו ן	500	[14/11111]	400	A ₅ > 8 %	EN ISO 898-1:2013
		-	8.8		800		640	A ₅ ≥ 12% ¹⁾	
			4	for class	4.6 or 4.8	rods		1	
2	Hexagon nut	-	5	for class	4.6, 4.8,	5.6, 5.8 roc	ds el		EN ISO 898-2:2012
		_	8	for class	4.6, 4.8,	5.6, 5.8, 8.	8 rods		
3a	Washer			e.g.: EN EN ISO 7			ISO 7093	3:2000, EN ISO	887:2006;
3b	Washer with bore	9		Steel, zin	c plated				
				A ₅ > 8%					
	Internally threade	ed	5.8					$A_5 > 8\%$	EN 10007 1000
4	Internally threade anchor rod	ed _	5.8 8.8	Steel, ele	ectroplate	d or sherar	dized	$A_5 > 8\%$ $A_5 > 8\%$	EN 10087:1998
4 Stain Stain			8.8	(Material	s 1.4301 /	/ 1.4307 / ′	1.4567 / 1	A ₅ > 8%	
4 Stain Stain	less steel A2 ²⁾ less steel A4 corrosion resista		8.8	(Material	s 1.4301 / s 1.4401 / s 1.4529 / teristic Itimate	/ 1.4307 / [^] / 1.4404 / 1	1.4567 / 1 1.4571 / 1 teristic yield	A ₅ > 8%	/ 1.4062)
4 Stain Stain	less steel A2 2) less steel A4		8.8 HCR Property	(Materials (Materials (Materials charac steel ui	s 1.4301 / s 1.4401 / s 1.4529 / teristic Itimate	/ 1.4307 / 7 / 1.4404 / 1 / 1.4565)	1.4567 / 1 1.4571 / 1 teristic yield	A ₅ > 8% .4541) .4578 / 1.4362 fracture elongation A ₅ > 8%	
4 Stain Stain High	less steel A2 ²⁾ less steel A4 corrosion resista		HCR Property class	(Materials (Materials (Materials charac steel u strei	s 1.4301 / s 1.4401 / s 1.4529 / teristic ltimate ngth	/ 1.4307 / 7 / 1.4404 / 1 / 1.4565)	1.4567 / 1 1.4571 / 1 teristic yield ngth	A ₅ > 8% .4541) .4578 / 1.4362 fracture elongation	/ 1.4062) - EN 10088-1:2014
4 Stain Stain High	less steel A2 ²⁾ less steel A4 corrosion resista		8.8 HCR Property class 50	(Materials (Materials (Materials charac steel ui	s 1.4301 /s 1.4401 /s 1.4529 / teristic Itimate ngth 500	/ 1.4307 / 7 / 1.4404 / 1 / 1.4565)	1.4567 / 1 1.4571 / 1 teristic yield ngth 210	A ₅ > 8% .4541) .4578 / 1.4362 fracture elongation A ₅ > 8%	/ 1.4062) - EN 10088-1:2014
4 Stain Stain High	less steel A2 ²⁾ less steel A4 corrosion resista		8.8 Property class 50 70 80	(Materials (Materials (Materials charac steel u strei	s 1.4301 /s 1.4401 /s 1.4529 / teristic ltimate ngth 500 700 800	/ 1.4307 / 7 / 1.4404 / 1 / 1.4565)	1.4567 / 1 1.4571 / 1 teristic yield ngth 210 450	$A_5 > 8\%$.4541) .4578 / 1.4362 fracture elongation $A_5 > 8\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$	- EN 10088-1:2014 EN ISO 3506-1:2009
4 Stain Stain High	less steel A2 ²⁾ less steel A4 corrosion resista		Property class 50 70 80	(Materials (Materials (Materials charac steel u strei f _{uk} [N/mm²]	s 1.4301 /s 1.4401 /s 1.4529 / teristic ltimate ngth 500 700 800	/ 1.4307 / 7 / 1.4404 / 1 / 1.4565)	1.4567 / 1 1.4571 / 1 teristic yield ngth 210 450	$A_5 > 8\%$.4541) .4578 / 1.4362 fracture elongation $A_5 > 8\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$	- EN 10088-1:2014 EN ISO 3506-1:2009
4 Stain Stain High	less steel A2 ²⁾ less steel A4 corrosion resista Threaded rod ³⁾		8.8 Property class 50 70 80 50 70	(Materials (Materials (Materials charac steel u strei f _{uk} [N/mm²]	s 1.4301 /s 1.4401 /s 1.4529 / teristic ltimate ngth 500 700 800 50 rods	/ 1.4307 / / / 1.4404 / 1 / 1.4565) character steel street f _{yk} [N/mm²]	1.4567 / 1 1.4571 / 1 teristic yield ngth 210 450	$A_5 > 8\%$.4541) .4578 / 1.4362 fracture elongation $A_5 > 8\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$	- EN 10088-1:2014 EN ISO 3506-1:2009
4 Stain Stain High	less steel A2 ²⁾ less steel A4 corrosion resista Threaded rod ³⁾		8.8 Property class 50 70 80 50 70	(Materials (Materials (Materials (Materials teel u street l'us treet l'us treet l'us (N/mm²) de l'assert de l'assert l'a	s 1.4301 /s 1.4401 /s 1.4529 / teristic litimate ngth 500 700 800 50 rods 50 or 70 in 150 7089	/ 1.4307 / / / 1.4404 / 1 / 1.4565) character steel street f _{yk} [N/mm²]	1.4567 / 1 1.4571 / 1 teristic yield ngth 210 450 600	$A_5 > 8\%$.4541) .4578 / 1.4362 fracture elongation $A_5 > 8\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$	- EN 10088-1:2014 EN ISO 3506-1:2009 - EN 10088-1:2014 EN ISO 3506-2:2009
4 Stain Stain High	anchor rod less steel A2 ²⁾ less steel A4 corrosion resista Threaded rod ³⁾ Hexagon nut ³⁾	nt steel	8.8 Property class 50 70 80 50 70	(Materials (Materials (Materials characted under the street of the stree	s 1.4301 /s 1.4401 /s 1.4529 / teristic Itimate ngth 500 700 800 50 rods 50 or 70 r 50, 70 or ISO 7089 7094:2000 steel A4;	/ 1.4307 / / / 1.4404 / 1 / 1.4565)	1.4567 / 1 1.4571 / 1 teristic yield ngth 210 450 600	$A_5 > 8\%$.4541) .4578 / 1.4362 fracture elongation $A_5 > 8\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$	- EN 10088-1:2014 EN ISO 3506-1:2009
4 Stain Stain High 1	anchor rod less steel A2 ²⁾ less steel A4 corrosion resista Threaded rod ³⁾ Hexagon nut ³⁾ Washer	nt steel	8.8 Property class 50 70 80 50 70	(Materials (Materials (Materials (Materials the unit of the content of the conten	s 1.4301 /s 1.4401 /s 1.4529 / teristic Itimate ngth 500 700 800 50 rods 50 or 70 r 50, 70 or ISO 7089 7094:2000 steel A4;	/ 1.4307 / / / 1.4404 / 1 / 1.4565) characted street fyk [N/mm²] rods 80 rods :2000, EN D; EN ISO	1.4567 / 1 1.4571 / 1 teristic yield ngth 210 450 600	$A_5 > 8\%$.4541) .4578 / 1.4362 fracture elongation $A_5 > 8\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$	- EN 10088-1:2014 EN ISO 3506-1:2009 - EN 10088-1:2014 EN ISO 3506-2:2009


