

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-19/0160 vom 29. April 2019

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von Deutsches Institut für Bautechnik

Hilti HIT-HY 270 mit HAS-U

Metall-Injektionsdübel zur Verankerung im Mauerwerk

Hilti Aktiengesellschaft 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

51 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330076-00-0604

Europäische Technische Bewertung ETA-19/0160

Seite 2 von 51 | 29. April 2019

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z26018.19 8.06.04-78/19

Europäische Technische Bewertung ETA-19/0160

Seite 3 von 51 | 29. April 2019

Besonderer Teil

1 Technische Beschreibung des Produkts

Das Injektionssystem Hilti HIT-HY 270 mit HAS-U für Mauerwerk ist ein Verbunddübel (Injektionstyp), der aus einem Foliengebinde mit Injektionsmörtel Hilti HIT-HY 270, einer Siebhülse und einer Gewindestange mit Sechskantmutter und Unterlegscheibe in den Größen M6 bis M16 besteht. Die Stahlteile bestehen aus verzinktem Stahl, nichtrostendem Stahl oder hochkorrosionsbeständigem Stahl.

Die Ankerstange wird in ein mit Injektionsmörtel gefülltes Bohrloch gesetzt und durch den Verbund und/oder Formschluss zwischen Stahlteil, Injektionsmörtel und Mauerwerk verankert. Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe zur Nutzungsdauer kann nicht als Garantie des Herstellers ausgelegt werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Werte für Widerstand	Siehe Anhang C1 bis C30
Verschiebungen	Siehe Anhang C4 bis C30

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330076-00-0604 gilt folgende Rechtsgrundlage: [97/177/EG].

Folgendes System ist anzuwenden: 1

Z26018.19 8.06.04-78/19

Europäische Technische Bewertung ETA-19/0160

Seite 4 von 51 | 29. April 2019

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 29. April 2019 vom Deutschen Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter

Beglaubigt

Z26018.19 8.06.04-78/19

Einbauzustand

<u>Bild A1:</u> Lochstein und Vollstein mit HAS-U-... und einer Siebhülse HIT-SC (siehe Tabelle B5)

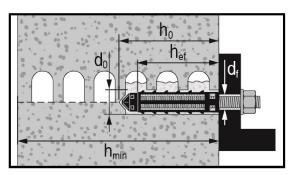
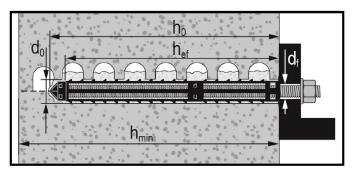
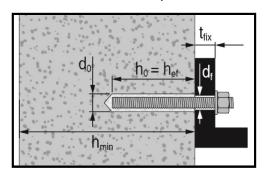
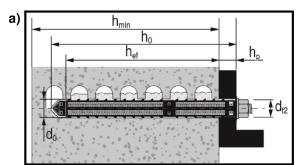
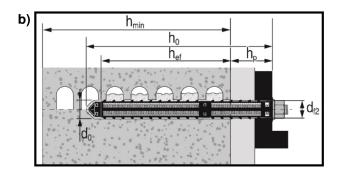




Bild A2: Lochstein und Vollstein mit HAS-U-... und zwei Siebhülsen HIT-SC für große Verankerungstiefe (siehe Tabelle B6)


Bild A3: Vollstein mit HAS-U-... (siehe Tabelle B7)



Hilti HIT-HY 270 mit HAS-U	
Produktbeschreibung Einbauzustand	Anhang A1

Bild A4: Lochstein und Vollstein mit HAS-U-... mit zwei Siebhülsen HIT-SC zur Montage durch das Anbauteil und/oder durch eine nichttragende Schicht (siehe Tabelle B8)

Hilti HIT-HY 270 mit HAS-U

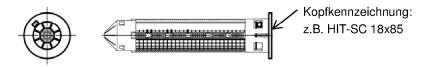
Produktbeschreibung
Einbauzustand

Anhang A2

Produktbeschreibung: Injektionsmörtel und Stahlelemente

Injektionsmörtel Hilti HIT-HY 270: Hybridsystem mit Zuschlag **330 ml und 500 ml**

Produktname: "Hilti HIT-HY 270"


Statikmischer Hilti HIT-RE-M

HAS-U-...

Siebhülse HIT-SC 16 bis 22

Hilti HIT-HY 270 mit HAS-U Produktbeschreibung Injektionsmörtel / Statikmischer / Stahlelemente / Siebhülsen Anhang A3

Tabelle A1: Werkstoffe

Bezeichnung	Werkstoff				
Stahlteile aus verzin	Stahlteile aus verzinktem Stahl				
HAS-U-5.8(F)	Festigkeitsklasse 5.8, $f_{uk}=500$ N/mm², $f_{yk}=400$ N/mm², Bruchdehnung ($I_0=5d$) > 8% duktil Galvanisch verzinkt \geq 5 μ m, (F) Feuerverzinkt \geq 45 μ m				
HAS-U-8.8(F)	Festigkeitsklasse 8.8, $f_{uk}=800\ N/mm^2$, $f_{yk}=640\ N/mm^2$, Bruchdehnung ($I_0=5d$) > 12% duktil Galvanisch verzinkt $\geq 5\ \mu m$, (F) Feuerverzinkt $\geq 45\ \mu m$				
Scheibe	Galvanisch verzinkt ≥ 5 μm Feuerverzinkt ≥ 45 μm				
Mutter	Festigkeit der Sechskantmutter abgestimmt auf Festigkeit der Gewindestange Galvanisch verzinkt \geq 5 μ m, Feuerverzinkt \geq 45 μ m				
Stahlteile aus nichtr	ostendem Stahl				
HAS-U-R	Festigkeitsklasse 70, $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 450 \text{ N/mm}^2$, Bruchdehnung (I_0 =5d) > 8% duktil Nichtrostender Stahl A4 gemäß EN 10088-1: 2014				
Scheibe	Nichtrostender Stahl A4 gemäß EN 10088-1: 2014				
Mutter	Festigkeit der Sechskantmutter abgestimmt auf Festigkeit der Gewindestange Nichtrostender Stahl A4 gemäß EN 10088-1: 2014				
Stahlteile aus hochk	corrosionsbeständigem Stahl				
HAS-U-HCR	$ f_{uk} = 800 \text{ N/mm}^2, f_{yk} = 640 \text{ N/mm}^2, \\ Bruchdehnung (I_0=5d) > 8\% \text{ duktil} \\ Hochkorrosionsbeständiger Stahl gemäß EN 10088-1: 2014} $				
Scheibe	Hochkorrosionsbeständiger Stahl gemäß EN 10088-1: 2014				
Mutter	Festigkeit der Sechskantmutter abgestimmt auf Festigkeit der Gewindestange Hochkorrosionsbeständiger Stahl gemäß EN 10088-1: 2014				
Plastikteile					
Siebhülse Rahmen: FPP 20T Netz: PA6.6 N500/200					