 $^{^{1)}}$ Fracture elongation A_5 > 8 % for applications without requirements for seismic performance category C2 $^{2)}$ Property classes 50 and 70 $^{3)}$ Property classes 70 and 80 up to M24

Injection System VME plus Annex A4 **Product description** Materials - Threaded rod and internally threaded anchor rod

Reinforcing bar

Ø 8, Ø 10, Ø 12, Ø 14, Ø 16, Ø 20, Ø 24, Ø 25, Ø 28, Ø 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rip height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: Material reinforcing bar

Part	Designation	Material
Reba	r	
5	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Injection System VME plus

Product description

Product description and material reinforcing bar

Annex A5

Specification of intended use

Injection System VME plus	Threaded rod	Internally threaded anchor rod	Rebar			
Static or quasi-static action	M8 - M30 zinc plated, A2, A4, HCR	VMU-IG M6 - VMU-IG M20 zinc plated, A4, HCR	Ø8 - Ø32			
Seismic action, category C1	M8 - M30 zinc plated ¹⁾ , A4, HCR	-	Ø8 - Ø32			
Seismic action, category C2	M12 – M24 zinc plated ¹⁾ (property class 8.8), A4, HCR property class ≥ 70)	-	-			
	compacted, reinforced or unreinforced normal weight concrete (without fibers) acc. to EN 206:2013					
Base materials	strength classes acc. to EN 206:2013: C20/25 to C50/60					
	cracked or uncracked concrete					
Temperature Range I -40 °C to +40 °C	max. long term temperature +24 °C and max. short term temperature +40 °C					
Temperature Range II -40 °C to +72 °C	max. long term temperature +50 °C and max. short term temperature +72 °C					

¹⁾ except hot-dip galvanized

Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes:
 - Stainless steel A2 according to Annex A 4, Table A1: CRC II
- Stainless steel A4 according to Annex A 4, Table A1: CRC III
- High corrosion resistant steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages are designed in accordance with EN 1992-4:2018 or Technical Report TR 055, February 2018

Installation:

Electronic copy of the ETA by DIBt: ETA-19/0483

- Dry or wet concrete or waterfilled boreholes (not seawater)
- · Hole drilling by hammer drill, compressed air drill or vacuum drill mode
- Overhead installation allowed
- Anchor installation carried out by appropriately qualified personnel and under the responsibility of the person responsible for technical matters of the site
- Internally threaded anchor rod: Screws and threaded rods (incl. nut and washer) must at least correspond to the material and strength class of the internally threaded anchor rod used

Injection System VME plus	
Intended use Specifications	Annex B1

Table B1: Installation parameters for threaded rods

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Diameter of threaded rod	d=d _{nom}	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole diameter	d ₀	[mm]	10	12	14	18	22	28	30	35
Effective anchorage depth	$h_{\rm ef,min}$	[mm]	60	60	70	80	90	96	108	120
Enective anchorage depth	$h_{\text{ef,max}}$	[mm]	160	200	240	320	400	480	540	600
Pre-setting Diameter of clearance installation	d _f ≤		9	12	14	18	22	26	30	33
hole in the fixture Through set installation	ting d _f ≤	[mm]	12	14	16	20	24	30	33	40
Installation torque	T _{inst} ≤	[Nm]	10	20	40 (35) ¹⁾	60	100	170	250	300
Minimum thickness of member h _{min} [mm]		h _{ef} + 3	0mm ≥1	00mm			$h_{ef} + 2d_0$			
Minimum spacing	S _{min}	[mm]	40	50	60	75	95	115	125	140
Minimum edge distance	C _{min}	[mm]	35	40	45	50	60	65	75	80

¹⁾ Installation torque for property class 4.6

Table B2: Installation parameters for internally threaded anchor rods

Internally threaded anchor rod	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20		
Inner diameter of threaded rod	d ₂	[mm]	6	8	10	12	16	20
Outer diameter of threaded rod ¹⁾	d=d _{nom}	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d_0	[mm]	12	14	18	22	28	35
Effective anabarage depth	$h_{\text{ef,min}}$	[mm]	60	70	80	90	96	120
Effective anchorage depth -	h _{ef,max}	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18	22
Installation torque	T _{inst} ≤	[Nm]	10	10	20	40	60	100
Minimum screw-in depth	I _{IG}	[mm]	8	8	10	12	16	20
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30mm ≥ 100mm			h _{ef} +	- 2d ₀	
Minimum spacing	S _{min}	[mm]	50	60	75	95	115	140
Minimum edge distance	C _{min}	[mm]	40	45	50	60	65	80

¹⁾ With metric thread acc. to EN 1993-1-8:2005+AC:2009

Table B3: Installation parameters for rebar

Rebar			Ø	8	Ø	10	Ø	12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Diameter of rebar	$d=d_{nom}$	[mm]	8	3	1	0	1:	2	14	16	20	24	25	28	32
Nominal drill hole diameter 1)	do	[mm]	10	12	12	14	14	16	18	20	25	32	32	35	40
Effective anchorage	$h_{\text{ef,min}}$	[mm]	6	0	6	0	7	0	75	80	90	96	100	112	128
depth	h _{ef,max}	[mm]	16	60	20	00	24	10	280	320	400	480	500	560	640
Minimum thickness of member	h_{min}	[mm]		h _{ef} + 30 mm ≥ 100 mm							h _{ef} + 2d ₀)			
Minimum spacing	S _{min}	[mm]	4	0	5	0	6	0	70	75	95	120	120	130	150
Minimum edge distance	e C _{min}	[mm]	3	5	4	0	4	5	50	50	60	70	70	75	85