Hilti HIT-HY 270 mit HAS-U	
Produktbeschreibung Werkstoffe	Anhang A4

Spezifizierung des Verwendungszwecks

Verankerungsgrund:

- Vollsteinmauerwerk (Nutzungskategorie b), entsprechend Anlage B3.
 Bemerkung: Die charakteristischen Widerstände gelten ebenfalls für größere Steinabmessungen und höhere Steindruckfestigkeiten.
- Lochsteinmauerwerk (Nutzungskategorie c), entsprechend Anlage B3 und B5.
- Festigkeitsklasse des Mauermörtels: M2,5 Minimum entsprechend EN 998-2: 2010.
- Für Mauerwerk aus anderen Vollsteinen oder Lochsteinen darf der charakteristische Widerstand mittels Baustellenversuchen ermittelt werden. Dies geschieht gemäß EOTA Technical Report TR 053, April 2016, unter Berücksichtigung des im Anhang C1, Tabelle C1 genannten β-Faktors.

Tabelle B1: Übersicht der Nutzungskategorien

Befestigunger	unter:	HIT-HY 270 mit HAS-U		
		in Vollstein	in Lochstein	
Bohren		Hammerbohren, Drehbohren	Drehbohren	
Statische und d Belastung	quasi statische	Anhang : C1 (Stahl), C3 bis C20	Anhang : C1 (Stahl), C21 bis C30	
Nutzungskateg trockenes oder Mauerwerk		Kategorie d/d – Montage und Verwendung in Bauteilen unter den Bedingungen trockener Innenräume. Kategorie w/d – Montage unter trockenen oder feuchten Bedingungen und Verwendung unter den Bedingungen trockener Innenräume (ausgenommen Kalksandsteine). Kategorie w/w - Montage und Verwendung in Bauteilen unter trockenen oder feuchten Bedingungen (ausgenommen Kalksandsteine).		
Montagerichtung Mauerwerk		Horizontal		
Montagerichtung Deckenziegel		Überkopf		
Nutzungskategorie		b (Mauerwerk aus Vollstein)	c (Mauerwerk aus Lochstein)	
Temperatur im Verankerungsgrund beim Einbau		+5° C bis +40° C (Tabelle B9) 0° C bis +40° C (Tabel		
Gebrauchs-	Temperatur- bereich Ta:		max. Langzeittemperatur +24 °C und nax. Kurzzeittemperatur +40 °C)	
temperatur	Temperatur- bereich Tb:		max. Langzeittemperatur +50 °C und nax. Kurzzeittemperatur +80 °C)	

Hilti HIT-HY 270 mit HAS-U	
Verwendungszweck	Anhang B1
Spezifikationen	

Anwendungsbedingungen (Umweltbedingungen):

- In Bauteilen unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl).
 Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Meerwasser oder der Bereich der Spritzzone von Meerwasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessung:

- Die Befestigungen müssen unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Mauerwerksbaus erfahrenen Ingenieurs bemessen werden.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z. B. Lage des Dübels zu den Auflagern usw.) anzugeben.
- Die Bemessung der Verankerungen unter statischer und quasi statischer Belastung erfolgt in Übereinstimmung mit: EOTA Technical Report TR 054, April 2016, Bemessungsverfahren A
- Im Falle, dass die Steindruckfestigkeit f_b kleiner ist als die höchste, in den Lasttabellen genannte Druckfestigkeit, kann die Last gemäß folgender Formel berechnet werden:

 $F_{Rk,act.} = F_{Rk,ETA,(fb)} * (f_{b,act.}/f_{b,ETA})^{\alpha}$

F_{Rk,act.} = Tragfähigkeit des Dübels im vorhandenen Mauerwerk.

F_{Rk,ETA,(fb)} = Tragfähigkeit des Dübels im Mauerwerk gemäß Anhang C3 bis C30.

f_{b,act.} = Vorhandene, normalisierte mittlere Druckfestigkeitsklasse gemäß EN 772-1:2011.

f_{b,ETA.} = Normalisierte mittlere Druckfestigkeitsklasse gemäß Anhang C3 bis C30.

α = 0,5 für Mauerwerk aus Ziegel, Beton und Kalksandvollsteinen.

 α = 0,75 für Mauerwerk aus Kalksandlochsteinen.

- Für Lochsteinmauerwerk: Querlasten zum freien Rand müssen über vollvermörtelte Stoßfugen oder direkten Kontakt der Steine übertragen werden.
- Für Lochsteinmauerwerk sind nur Querlasten ohne Hebelarm erlaubt.

Einbau:

• Der Einbau erfolgt durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.

Hilti HIT-HY 270 mit HAS-U	
Verwendungszweck Spezifikationen	Anhang B2

Tabelle B2: Übersicht der Mauersteine und Eigenschaften

Art des Mauersteins	Foto	Stein- abmessungen [mm]	Druck- festigkeit f _{b,ETA} [N/mm²]	Roh- dichte [kg/dm³]	Anhang
Vollziegel EN 771-1		≥ 240x115x52	12/20/40	2,0	C3/C4
Vollziegel EN 771-1		≥ 240x115x72	10/20	2,0	C5/C7
Vollziegel EN 771-1		≥ 240x115x113	12/20	2,0	C8/C10
Kalksandvollstein EN 771-2		≥ 240x115x113	12 / 28	2,0	C11/C12
Kalksandvollstein EN 771-2	THE STATE OF THE S	≥ 248x240x248	12/20/28	2,0	C13/C16
Leichtbetonvollstein EN 771-3		≥ 240x115x113	4 / 6	0,9	C17/C18
Normalbetonvollstein EN 771-3		≥ 240x115x113	6 / 16	2,0	C19/C20
Lochziegel EN 771-1		300x240x238	12 / 20	1,4	C21/C22
Kalksandlochstein EN 771-2	The state of the s	248x240x248	12 / 20	1,4	C23/C24
Leichtbeton Hohlblockstein EN 771-3		495x240X238	2/6	0,7	C25/C27
Normalbeton Lochstein EN 771-3		500x200x200	4 / 10	0,9	C28/C29
Lochziegel EN 771-1 Deckenstein		250x510x180	DIN EN 15037-3 Klasse R2	1,0	C30