 $[\]overline{\ }^{1)}$ For $\varnothing 8$, $\varnothing 10$ and $\varnothing 12$ both nominal drill hole diameter can be used

Injection System VME plus

Intended use

Installation parameters

Annex B2

Table B4: Parameter for cleaning and setting tools

Threaded rod	Internally threaded anchor rod	Rebar	Drill bit Ø	Brush Ø	min. Brush Ø
[-]	[-]	Ø [mm]	d ₀ [mm]	d _b [mm]	d _{b,min} [mm]
M8		8	10	11,5	10,5
M10	VMU-IG M6	8 / 10	12	13,5	12,5
M12	VMU-IG M8	10 / 12	14	15,5	14,5
		12	16	17,5	16,5
M16	VMU-IG M10	14	18	20,0	18,5
		16	20	22,0	20,5
M20	VMU-IG M12		22	24,0	22,5
		20	25	27,0	25,5
M24	VMU-IG M16		28	30,0	28,5
M27			30	31,8	30,5
		24 / 25	32	34,0	32,5
M30	VMU-IG M20	28	35	37,0	35,5
		32	40	43,5	40,5

Table B5: Retaining washer

Drill bit Ø		Install	ation dir and use	ection			
d ₀ [mm]	[-]	•	→	1			
10							
12	Nia wata:		-1	المصا			
14	ino retai	No retaining washer required					
16							
18	VM-IA 18						
20	VM-IA 20						
22	VM-IA 22						
25	VM-IA 25	,	,				
28	VM-IA 28	h _{ef} > 250mm	h _{ef} > 250mm	all			
30	VM-IA 30	230111111	23011111				
32	VM-IA 32						
35	VM-IA 35						
40	VM-IA 40						

Vacuum drill bit

Vacuum drill bit (MKT Hollow drill bit SB, Würth Hammer drill bit with suction or Heller Duster Expert hollow drill bit system) and a vacuum cleaner with minimum negative pressure of 253 hPa and flow rate of minimum 42 l/s

Recommended compressed air tool (min 6 bar)
Drill bit diameter (d₀): all diameters

Injection	System	VME	plus
-----------	---------------	------------	------

Intended use

Cleaning and setting tools

Annex B3

Table B6: Working time and curing time

Caman	ata taman		Moulting time	Minimum	curing time
Concre	ete temp	erature	Working time	dry concrete	wet concrete
+5°C	to	+9°C	80 min	48 h	96 h
+10°C	to	+14°C	60 min	28 h	56 h
+15°C	to	+19°C	40 min	18 h	36 h
+20°C	to	+24°C	30 min	12 h	24 h
+25°C	to	+34°C	12 min	9 h	18 h
+35°C	to	+39°C	8 min	6 h	12 h
	+40°C		8 min	4 h	8 h
Cartric	Cartridge temperature			+5°C to +40°C	

Injection System VME plus

Intended use
Working and curing time

Annex B4

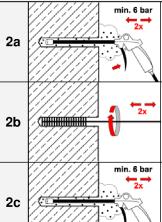
Installation Instructions

Drilling of the hole 1a

Hammer drilling or compressed air drilling

Drill with hammer drill or compressed air drill a hole into the base material with prescribed nominal drill hole diameter (Table B1, B2 or B3) and selected borehole depth. Continue with <u>step 2</u>.

In case of aborted drill hole, the drill hole shall be filled with mortar.


Vacuum drilling: see Annex B3

Drill borehole with prescribed nominal drill hole diameter (Table B1, B2 or B3) and selected borehole depth. This drilling method removes dust and cleans the borehole during drilling. Continue with step 3.

In case of aborted drill hole, the drill hole shall be filled with mortar.

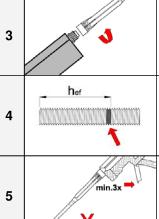
Attention! Standing water in the bore hole must be removed before cleaning!

Cleaning (Not applicable when using vacuum drilling - see step 1b and Annex B3)

Starting from the bottom or back of the bore hole, blow out the hole with compressed air (min. 6 bar) a minimum of **two** times until return air stream is free of noticeable dust.

If the borehole ground is not reached, an extension must be used.

Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush $\geq d_{b,min}$ (Table B4) a minimum of **two** times.


If the borehole ground is not reached with the brush, an appropriate brush extension must be used.

Starting from the bottom or back of the bore hole, blow out the hole with compressed air (min. 6 bar) again a minimum of **two** times until return air stream is free of noticeable dust.

If the borehole ground is not reached, an extension must be used.

After cleaning, the borehole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the borehole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the borehole again.

Preparation Injection

Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool.

For every working interruption longer than the recommended working time (Table B6) as well as for new cartridges, a new static-mixer shall be used.

Prior to inserting the rod into the filled borehole, the position of the embedment depth shall be marked on the threaded rod or rebar.

Prior to dispensing into the drill hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey or red colour.

Injection System VME plus

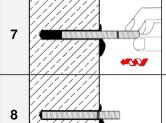
Intended Use

Installation instructions

Annex B5

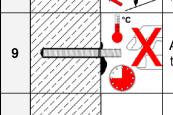
Installation instructions (continue)

Injection 6a B5 for the following applications: 6b Inserting the anchor


Starting from the bottom or back of the cleaned drill hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid air pockets. If the bore hole ground is not reached, an appropriate extension nozzle shall be used.

Observe temperature dependent working times given in Table B6.

Retaining washer and mixer nozzle extensions shall be used according to Table


• Horizontal installation (horizontal direction) and ground installation (vertical downwards direction): Drill bit- \emptyset d₀ \ge 18 mm and anchorage depth h_{ef} > 250mm

Overhead installation: Drill bit-Ø d₀ ≥ 18 mm

Push the threaded rod or reinforcing bar into the hole while turning slightly to ensure proper distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.