Hilti HIT-HY 270 mit HAS-U

Verwendungszweck
Steintypen und Eigenschaften

Anhang B3

Tabelle B3: Übersicht Befestigungselemente (inkl. Größen und Verankerungstiefen) und zugehörende Mauersteine

Art des Mauersteins	Foto	HAS-U	HAS-U + HIT-SC	Anhang
Vollziegel EN 771-1		M8 bis M16 h _{ef} = 50 mm bis 300 mm	M8 bis M16 h _{ef} = 80 mm bis 160 mm	C3/C4
Vollziegel EN 771-1		M8 bis M16 h _{ef} = 50 mm bis 300 mm	M8 bis M16 h _{ef} = 80 mm bis 160 mm	C5/C7
Vollziegel EN 771-1		M8 bis M16 h _{ef} = 50 mm bis 300 mm	M8 bis M16 h _{ef} = 80 mm bis 160 mm	C8/C10
Kalksand-vollstein EN 771-2		M8 bis M16 h _{ef} = 50 mm bis 300 mm	M8 bis M16 h _{ef} = 80 mm bis 160 mm	C11/C12
Kalksand-vollstein EN 771-2		M8 bis M16 h _{ef} = 50 mm bis 300 mm	M8 bis M16 h _{ef} = 80 mm bis 160 mm	C13/C16
Leichtbeton- vollstein EN 771-3		M8 bis M16 h _{ef} = 50 mm bis 300 mm	M8 bis M16 h _{ef} = 80 mm bis 160 mm	C17/C18
Normalbeton- vollstein EN 771-3		M8 bis M16 h _{ef} = 50 mm bis 300 mm	M8 bis M16 h _{ef} = 80 mm bis 160 mm	C19/C20
Lochziegel EN 771-1		-	M8 bis M16 h _{ef} = 80 mm bis 160 mm	C21/C22
Kalksand-lochstein EN 771-2	255	-	M8 bis M16 h _{ef} = 80 mm bis 160 mm	C23/C24
Leichtbeton Hohlblockstein EN 771-3		-	M8 bis M16 h _{ef} = 80 mm bis 160 mm	C25/C27
Normalbeton Lochstein EN 771-3		-	M8 bis M16 h _{ef} = 50 mm bis 160 mm	C28/C29
Lochziegel EN 771-1 Deckenstein		-	M6 h _{ef} = 80 mm	C30

Hilti HIT-HY 270 mit HAS-U	
Verwendungszweck Befestigungselemente und entsprechende Steintypen	Anhang B4

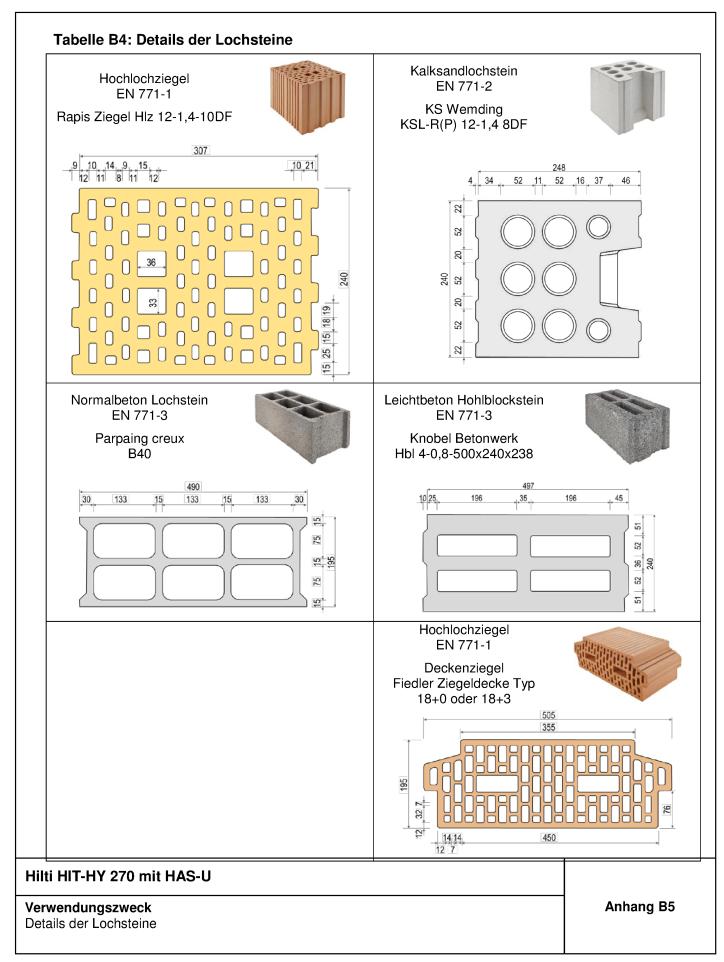


Tabelle B5: Montagekennwerte HAS-U-... mit einer Siebhülse HIT-SC für Lochstein und Vollstein (Bild A1)

HAS-U			М6	IV	18	M	10	M	12	М	16
mit HIT-SC	6		12x85	16x50	16x85	16x50	16x85	18x50	18x85	22x50	22x85
Bohrernenndurchmesser	d_0	[mm]	12	16	16	16	16	18	18	22	22
Bohrlochtiefe	h_0	[mm]	95	60	95	60	95	60	95	60	95
Effektive Verankerungstiefe	h _{ef}	[mm]	80	50	80	50	80	50	80	50	80
Maximaler Durchmesser des Durchgangslochs im Anbauteil	d _f	[mm]	7	9	9	12	12	14	14	18	18
Minimale Wanddicke	h _{min}	[mm]	115	80	115	80	115	80	115	80	115
Bürste HIT-RB	-	[-]	12	16	16	16	16	18	18	22	22
Anzahl Hübe HDM	-	[-]	5	4	6	4	6	4	8	6	10
Anzahl Hübe HDE 500-A	-	[-]	4	3	5	3	5	3	6	5	8
Maximales Anzugsdrehmoment für alle Steine ausser "Parpaing creux"	T_{max}	[Nm]	0	3	3	4	4	6	6	8	8
Maximales Anzugsdrehmoment für "Parpaing creux"	T_{max}	[Nm]	-	2	2	2	2	3	3	6	6

Tabelle B6: Montagekennwerte HAS-U-... mit zwei Siebhülsen HIT-SC für Lochstein und Vollstein für größere Verankerungstiefen (Bild A2)