Make sure that excess mortar is visible at the top of the hole and in case of through-setting installation also in the fixture. If these requirements are not maintained, repeat application before end of working time! For overhead installation, the anchor should be fixed (e.g. by wedges).

Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B6).

10

Remove excess mortar.

The fixture can be mounted after curing time. Apply installation torque T_{inst} according to Table B1 or B2.

In case of pre-setting installation the annular gap between anchor rod and fixture can optionally be filled with mortar. Therefore, replace regular washer by washer with bore and plug on reducing adapter on static mixer. Annular gap is completely filled, when excess mortar seeps out.

Injection System VME plus

Intended Use

12

Installation instructions (continuation)

Annex B6

Table C1: Characteristic steel resistance for threaded rods under tension load

Thread	led rod			М8	M10	M12	M16	M20	M24	M27	M30
Steel fa	ailure				ı						
Cross s	sectional area	As	[mm²]	36,6	58,0	84,3	157	245	353	459	561
Charac	teristic resistance under tensi										
pə	Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Steel, zinc plated	Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
zir	Property class 8.8	$N_{Rk,s}$	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
S	A2, A4 and HCR Property class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Stainless steel	A2, A4 and HCR Property class 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	-	-
Ś	A4 and HCR Property class 80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	-	-
Partial	factors 2)										
	Property class 4.6	γ̃Ms,N	[-]				2	,0			
, ted	Property class 4.8	γMs,N	[-]				1	,5			
Steel, zinc plated	Property class 5.6	γ _{Ms,N}	[-]				2	,0			
S	Property class 5.8	γMs,N	[-]				1	,5			
	Property class 8.8	γMs,N	[-]				1	,5			
SS	A2, A4 and HCR Property class 50	γ̃Ms,N	[-]								
Stainless steel	A2, A4 and HCR Property class 70	γ _{Ms,N}	[-]			1	,87			-	-
S	A4 and HCR Property class 80	$\gamma_{\text{Ms},N}$	[-]			1	,6			-	-

The characteristic resistances apply for all anchor rods with the cross sectional area A_s specified here: VMU-A, V-A, VM-A For commercial standard threaded rods with a smaller cross sectional area (e.g. hot-dip galvanized threaded rods M8, M10 according to EN ISO 10684:2004 + AC:2009), the values in brackets are valid.

Injection System VME plus

Performance

Characteristic steel resistance for threaded rods under tension load

Annex C1

²⁾ in absence of national regulation

English translation prepared by DIBt

Table C2: Characteristic steel resistance for threaded rods under shear load

Table C2: Characteristic steel resistance for threaded rods under shear load											
Threa	ded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel	failure				ı	T		T	ı	1	ı
Cross	sectional area	As	[mm²]	36,6	58,0	84,3	157	245	353	459	561
Chara	cteristic resistance under shear load 1)										
Steel	failure <u>without</u> lever arm					ı		1		1	
fed	Property class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
Steel, zinc plated	Property class 5.6 and 5.8	$V^0_{Rk,s}$	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
zir	Property class 8.8	$V^0_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
SS	A2, A4 and HCR, property class 50	$V^0_{ Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Stainless steel	A2, A4 and HCR, property class 70	$V^0_{Rk,s}$	[kN]	13	20	30	55	86	124	-	-
<u>1</u> 22	A4 and HCR, property class 80	$V^0_{ Rk,s}$	[kN]	15	23	34	63	98	141	-	-
Steel	failure <u>with</u> lever arm							•		•	
pe	Property class 4.6 and 4.8	$M^0_{Rk,s}$	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
Steel, zinc plated	Property class 5.6 and 5.8	$M^0_{Rk,s}$	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
zin	Property class 8.8	$M^0_{Rk,s}$	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
SS	A2, A4 and HCR, property class 50	${\rm M^0}_{\rm Rk,s}$	[Nm]	19	37	66	167	325	561	832	1125
Stainless steel	A2, A4 and HCR, property class 70	$M^0_{\ Rk,s}$	[Nm]	26	52	92	232	454	784	-	-
S	A4 and HCR, property class 80	$M^0_{Rk,s}$	[Nm]	30	59	105	266	519	896	-	-
Partia	l factor 2)										
	Property class 4.6	$\gamma_{\text{Ms,V}}$	[-]				1,6	§7			
eel, plated	Property class 4.8	$\gamma_{\text{Ms,V}}$	[-]				1,2	25			
Steel or pla	Property class 5.6	$\gamma_{\text{Ms},\text{V}}$	[-]				1,€	67			
Ste zinc I	Property class 5.8	γ _{Ms,V}	[-]				1,2	25			
	Property class 8.8	γ _{Ms,V}	[-]				1,2	25			
SS	A2, A4 and HCR, property class 50	γ̃Ms,V	[-]				2,3	38			
Stainless steel	A2, A4 and HCR, property class 70	γ _{Ms,V}	[-]			1,5	56			-	-
S	A4 and HCR, property class 80	γMs,V	[-]			1,3	33			-	-

 $^{^{1)}}$ The characteristic resistances apply for all anchor rods with the cross sectional area A_s specified here: VMU-A, V-A, VM-A For commercial standard threaded rods with a smaller cross sectional area (e.g. hot-dip galvanized threaded rods M8, M10 according to EN ISO 10684:2004 + AC:2009), the values in brackets are valid.

²⁾ in absence of national regulation

Injection System VME plus	
Performance Characteristic steel resistance for threaded rods under shear load	Annex C2

Table C3: Characteristic values for concrete cone and splitting failure

Threaded rods / Internall	y threaded anchor ro	ds / Re	bar	all sizes
Concrete cone failure				
Factor k ₁	uncracked concrete	$k_{\text{ucr},N}$	[-]	11,0
Factor K ₁	cracked concrete		[-]	7,7
Edge distance		C _{cr,N}	[mm]	1,5 • h _{ef}
Spacing		S _{cr,N}	[mm]	2 • c _{cr,N}
Splitting failure				
	h/h _{ef} ≥ 2,0			1,0 • h _{ef}
Edge distance	$2.0 > h/h_{ef} > 1.3$	$\mathbf{C}_{cr,sp}$	[mm]	2 • h _{ef} (2,5 - h / h _{ef})
	h/h _{ef} ≤ 1,3			2,4 • h _{ef}
Spacing		S _{cr,sp}	[mm]	2 ⋅ c _{cr,sp}