HAS-U			M	18	M.	10
mit HIT-SC	4	4	16x50+16x85	16x85+16x85	16x50+16x85	16x85+16x85
Bohrernenndurchmesser	d ₀	[mm]	16	16	16	16
Bohrlochtiefe	h_0	[mm]	145	180	145	180
Effektive Verankerungstiefe	h _{ef}	[mm]	130	160	130	160
Maximaler Durchmesser des Durchgangslochs im Anbauteil	d _f	[mm]	9	9	12	12
Minimale Wanddicke	h _{min}	[mm]	195	230	195	230
Bürste HIT-RB	-	[-]	16	16	16	16
Anzahl Hübe HDM	-	[-]	4+6	6+6	4+6	6+6
Anzahl Hübe HDE 500-A	-	[-]	3+5	5+5	3+5	5+5
Maximales Anzugsdrehmoment	T_{max}	[Nm]	3	3	4	4

Tabelle B6: Fortsetzung

HAS-U		—	M		M.	
mit HIT-SC			18x50+18x85	18x85+18x85	22x50+22x85	22x85+22x85
Bohrernenndurchmesser	d_0	[mm]	18	18	22	22
Bohrlochtiefe	h_0	[mm]	145	180	145	180
Effektive Verankerungstiefe	h _{ef}	[mm]	130	160	130	160
Maximaler Durchmesser des Durchgangslochs im Anbauteil	d _f	[mm]	14	14	18	18
Minimale Wanddicke	h _{min}	[mm]	195	230	195	230
Bürste HIT-RB	-	[-]	18	18	22	22
Anzahl Hübe HDM	-	[-]	4+8	8+8	6+10	10+10
Anzahl Hübe HDE 500-A	-	[-]	3+6	6+6	5+8	8+8
Maximales Anzugsdrehmoment	T_{max}	[Nm]	6	6	8	8

Hilti HIT-HY 270 mit HAS-U	
Verwendungszweck Montagekennwerte	Anhang B6

Tabelle B7: Montagekennwerte HAS-U-... in Vollstein (Bild A3)

HAS-U			М8	M10	M12	M16
Bohrernenndurchmesser	d_0	[mm]	10	12	14	18
Bohrlochtiefe = Effektive Verankerungstiefe	h _o = h _{ef}	[mm]	50300	50300	50300	50300
Maximaler Durchmesser des Durchgangslochs im Anbauteil	d _f	[mm]	9	12	14	18
Minimale Wanddicke	h _{min}	[mm]	h ₀ +30	h ₀ +30	h ₀ +30	h ₀ +36
Bürste HIT-RB	-	[-]	10	12	14	18
Maximales Anzugsdrehmoment	T_{max}	[Nm]	5	8	10	10

Hilti HIT-HY 270 mit HAS-U

Verwendungszweck

Montagekennwerte

Anhang B7

Tabelle B8: Montagekennwerte HAS-U-... mit zwei Siebhülsen HIT-SC für die Montage durch das Anbauteil und/oder durch eine nichttragende Schicht für Lochstein und Vollstein (Bild A4)

HAS-U			M8		M10	
mit HIT-SC		4	16x50+16x85	16x85+16x85	16x50+16x85	16x85+16x85
Bohrernenndurchmesser	d_0	[mm]	16	16	16	16
Bohrlochtiefe	h_0	[mm]	145	180	145	180
Min. effektive Verankerungstiefe	$h_{\text{ef,min}}$	[mm]	80	80	80	80
Max. Dicke der nichttragenden Schicht und Anbauteildicke (Durchsteckmontage)	h _p , _{max}	[mm]	50	80	50	80
Max. Durchmesser des Durchgangslochs im Anbauteil (Vorsteckmontage)	d _{f1}	[mm]	9	9	12	12
Max. Durchmesser des Durchgangslochs im Anbauteil (Durchsteckmontage)	d _{f2}	[mm	17	17	17	17
Minimale Wanddicke	h _{min}	[mm]	h _{ef} +65	h _{ef} +70	h _{ef} +65	h _{ef} +70
Bürste HIT-RB	-	[-]	16	16	16	16
Anzahl Hübe HDM	-	[-]	4+6	6+6	4+6	6+6
Anzahl Hübe HDE 500-A	-	[-]	3+5	5+5	3+5	5+5
Maximales Anzugsdrehmoment für alle Steine außer "parpaing creux"	T_{max}	[Nm]	3	3	4	4
Maximales Anzugsdrehmoment für "parpaing creux"	T _{max}	[Nm]	2	2	2	2

Tabelle B8 fortgesetzt

HAS-U			M	12	M.	16
mit HIT-SC	4	4	18x50+18x85	18x85+18x85	22x50+22x85	22x85+22x85
Bohrernenndurchmesser	d_0	[mm]	18	18	22	22
Bohrlochtiefe	h_0	[mm]	145	180	145	180
Min. effektive Verankerungstiefe	h _{ef,min}	[mm]	80	80	80	80
Max. Dicke der nichttragenden Schicht und Anbauteildicke (Durchsteckmontage)	h _{p,max}	[mm]	50	80	50	80
Max. Durchmesser des Durchgangslochs im Anbauteil (Vorsteckmontage)	d _{f1}	[mm]	14	14	18	18
Max. Durchmesser des Durchgangslochs im Anbauteil (Durchsteckmontage)	d _{f2}	[mm	19	19	23	23
Minimale Wanddicke	h _{min}	[mm]	h _{ef} +65	h _{ef} +70	h _{ef} +65	h _{ef} +70
Bürste HIT-RB	-	[-]	18	18	22	22
Anzahl Hübe HDM	-	[-]	4+8	8+8	6+10	10+10
Anzahl Hübe HDE 500-A	-	[-]	5+8	8+8	5+8	8+8
Maximales Anzugsdrehmoment für alle Steine außer "parpaing creux"	T _{max}	[Nm]	6	6	8	8
Maximales Anzugsdrehmoment für "parpaing creux"	T_{max}	[Nm]	3	3	6	6

Hilti HIT-HY 270 mit HAS-U	
Verwendungszweck Montagekennwerte	Anhang B8

Tabelle B9: Maximale Verarbeitungszeit und minimale Aushärtezeit für Vollsteine 1)

Temperatur im Verankerungsgrund T	Maximale Verarbeitungszeit t _{work}	Minimale Aushärtezeit t _{cure}
5 °C bis 9 °C	10 min	2,5 h
10 °C bis 19 °C	7 min	1,5 h
20 °C bis 29 °C	4 min	30 min
30 °C bis 40 °C	1 min	20 min

Die Aushärtezeiten gelten nur für trockenen Verankerungsgrund. In feuchtem Verankerungsgrund müssen die Aushärtezeiten verdoppelt werden.