Injection System VME plus

Performance

Characteristic values for concrete cone and splitting failure

Annex C3

English translation prepared by DIBt

Table C4: Characteristic values of **tension load** for **threaded rods** under **static** and **quasi-static action**

under static and quasi-static action												
Threaded rod				М8	M10	M12	M16	M20	M24	M27	M30	
Steel failure												
Characteristic resistance)	$N_{Rk,s}$	[kN]			A _s • 1	_{uk} (or s		e C1)			
Partial factor		γ _{Ms,N}	[-]	see Table C1								
Combined pull-out and												
Characteristic bond res	sistance in <u>uncra</u>	<u>ked</u> co	ncrete C2	0/25								
Temperature range I: 40°C / 24°C	Hammer- or compressed air	$ au_{Rk,ucr}$	[N/mm²]	20	20	19	19	18	17	16	16	
Temperature range II: 72°C / 50°C	drilling	$ au_{Rk,ucr}$	[N/mm²]	15	15	15	14	13	13	12	12	
Temperature range I: 40°C / 24°C	Vacuum drilling	$ au_{Rk,ucr}$	[N/mm²]	17 (16) ¹⁾	16	16	16 (15) ¹⁾	15	14	14	13	
Temperature range II: 72°C / 50°C	Vacuum drilling	$ au_{Rk,ucr}$	[N/mm²]	14	14	14	13	13	12	12	11	
Characteristic bond resistance in <u>cracked</u> concrete C20/25												
Temperature range I: 40°C / 24°C	all drilling	$ au_{Rk,cr}$	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5	
Temperature range II: 72°C / 50°C	methods	$ au_{Rk,cr}$	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0	
Reductionfactor ψ ⁰ _{sus} in	n concrete C20/25											
Temperature range I: 40°C / 24°C	all drilling	$\psi^0_{ ext{sus}}$	[-]	0,75								
Temperature range II: 72°C / 50°C	methods	$\psi^0_{ { m sus}}$	[-]		0,68							
	C25/30		[-]				1,	02				
	C30/37		[-]				1,	04				
Increasing factors for	C35/45		[-]				1,	07				
concrete	C40/50	Ψc	[-]				1,	80				
	C45/55		[-]				1,	09				
	C50/60		[-]				1,	10				
Concrete cone failure				1								
Relevant parameter							see Ta	ıble C3				
Splitting failure												
Relevant parameter				see Table C3								
Installation factor												
Dry or wet concrete		γ̃inst	[-]				1	,0				
Waterfilled bore hole		γinst	[-]				1	,2				

¹⁾ Value in brackets: characteristic bond resistance for waterfilled bore holes

Performance Characteristic values of tension loads for threaded rods Annex C4

Table C5: Characteristic values of **shear loads** for **threaded rods** under **static** and **quasi-static action**

Threaded rod			М8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm										
Characteristic shear resistance Steel, property class 4.6, 4.8, 5.6 and 5.8	$V^0_{ Rk,s}$	[kN]	0,6 · A _s · f _{uk} or see Table C2							
Characteristic shear resistance Steel, property class 8.8 Stainless steel A2, A4 and HCR (all property classes)	$V^0_{ {\sf Rk}, {\sf s}}$	[kN]	0,5 ⋅ A _s ⋅ f _{uk} or see Table C2							
Ductility factor	k_7	[-]				1	,0			
Partial factor	$\gamma_{\text{Ms,V}}$	[-]	see Table C2							
Steel failure with lever arm										
Characteristic bending resistance	${\sf M}^0_{{\sf Rk},{\sf s}}$	[Nm]	1,2 • W _{el} • f _{uk} or see Table C2							
Elastic section modulus	W_{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γ̃Ms,V	[-]				see Ta	able C2			
Concrete pry-out failure										
Pry-out factor	k_8	[-]				2	,0			
Concrete edge failure										
Effective length of anchor	l _f	[mm]	min (h _{ef} ;12 d _{nom}) min (h _{ef} ;300							
Outside diameter of anchor	d_{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γ_{inst}	[-]	1,0							

Injection System VME plus		
Performance Characteristic values of shear loads for threaded rods	A	Annex C5

Table C6: Characteristic values of **tension load** for **threaded rods** under **seismic action** (performance category **C1 + C2**)

Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Tension loads											
Steel failure											
Characteristic resistance) C1	N _{Rk,s,eq,C1}	[kN]				1,0 •	$N_{Rk,s}$			
Characteristic resistance steel, zinc plated, proper stainless steel A4 and H property class ≥ 70	ty class 8.8	$N_{Rk,s,eq,C2}$	[kN]	Ni	PA	1,0 • N _{Rk,s}			NPA		
Partial factor		γ _{Ms,N}	[-]	see Table C1							
Combined pull-out and	concrete failu	ire									
Characteristic bond res	sistance in cor	ncrete C20/2	5								
Temperature range I:		$ au_{Rk,eq,C1}$	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5
40°C / 24°C	all drilling	$ au_{Rk,eq,C2}$	[N/mm ²]	N	PA	5,8	4,8	5,0	5,1	NF	PA
Temperature range II:	methods	$ au_{Rk,eq,C1}$	[N/mm ²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0
72°C / 50°C		$ au_{Rk,eq,C2}$	[N/mm ²]	NI	NPA		5,0 4,1 4,3 4,4		4,4	NF	PA
Installation factor											
Dry or wet concrete		γinst	[-]	1,0							
Waterfilled bore hole		γ _{inst}	[-]	1,2							

Table C7: Characteristic values of shear loads for threaded rods under seismic action (performance category C1 + C2)

Shear loads							
Steel failure without lever arm							
Characteristic resistance C1	$V_{Rk,s,eq,C1}$	[kN]		0,7 • V ⁰ _{Rk,s}			
Characteristic resistance C2 steel, zinc plated, property class 8.8 stainless steel A4 and HCR, property class ≥ 70	$V_{Rk,s,eq,C2}$	[kN]	No Performance Assessed (NPA)	0,7 • V ⁰ _{Rk,s}	No Performance Assessed (NPA)		
Steel failure with lever arm							
Characteristic bending	$M^0_{Rk,s,eq,C1}$	[Nm]	No	o Performance Assessed (N	PA)		
resistance	$M^0_{Rk,s,eq,C2}$	[Nm]	No Performance Assessed (NPA)				
Installation factor	γ_{inst}	[-]	1,0				
Factor for annular gap	$lpha_{ ext{gap}}$	[-]		1,0 (0,5) ¹⁾			