Tabelle B10: Maximale Verarbeitungszeit und minimale Aushärtezeit¹⁾ für Lochsteine

Temperatur im Verankerungsgrund T	Maximale Verarbeitungszeit twork	Minimale Aushärtezeit t _{cure}
0 °C bis 4 °C	10 min	4 h
5 °C bis 9 °C	10 min	2,5 h
10 °C bis 19 °C	7 min	1,5 h
20 °C bis 29 °C	4 min	30 min
30 °C bis 40 °C	1 min	20 min

Die Aushärtezeiten gelten nur für trockenen Verankerungsgrund. In feuchtem Verankerungsgrund müssen die Aushärtezeiten verdoppelt werden.

Tabelle B11: Reinigungsalternativen

Handreinigung (MC):

zum Ausblasen von Bohrlöchern bis zu einem Durchmesser von $d_0 \le 18$ mm und einer Bohrlochtiefe von $h_0 = 100$ mm wird die Hilti-Handausblaspumpe empfohlen.

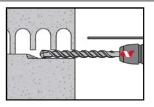
Druckluftreinigung (CAC):

zum Ausblasen von Bohrlöchern bis zu einer Bohrlochtiefe von $h_0 = 300 \text{ mm}$ wird eine Ausblasdüse mit einem Durchmesser von mindestens 3,5 mm empfohlen.

Stahlbürste HIT-RB:

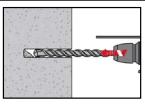
gemäß Tabelle B5 bis B8 in Abhängigkeit vom Bohrlochdurchmesser für MC und CAC

Hilti HIT-HY 270 mit HAS-U	
Verwendungszweck	Anhang B9
Montagekennwerte	
Reinigungswerkzeuge	



Montageanweisung

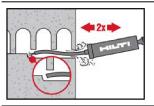
Bohrlocherstellung


Wenn beim Bohren über die gesamte Bohrlochtiefe (z.B. in nicht verfüllten Stoßfugen) kein nennenswerter Bohrwiderstand spürbar ist, so ist diese Setzposition zu verwerfen.

Bohrverfahren

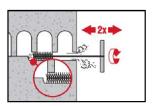
Im Hohlstein und Vollstein (Nutzungskategorie c): Drehbohren

Bohrloch mit Bohrhammer im Drehmodus, unter Verwendung des passenden Bohrerdurchmessers, auf die richtige Bohrtiefe erstellen.

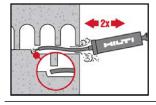

Im Vollstein (Nutzungskategorie b): Hammerbohren

Bohrloch mit Bohrhammer drehschlagend, unter Verwendung des passenden Bohrerdurchmessers, auf die richtige Bohrtiefe erstellen.

Bohrlochreinigung


Unmittelbar vor dem Setzen des Dübels muss das Bohrloch frei von Bohrmehl und Verunreinigungen sein. Schlechte Bohrlochreinigung = geringe Traglasten.

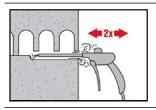
Handreinigung (MC): Für Lochsteine und Vollsteine


Für Bohrlochdurchmesser $d_0 \le 18$ mm und Bohrlochtiefen bis $h_0 = 100$ mm kann die Hilti Handausblaspumpe verwendet werden.

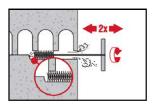
Bohrloch mindestens 4-mal mit der Hilti Ausblaspumpe vom Bohrlochgrund ausblasen, bis die rückströmende Luft staubfrei ist.

2-mal mit Stahlbürste in passender Größe (siehe Tabelle B5 bis B8) bürsten. Stahlbürste Hilti HIT-RB mit einer Drehbewegung in das Bohrloch bis zum Bohrlochgrund einführen und wieder herausziehen (falls notwendig mit Verlängerung).

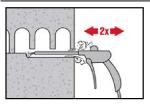
Die Bürste muss beim Einführen einen Widerstand erzeugen (Bürste $\emptyset \ge$ Bohrloch \emptyset) – falls nicht, ist die Bürste zu klein und muss durch eine geeignete Bürste ersetzt werden.



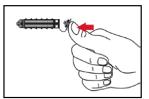
Bohrloch erneut mit der Hilti Handausblaspumpe vom Bohrlochgrund mindestens 4-mal ausblasen, bis die rückströmende Luft staubfrei ist.


Hilti HIT-HY 270 mit HAS-U	
Verwendungszweck Montageanweisung	Anhang B10

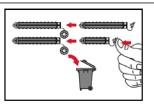
Handreinigung (CAC): Für Lochsteine und Vollsteine



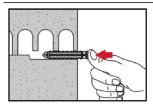
Bohrloch 2-mal vom Bohrlochgrund über die gesamte Länge mit ölfreier Druckluft (min. 6 bar bei 6 m³/h; Bohrlochtiefe bis $h_0 = 300$ mm) ausblasen, bis die rückströmende Luft staubfrei ist. Falls notwendig Verlängerung verwenden.


2-mal mit Stahlbürste in passender Größe (siehe Tabelle B5 bis B8) bürsten. Stahlbürste Hilti HIT-RB mit einer Drehbewegung in das Bohrloch bis zum Bohrlochgrund einführen und wieder herausziehen (falls notwendig mit Verlängerung).

Die Bürste muss beim Einführen einen Widerstand erzeugen (Bürste $\emptyset \ge$ Bohrloch \emptyset) – falls nicht, ist die Bürste zu klein und muss durch eine geeignete Bürste ersetzt werden.


Bohrloch erneut mit der Hilti Handpumpe oder Druckluft 2-mal ausblasen, bis die rückströmende Luft staubfrei ist.

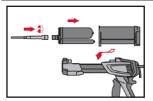
Injektionsvorbereitung bei Mauerwerk mit Lochanteil und Hohlräumen: Montage mit Siebhülse HIT-SC


Einzelsiebhülse HIT-SC

Kappe aufstecken

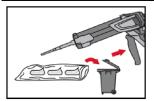
Zwei Siebhülsen HIT-SC

Siebhülsen zusammenstecken und überflüssige Kappe entsorgen. Beachten, dass im Falle von unterschiedlichen Siebhülsenlängen die kurze Siebhülse in die lange Siebhülse gesteckt wird.


Siebhülse manuell einschieben.

Bei der Verwendung von zwei Siebhülsen muss die Längere zuerst eingeschoben werden.

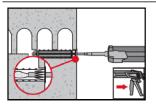
Hilti HIT-HY 270 mit HAS-U Verwendungszweck Montageanweisung Anhang B11


Für alle Anwendungen

Statikmischer HIT-RE-M fest auf Foliengebinde aufschrauben. Den Mischer unter keinen Umständen verändern.