¹⁾ Value in bracket is valid for fastenings with annular gap between threaded rod and fixture

Injection System VME plus	
Performance Characteristic values for threaded rods under seismic action	Annex C6

Table C8: Characteristic values of tension loads for internally threaded anchor rod under static and quasi-static action

under static and quasi-static action											
Internally threaded ar	nchor rod			VMU-IG M 6	VMU-IG M 8	VMU-IG M 10	VMU-IG M 12	VMU-IG M 16	VMU-IG M 20		
Steel failure 1)							-				
Characteristic resistance	ce, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123		
steel, zinc plated, prop	erty class 8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196		
Partial factor 5.8 and 8		γMs,N	[-]			1	,5				
Characteristic resistand Stainless steel A4 / HC property class 70		N _{Rk,s}	[kN]	14	26	41	59	110	124 ²⁾		
Partial factor		γ _{Ms,N}	[-]			1,87			2,86		
Combined pull-out an											
Characteristic bond r	esistance in <u>unc</u>	racked c	oncrete	C20/25							
Temperature range I: 40°C / 24°C	Hammer- or compressed air	$ au_{Rk,ucr}$	[N/mm²]	20	19	19	18	17	16		
Temperature range II: 72°C / 50°C	drilling	$ au_{Rk,ucr}$	[N/mm²]	15	15	14	13	13	12		
Temperature range I: 40°C / 24°C	Vacuum drilling	$ au_{Rk,ucr}$	[N/mm²]	16	16	16 (15) ³⁾	15	14	13		
Temperature range II: 72°C / 50°C	vacuum driiing	$ au_{Rk,ucr}$	[N/mm²]	14	14	13	13	12	11		
Characteristic bond r	esistance in <u>cra</u>	cked con	crete C2	20/25				•			
Temperature range I: 40°C / 24°C			[N/mm²]	7,0	8,5	8,5	8,5	8,5	8,5		
Temperature range II: 72°C / 50°C	methods	$ au_{Rk,cr}$	[N/mm²]	6,0	7,0	7,0	7,0	7,0	7,0		
Reductionfactor ψ ⁰ _{sus}											
Temperature range I: 40°C / 24°C	all drilling	ψ ⁰ sus	[-]			0,	75				
Temperature range II: 72°C / 50°C	methods	ψ^0_{sus}	[-]			0,	68				
			C25/30			1,	02				
			C30/37				04				
Increasing factor for co	ncrete	Ψς	C35/45				07				
Ü			C40/50				08				
			C45/55				09				
Concrete cone failure			C50/60			Ι,	10				
Relevant parameter						see Ta	ble C3				
Splitting failure	-	-				300 18					
Relevant parameter						see Ta	ıble C3				
Installation factor						200 10					
Dry or wet concrete		γ _{inst}	[-]			1	,0				
Waterfilled bore hole		γinst	[-]				,2				
Ď =				la a a dala a da a da		-4		- f th - !t	-11		

Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element.

Injection System VME plus

Performance

Characteristic values of tension loads for internally threaded anchor rod

Annex C7

²⁾ For VMU-IG M20: property class 50
3) Value in bracket is valid for waterfilled bore hole

Table C9: Characteristic values of **shear loads** for **internally threaded anchor rod** under **static** and **quasi-static action**

Interna	illy threaded anchor rod				VMU-IG M 6	VMU-IG M 8	VMU-IG M 10	VMU-IG M 12	VMU-IG M 16	VMU-IG M 20
Steel fa	ailure without lever arm 1)				IVI O	IVI O	IVI TO	IVI 12	IVI TO	IVI 20
	Characteristic resistance.	5.8	V ⁰ _{Rk,s}	[kN]	5	9	15	21	38	61
Steel, zinc plated	property class	8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98
zir	Partial factor 5.8 and 8.8		γ̃Ms,V	[-]			1,	25		
Stainless steel	Characteristic resistance, A4 / HCR, property class 70		$V^0_{ m Rk,s}$	[kN]	7	13	20	30	55	62 ²⁾
Stai	Partial factor		γ̃Ms,V	[-]			1,56			2,38
Ductility	y factor		k ₇	[-]			1	,0		
Steel fa	ailure <u>with</u> lever arm 1)									
l, ated	Characteristic bending resistance,	5.8	$M^0_{Rk,s}$	[Nm]	8	19	37	66	167	325
Steel, zinc plated	property class 8.8		$M^0_{Rk,s}$	[Nm]	12	30	60	105	267	519
zir	Partial factor 5.8 and 8.8		γ _{Ms,V}	[-]	1,25					
Stainless steel	Characteristic bending resista A4 / HCR, property class 70	nce	${\sf M}^0_{\sf Rk,s}$	[Nm]	11	26	53	92	234	643 ²⁾
Stai	Partial factor		γ̃Ms,V	[-]			1,56			2,38
Concre	ete pry-out failure									
Pry-out	factor		k ₈	[-]			2	,0		
Concre	ete edge failure									
Effectiv	Effective length of anchor			[mm]		miı	n (h _{ef} ;12 d _r	nom)		min (h _{ef} ; 300mm)
Outside	e diameter of anchor		d _{nom}	[mm]	10	12	16	20	24	30
Installation factor γ_{inst}					1,0					

¹⁾ Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod (exception: VMU-IG M20). The characteristic shear resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element.

Injection System VME plus	
Performance Characteristic values of shear loads for internally threaded anchor rod	Annex C8

²⁾ For VMU-IG M20: Internally threaded rod: property class 50; Fastening screws or threaded rods (incl. nut and washer): property class 70

English translation prepared by DIBt

Table C10:	Characteristic values of tension loads for rebar under
	static and quasi-static action