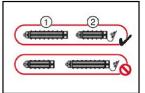
Bedienungsanleitung des Auspressgerätes und des Mörtels befolgen. Prüfen der Kassette und des Foliengebindes auf einwandfreie Funktion. Kein beschädigtes Gebinde / Kassette verwenden.

Foliengebinde in die Kassette einführen und Kassette in Auspressgerät einsetzen.

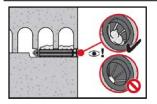


Das Öffnen der Foliengebinde erfolgt automatisch bei Auspressbeginn. Der am Anfang aus dem Mischer austretende Mörtelvorlauf darf nicht für Befestigungen verwendet werden. Die Menge des Mörtelvorlaufes ist abhängig von der Gebindegröße:

2 Hübe bei 330 ml Foliengebinde, 3 Hübe bei 500 ml Foliengebinde.


Injektion des Mörtels ohne Luftblasen zu bilden

Montage mit Siebhülse HIT-SC


Einzelsiebhülse HIT-SC

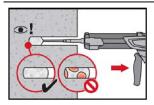
Den Mischer ca. 1 cm in die Kappe einschieben. Die gemäß Tabelle B5 bis B8 angegebene Mörtelmenge injizieren. Mörtel muss aus der Kappe austreten.

Zwei Siebhülsen HIT-SC

Mischerverlängerung bei der Montage von zwei Siebhülsen verwenden. Den Mischer ca. 1 cm durch die Spitze der Siebhülse "2" einschieben. Die gemäß Tabelle B5 bis B8 angegebene Mörtelmenge in die Siebhülse "1" injizieren. Mischer zurückziehen, bis er 1 cm in der Kappe der Siebhülse "2" steckt und Mörtel, wie vorher beschrieben, in die Siebhülse "2" injizieren.

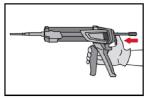
Kontrolle der injizierten Mörtelmenge. Der Mörtel muss aus der Kappe ausgetreten sein.

Nach der Mörtelinjektion die Entriegelungstaste am Auspressgerät betätigen, um Mörtelnachlauf zu vermeiden.


Hilti HIT-HY 270 mit HAS-U

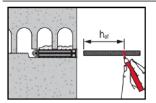
Verwendungszweck Montageanweisung

Anhang B12

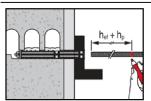


Vollsteine: Montage ohne Siebhülse

Injizieren des Mörtels vom Bohrlochgrund und während jedes Hubes den Mischer zurückziehen.

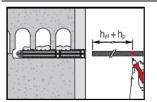

Das Bohrloch zu ca. 2/3 verfüllen. Nach dem Einsetzen des Befestigungselementes muss der Ringspalt zwischen Dübel und Untergrund, über die gesamte Verankerungstiefe, vollständig mit Mörtel ausgefüllt sein.

Nach der Mörtelinjektion die Entriegelungstaste am Auspressgerät betätigen, um Mörtelnachlauf zu vermeiden.

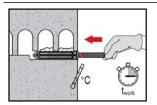

Setzen des Befestigungselementes:

Vor der Montage sicherstellen, dass das Element trocken und frei von Öl und anderen Verunreinigungen ist.

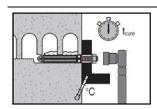
HAS-U-... in Lochstein und Vollstein: Vorsteckmontage (Bild A1 bis Bild A4)


Befestigungselement markieren und bis zur gewünschten Verankerungstiefe h_{ef} gemäß Tabelle B5 bis B7 einführen.

HAS-U-... in Lochstein und Vollstein: Montage durch das Anbauteil (Bild A4a)


oder durch die nichttragende Schicht und das Anbauteil (Bild A4b)
Befestigungselement markieren und bis zur gewünschten Verankerungstiefe

Befestigungselement markieren und bis zur gewünschten Verankerung $h_{\rm ef} + h_{\rm p}$ gemäß Tabelle B8 einführen.


HAS-U-... in Lochstein und Vollstein: Montage durch die nichttragende Schicht (Bild A4c)

Befestigungselement markieren und bis zur gewünschten Verankerungstiefe $h_{ef} + h_{p}$ gemäß Tabelle B8 einführen.

Befestigungselement noch bevor die Verarbeitungszeit t_{work} abgelaufen ist setzen. Verarbeitungszeit t_{work} siehe Tabelle B9 und Tabelle B10.

Belasten des Dübels

Nach Ablauf der Aushärtezeit t_{cure} (siehe Tabelle B9 und Tabelle B10) kann der Dübel belastet werden.

Das aufzubringende Drehmoment darf die angegebenen Werte T_{max} gemäß Tabelle B5 bis B8 nicht überschreiten.

Hilti HIT-HY 270 mit HAS-U

Verwendungszweck

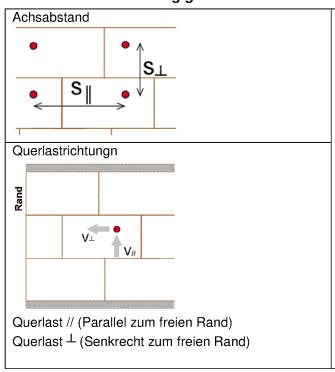
Montageanweisung

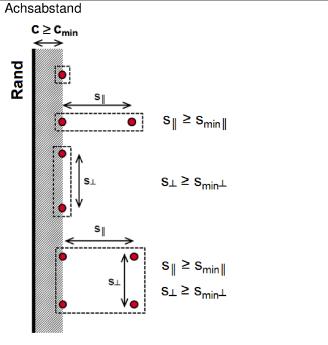
Anhang B13

Tabelle C1: β-Faktor für Baustellenversuche unter Zugbelastung

Nutzungskategorien	w/w u	nd w/d	d/d		
Temperatur Bereich	Ta*	Tb*	Ta*	Tb*	
Base material	Cleaning				
Vollziegel	CAC	0,96	0,96	0,96	0,96
EN 771-1	MC	0,84	0,84	0,84	0,84
Kalksandvollstein EN 771-2	CAC/MC	-	-	0,96	0,80
Leichtbetonvollstein	CAC	0,82	0,68	0,96	0,80
EN 771-3	MC	0,81	0,67	0,90	0,75
Normalbetonvollstein EN 771-3	CAC/MC	0,96	0,80	0,96	0,80
Lochziegel	CAC	0,96	0,96	0,96	0,96
EN 771-1	MC	0,84	0,84	0,84	0,84
Kalksandlochstein EN 771-2	CAC/MC	-	-	0,96	0,80
Leichtbeton Hohlblockstein	CAC	0,69	0,57	0,81	0,67
EN 771-3	MC	0,68	0,56	0,76	0,63
Normalbeton Lochstein EN 771-3	CAC/MC	0,96	0,80	0,96	0,80