Static	and quasi-sta	ilic act	ion										
Reinforcing bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure													
Characteristic tension r	esistance	$N_{Rk,s}$	[kN]					A _s •	f _{uk} 1)				
Cross sectional area		As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor		γ _{Ms,N}	[-]				ı	1,4	4 ²⁾			ı	
Combined pull-out an	d concrete failure)											
Characteristic bond re	esistance in <u>uncr</u>	acked c	oncrete C	20/25									
Temperature range I: 40°C / 24°C	Hammer- or	$ au_{Rk,ucr}$	[N/mm²]	16	16	16	16	16	16	15	15	15	15
Temperature range II: 72°C / 50°C	compressed air drilling	$ au_{Rk,ucr}$	[N/mm²]	12	12	12	12	12	12	12	12	11	11
Temperature range I: 40°C / 24°C	Vocume dellier	$ au_{Rk,ucr}$	[N/mm²]	14 (13) ³⁾	14 (13) ³⁾	13	13	13	13	13	13	13	13
Temperature range II: 72°C / 50°C	Vacuum drilling	τ _{Rk,ucr}	[N/mm²]	12	12	12 (11) ³⁾	11	11	11	11	11	11	11
Characteristic bond re	crete C20	/25					•						
Temperature range I: 40°C / 24°C	all drilling	$ au_{Rk,cr}$	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5
Temperature range II: 72°C / 50°C	methods	$ au_{Rk,cr}$	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0
Reductionfactor ψ ⁰ sus		•				•	•	•		•	•		
Temperature range I: 40°C / 24°C	all drilling	ψ^0_{sus}	[-]					0,	75				
Temperature range II: 72°C / 50°C	methods	ψ^0_{sus}	[-]					0,	68				
			C25/30						02				
			C30/37						04				
Increasing factor for co	ncrete	Ψο	C35/45						07				
J		10	C40/50						08				
			C45/55						09				
			C50/60					1,	10				
Concrete cone failure Relevant parameter								soo Ta	able C	2			
Splitting failure	<u> </u>						•	300 10	ADIE O	,			
Relevant parameter								see Ta	able C	3			
Installation factor								200 10	2010 00				
Dry or wet concrete		Yinst	[-]					1	,0				
Waterfilled bore hole		Yinst	[-]					1	,2				
1) -													

Injection System VME plus

Performance

Characteristic values of tension loads for rebar

Annex C9

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars
2) in absence of national regulation
3) Value in brackets: characteristic bond resistance for waterfilled bore holes

Table C11: Characteristic values of shear loads for rebar under static and quasi-static action

	Statio and quasi statio action											
Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm												
Characteristic shear resistance	$V^0_{ Rk,s}$	[kN]					0,50 • /	A _s • f _{uk} 1)				
Cross sectional area	A_s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms,V}	[-]					1,	5 ²⁾				
Ductility factor	k ₇	[-]					1	,0				
Steel failure with lever arm												
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	1,2 • W _{el} • f _{uk} ¹⁾									
Elastic section modulus	W_{el}	[mm ³]	50	98	170	269	402	785	896	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]		•		•	1,	5 ²⁾	•		•	
Concrete pry-out failure												
Pry-out factor	k ₈	[-]					2	,0				
Concrete edge failure	-											
Effective length of rebar	l _f	[mm]			min	(h _{ef} ;12 (d _{nom})			min (h _{ef} ; 300)mm)
Outside diameter of rebar	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	γinst	[-]					1	,0				

 $^{^{1)}}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Injection System VME plus Annex C10 **Performance** Characteristic values of shear loads for rebar

Table C12: Characteristic values of tension load for rebar under seismic action (performance category C1)

Reinforcing bar				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure					•	•			<u>'</u>		•	•	
Characteristic resistanc	е	$N_{Rk,s,eq,C1}$	[kN]					A _s ·	f _{uk} ¹⁾				
Cross sectional area		A_s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor		γ̃Ms,N	[-]					1,4	l ²⁾				
Combined pull-out and	d concrete failure	е											
Characteristic bond re	esistance in cond	rete C20	/25										
Temperature range I: 40°C / 24°C	all drilling	$ au_{Rk,eq,C1}$	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5
Temperature range II: 72°C / 50°C	methods	$ au_{\text{Rk,eq,C1}}$	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0
Installation factor													
Dry or wet concrete		γ̃inst	[-]					1,	0				
Waterfilled bore hole		γ̃inst	[-]					1,	2				

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars 2) in absence of national regulation

Table C13: Characteristic values of shear loads for rebar under seismic action (performance category C1)

Reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever a	rm											
Characteristic resistance	$V_{Rk,s,eq,C1}$	[kN]					0,35 • /	۹s • f _{uk} 1)				
Cross sectional area	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ̃Ms,V	[-]	1,5 2)									
Ductility factor	k ₇	[-]	1,0									
Steel failure with lever arm												
Characteristic bending resistance	M ⁰ _{Rk,s,eq,C1}	[Nm]	No Performance Assessed (NPA)									
Installation factor	γ̃inst	[-]					1	,0				

 $^{^{1)}}$ f_{uk} shall be taken from the specifications of reinforcing bars

Injection System VME plus	
Performance Characteristic values for rebar under seismic action	Annex C11

²⁾ in absence of national regulation

Table C14: Displacements under tension load 1) (threaded ro

Threaded rod			М8	M10	M12	M16	M20	M24	M27	M30
Uncracked concrete u	nder static a	nd quasi-stati	c action							
Temperature range I:	$\delta_{\text{N0}^{\text{-}}}$ factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
40°C / 24°C	$\delta_{N\infty}\text{-}$ factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
Temperature range II:	$\delta_{\text{N0}^{\text{-}}}$ factor	[mm/(N/mm²)]	0,038	0,039	0,040	0,044	0,047	0,051	0,052	0,055
72°C / 50°C	$\delta_{\text{N}\text{\tiny{so}}}\text{\tiny{-}}$ factor	[mm/(N/mm²)]	0,047	0,049	0,051	0,055	0,059	0,064	0,067	0,070
Cracked concrete under static and quasi-static action										
Temperature range I:	$\delta_{\text{N0}^{\text{-}}}$ factor	[mm/(N/mm²)]	0,069	0,071	0,072	0,074	0,076	0,079	0,081	0,082
40°C / 24°C	$\delta_{N^\infty}\text{-}$ factor	[mm/(N/mm²)]	0,193	0,115	0,122	0,128	0,135	0,142	0,155	0,171
Temperature range II:	δ_{N0} - factor	[mm/(N/mm²)]	0,092	0,095	0,096	0,099	0,102	0,106	0,109	0,110
72°C / 50°C	$\delta_{N\infty}\text{-}$ factor	[mm/(N/mm²)]	0,259	0,154	0,163	0,172	0,181	0,189	0,207	0,229
Uncracked and cracke	d concrete ι	ınder seismic	action (0	C2)						
All temperature	$\delta_{\text{N,eq (DLS)}}$	[mm]	NF	٥٨	0,21	0,24	0,27	0,36	NII.	PA
ranges	$\delta_{\text{N,eq (ULS)}}$	[mm]	INF	- A	0,54	0,51	0,54	0,63	INI	- A