^{*} Temperaturbereich Ta / Tb siehe Anlage B1


Tabelle C2: Charakteristische Werte der Stahltragfähigkeit für HAS-U unter Zuglast und Querlast in Mauerwerk


Stahlversagen Zuglast				М8	M10	M12	M16
Charakteristische Stahltragfähigkeit	$N_{Rk,s}$	[kN]	$A_s \cdot f_{uk}$				
Stahlversagen Querlast ohne Hebelarm							
Charakteristische Stahltragfähigkeit	$V_{Rk,s}$	[kN]	0,5 · A _s · f _{uk}				
Stahlversagen Querlast mit Hebelarm							
Charakteristisches Biegemoment	$M_{Rk,s}$	[Nm]		1,	2 · W _{el} ·	f _{uk}	

Hilti HIT-HY 270 mit HAS-U	
Leistung	Anhang C1
β-Faktor für Baustellenversuche unter Zugbelastung Charakteristische Werte unter Zuglast und Querlast - Stahlversagen	

Achsabstand in Abhängigkeit vom Randabstand für alle Dübelkombinationen:

Die charakteristischen Widerstände einer Dübelgruppe werden unter Verwendung von Gruppenfaktoren α_g gemäß Anhang C3 bis C30, berechnet

Gruppe mit zwei Dübeln: $N_{Rk}^g = \alpha_{g,N} \cdot N_{Rk}$ und $V_{Rk}^g = \alpha_{g,V} \cdot V_{Rk}$ (mit den relevanten α_g)

 $\text{Gruppe mit vier D\"{u}beln: } N_{Rk}^g = \alpha_{g,N \mid I} \cdot \alpha_{g,N} \bot \cdot N_{Rk} \text{ und } V_{Rk}^g = \alpha_{g,V \mid I} \cdot \alpha_{g,V} \bot \cdot V_{Rk}$

Hilti	HIT-HY	270	mit	HAS-U

Leistung

Dübel Achsabstand

Anhang C2

Art des Mauersteins: Vollziegel Mz, 1DF Tabelle C3: Beschreibung des Mauersteins

Steintyp			Solid Mz, 1DF
Rohdichte	ρ	[kg/dm³]	≥ 2,0
Druckfestigkeit	f _b	[N/mm ²]	≥ 12 / 20 / 40
Norm			EN 771 - 1
Hersteller			
Steinabmessungen		[mm]	≥ 240 x 115 x 52
Minimale Wanddicke	h _{min}	[mm]	≥ 115

Charakteristische Werte der Tragfähigkeit für alle Dübelkombinationen (siehe Tabelle B3) Tabelle C4: Zugtragfähigkeit bei Randabstand c ≥115 mm

Nutzungskategorie			w/w = w/d		d/d	
Gebrauchstemperaturbereich			Та	Tb	Та	Tb
Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm ²]		$N_{Rk,p} = N$	I _{Rk,b} [kN]	
		12	1,5 (2,0*)			
	≥ 50	20		2,0 (2,5*)		
		40	3,5 (4,0*)			
	≥ 80	12	2,5 (3,0*)			
Alle Dübel		20	3,5 (4,0*)			
		40	5,5 (6,5*)			
	≥ 100	12	3,5 (4,0*)			
		20	4,5 (5,0*)			
		40	7,0 (8,0*)			

^{*} nur CAC Reinigung

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{g}

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α_{q} [-]	Anordnung	c ≥ [mm]	s _{II} ≥ [mm]	α_{q} [-]
N •	115	-	ı	-	-	-	-
N	115	55	1,0	N	115	75	1,35
N	115	115	2,0	N·•	115	3 h _{ef}	2,0

Hilti HIT-HY 270 mit HAS-U	
Leistung Vollziegel Mz, 1DF Charakteristische Werte der Tragfähigkeit unter Zuglast und Gruppenfaktor	Anhang C3

Tabelle C5: Quertragfähigkeit bei Randabstand c ≥ 115 mm (für V_{II}) und c ≥ 1,5 h_{ef} (für V_⊥)

Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm²]	$V_{Rk,b} = V_{Rk,c II} [kN]$	V _{Rk,c} ⊥
		12	2,5	
HAS-U M8; M10	≥ 50	20	3,0	
		40	4,0	
		12	3,5	
HAS-U M12; M16	≥ 50	20	4,5	
		40	5,5	Bemessung gemäß
		12	5,0	TR 054 Formel 10
HAS-U M8; M10	≥ 80	20	6,0	
		40	7,5	
		12	6,5	
HAS-U M12; M16	≥ 80	20	8,5	
		40	10,5	

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{g}

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α _g [-]	Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α _g [-]
V.,	115	-	-	V.	1,5 h _{ef}	-	-
V ↓ T	115	55	1,0	<u>V.</u>	1,5 h _{ef}	55	1,0
V ↓ T	115	115	2,0	<u>V.</u>	1,5 h _{ef}	3 h _{ef}	2,0
Anordnung	c ≥ [mm]	s _{II} [mm]	α _q [-]	Anordnung	c ≥ [mm]	s _{II} [mm]	α _q [-]
				<u>V.</u>	1,5 h _{ef}	115	1,0
V.	115	75	2,0	V.	1,5 h _{ef}	3 h _{ef}	2,0

Tabelle C6: Verschiebungen

h _{ef}	N	δ_{N0}	δ _{N∞}	V	$\delta_{ m V0}$	δ _{V∞}
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
50	1,2	0,1	0,2	1,4	0,5	0,75
80	2,1	0,1	0,2	2,1	1,1	1,65
100	3,9	0,2	0,4	3,0	1,3	1,95

Hilti HIT-HY 270 mit HAS-U	
Leistung Vollziegel Mz, 1DF	Anhang C4
Charakteristische Werte der Tragfähigkeit unter Querlast und Gruppenfaktor Verschiebungen	

Art des Mauersteins: Vollziegel Mz, NF

Tabelle C7: Beschreibung des Mauersteins

Steintyp			Mz, NF
Rohdichte	ρ	[kg/dm³]	2,0
Druckfestigkeit	f _b	[N/mm ²]	≥ 10 / 20
Norm			EN 771 - 1
Hersteller			
Steinabmessungen		[mm]	≥ 240 x 115 x 71
Minimale Wanddicke	h_{\min}	[mm]	≥ 115