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau; \qquad \qquad \tau\text{: bond stress under tension load}$

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor} \cdot \tau;$

Table C15: Displacements under shear load 1) (threaded rod)

Threaded rod			М 8	M 10	M 12	M 16	M 20	M24	M 27	М 30	
Uncracked and cracked concrete under static and quasi-static action											
All temperature	δ _{vo} - factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
ranges	δ _{V∞} - factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	
Uncracked and cracked concrete under seismic action (C2)											
All temperature	$\delta_{\text{V,eq(DLS)}}$	[mm]	NI	٥,٨	3,1	3,4	3,5	4,2	NF	٥,٨	
ranges	$\delta_{\text{V,eq(ULS)}}$	[mm]] INI	- A	6,0	7,6	7,3	10,9	INF		

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ - factor V; V: acting shear load

 $\delta_{V_{\infty}} = \delta_{V_{\infty}} \text{- factor} \cdot V;$

Injection System VME plus

Performance

Displacements (threaded rod)

Annex C12

Table C16: Displacements under tension load¹⁾ (internally threaded anchor rod)

Internally threaded ancho	VMU-IG M 6	VMU-IG M 8	VMU-IG M 10	VMU-IG M 12	VMU-IG M 16	VMU-IG M 20		
Uncracked concrete und	er static and	quasi-static a	ction					
Temperature range I:	$\delta_{\text{No}^{\text{-}}}$ factor	[mm/(N/mm²)]	0,029	0,030	0,033	0,035	0,038	0,041
40°C / 24°C	$\delta_{\text{N}_{\infty}}\text{-}$ factor	[mm/(N/mm²)]	0,029	0,030	0,033	0,035	0,038	0,041
Temperature range II:	$\delta_{\text{N0}^{\text{-}}}$ factor	[mm/(N/mm²)]	0,039	0,040	0,044	0,047	0,051	0,055
72°C / 50°C	$\delta_{N\infty}$ - factor	[mm/(N/mm²)]	0,049	0,051	0,055	0,059	0,064	0,070
Cracked concrete under	static and qu	uasi-static acti	on					
Temperature range I:	$\delta_{\text{N0}^{\text{-}}}$ factor	[mm/(N/mm²)]	0,071	0,072	0,074	0,076	0,079	0,082
40°C / 24°C	$\delta_{\text{N}_{\infty}}\text{-}$ factor	[mm/(N/mm²)]	0,115	0,122	0,128	0,135	0,142	0,171
Temperature range II: 72°C / 50°C	δ_{N0} - factor	[mm/(N/mm²)]	0,095	0,096	0,099	0,102	0,106	0,110
	$\delta_{N \infty^-}$ factor	[mm/(N/mm²)]	0,154	0,163	0,172	0,181	0,189	0,229

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ - factor $\cdot \tau$;

 $\tau\textsc{:}\ \textsc{bond}\ \textsc{stress}\ \textsc{under}\ \textsc{tension}\ \textsc{load}$

 $\delta_{N\infty} = \delta_{N\infty}\text{- factor} \cdot \tau;$

Table C17: Displacements under shear load¹⁾ (internally threaded anchor rod)

Internally threaded anch	VMU-IG M 6	VMU-IG M 8	VMU-IG M 10	VMU-IG M 12	VMU-IG M 16	VMU-IG M 20			
Uncracked and cracked concrete under static and quasi-static action									
All temperature ranges	δ _{vo} - factor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04	
All temperature ranges	δ _{V∞} - factor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06	

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{- factor} \quad V; \qquad \qquad V\text{: acting shear load}$

 $\delta_{V_{\infty}} = \delta_{V_{\infty}} \text{- factor} \cdot V;$

Injection System VME plus

Performance

Displacements (internally threaded anchor rod)

Annex C13

Table C18:	Displacements	under tension	load ¹⁾ ((rebar)	
------------	----------------------	---------------	----------------------	---------	--

Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Uncracked concrete under static and quasi-static action												
Temperature	δ_{N0} - factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,031	0,033	0,035	0,038	0,038	0,040	0,043
range I: 40°C / 24°C	δ _{N∞} - factor	[mm/(N/mm²)]	0,015	0,015	0,016	0,017	0,017	0,019	0,020	0,020	0,021	0,023
Temperature range II: 72°C / 50°C	δ_{N0} - factor	[mm/(N/mm²)]	0,038	0,039	0,040	0,042	0,044	0,047	0,051	0,051	0,054	0,058
	δ _{N∞} - factor	[mm/(N/mm²)]	0,047	0,049	0,051	0,053	0,055	0,059	0,065	0,065	0,068	0,072
Cracked concrete	under statio	and quasi-stat	tic actio	on								
Temperature	δ _{N0} - factor	[mm/(N/mm²)]	0,069	0,071	0,072	0,073	0,074	0,076	0,079	0,079	0,081	0,084
range I: 40°C / 24°C	δ _{N∞} - factor	[mm/(N/mm²)]	0,115	0,122	0,128	0,135	0,142	0,155	0,171	0,171	0,181	0,194
Temperature range II: 72°C / 50°C	δ _{N0} - factor	[mm/(N/mm²)]	0,092	0,095	0,096	0,098	0,099	0,102	0,106	0,106	0,109	0,113
	$\delta_{N\infty}$ - factor	[mm/(N/mm²)]	0,154	0,163	0,172	0,181	0,189	0,207	0,229	0,229	0,242	0,260

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-} \text{ factor } \cdot \tau;$

τ: bond stress under tension load

 $\delta_{N\infty} = \delta_{N\infty}\text{- factor} \cdot \tau;$

Table C19: Displacements under shear load (rebar)

Reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Uncracked and cracked concrete under static and quasi-static action												
All temperature ranges	δ _{vo} - factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
	δ _{V∞} - factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

$$\begin{split} & \delta_{V0} = \delta_{V0}\text{- factor } \cdot V; \\ & \delta_{V\infty} = \delta_{V\infty}\text{- factor } \cdot V; \end{split}$$

V: acting shear load

Injection System VME plus	
Performance Displacements (rehar)	Annex C14