Charakteristische Werte der Tragfähigkeit für alle Dübelkombinationen (siehe Tabelle B3) Tabelle C8: Zugtragfähigkeit bei Randabstand c ≥ 50 mm

Nutzungskategorie			w/w = w/d		d/d	
Gebrauchstemperaturbereich			Та	Tb	Та	Tb
Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm ²]	$\mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} [kN]$			
	≥ 50	10	1,5 (1,5*)			
Alla Dübal	2 50	20	2,0 (2,0*)			
Alle Dübel	≥ 80	10	2,5 (3,0*)			
		20	3,5 (4,0*)			

^{*} nur CAC Reinigung

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{g}

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α_{q} [-]	Anordnung	c ≥ [mm]	s _{II} ≥ [mm]	α_{q} [-]
N •	50	-	-	ı	-	-	-
N	50	75	1,0	N··	115	50	1,0
-	-	-	-	N	50	115	1,15
N	50	150	2,0	N··	50	3 h _{ef}	2,0

Hilti HIT-HY 270 mit HAS-U	
Leistung Vollziegel Mz, NF Charakteristische Werte der Tragfähigkeit unter Zuglast und Gruppenfaktor	Anhang C5

Tabelle C9: Zugtragfähigkeit bei Randabstand c ≥ 150 mm

Nutzungskategorie			w/w :	= w/d	d/d	
Gebrauchstemperaturbereich			Та	Tb	Та	Tb
Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm ²]	$N_{Rk,p} = N_{Rk,b} [kN]$			
Alla Dübal	≥ 100	10		4,0 (4,5*)	
Alle Dübel	2 100	20	5,5 (6,0*)			

^{*} nur CAC Reinigung

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_q

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	a []	Anordnung	c ≥ [mm]	s _{II} ≥ [mm]	
Anordinary	C = [IIIIII]	27 = [111111]	α_{g} [-]	Anordinary	C = [IIIIII]	S∥ ≃ [IIIIII]	
N	150	-	-	-	-	-	-
N	150	75	1,40	N	150	50	0,75
-	-	-	-	N·•	150	115	1,35
N	150	150	2,0	N	150	3 h _{ef}	2,0

Tabelle C10: Quertragfähigkeit bei Randabstand c ≥ 1,5 h_{ef}

Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm²]	$V_{Rk,b} = V_{Rk,c II} [kN]$	V _{Rk,c} ⊥
Alle Dübel	≥ 50	10	3,0	
Alle Dubei	2 30	20	4,5	
HAS-U M8; M10	≥ 80	10	5,0	
	≥ 00	20	7,0	Bemessung gemäß
HAS-U M8; M10	≥ 100	10	8,0	TR 054 Formel 10
		20	11,0	
HAS-U M12; M16	≥ 80	10	9,0	
		20	12,0	

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_q

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α_{g} [-]	Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α_{g} [-]
V _{ii}	1,5 h _{ef}	-	-	V	1,5 h _{ef}	-	-
V _{ii} ↓	1,5 h _{ef}	75	1,55	V.	1,5 h _{ef}	75	1,0
V _{ii}	1,5 h _{ef}	150	2,0	<u>V.</u>	1,5 h _{ef}	3 h _{ef}	2,0
Anordnung	c ≥ [mm]	s _{II} [mm]	α_{g} [-]	Anordnung	c ≥ [mm]	s∥[mm]	α_{g} [-]
V.	1,5 h _{ef}	50	1,2	V.	1,5 h _{ef}	50	1,60
V.	1,5 h _{ef}	75	1,5	V.	1,5 h _{ef}	3 h _{ef}	2,0
V.	1,5 h _{ef}	115	2,0	-	-	-	-

Hilti HIT-HY 270 mit HAS-U	
Leistung Vollziegel Mz, NF Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast und Gru	Anhang C6 ppenfaktor

Tabelle C11: Quertragfähigkeit bei Randabstand c ≥ 50 mm

Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm²]	$V_{Rk,b} = V_{Rk,c II} [kN]$
Alle Dübel	≥ 50	10	3,0
	2 50	20	4,5
	≥ 80	10	4,0
		20	5,5

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_q

Anordnung	c ≥ [mm]	s⊥≥ [mm]	α _g [-]
V _i	50	-	-
V , ↓	50	75	1,55
V , ↓	50	150	2,0
Anordnung	c ≥ [mm]	s _{II} [mm]	α_{q} [-]
V _i	50	50	1,2
V,	50	115	2,0

Tabelle C12: Verschiebungen

h _{ef}	N	δ_{N0}	δ _{N∞}	V	$\delta_{ m V0}$	$\delta_{V\infty}$
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
50	0,8	0,1	0,2	1,6	0,8	1,2
80	1,5	0,1	0,2	2,1	8,0	1,2
100	2,3	0,1	0,2	2,1	0,8	1,2

Hilti HIT-HY 270 mit HAS-U

Leistung Vollziegel Mz, NF
Charakteristische Werte der Tragfähigkeit unter Querlast und Gruppenfaktor
Verschiebungen

Anhang C7

Art des Mauersteins: Vollziegel Mz, 2DF

Tabelle C13: Beschreibung des Mauersteins

Steintyp			Mz, 2DF
Rohdichte	ρ	[kg/dm³]	≥ 2,0
Druckfestigkeit	f _b	[N/mm ²]	≥ 12 / 20
Norm			EN 771 - 1
Hersteller			
Steinabmessungen		[mm]	≥ 240 x 115 x 113
Minimale Wanddicke	h _{min}	[mm]	≥ 115

Charakteristische Werte der Tragfähigkeit für alle Dübelkombinationen (siehe Tabelle B3) Tabelle C14: Zugtragfähigkeit bei Randabstand c ≥ 115 mm

Nutzungskategorie	w/w =	= w/d	d/d			
Gebrauchstemperaturbereich			Та	Tb	Та	Tb
Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm ²]	$\mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} [kN]$			
	≥ 50	12	2,5 (3,0*)			
		20	2,5 (3,0*)			
Allo Dübol	≥ 80	12	3,5 (4,0*)			
Alle Dübel		20	4,5 (5,5*)			
	≥ 100	12	6,0 (7,0*)			
		20	7,0 (8,0*)			

^{*} nur CAC Reinigung

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{g}

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α _q [-]	Anordnung	c ≥ [mm]	s _{II} ≥ [mm]	α _α [-]
N	115	-	-	-	-	-	-
N	115	75	1,0	N	115	75	1,50
N I	115	115	1,60	-	-	-	-
N I	115	3 h _{ef}	2,0	N·•	115	3 h _{ef}	2,0

Hilti HIT-HY 270 mit HAS-U	
Leistung Vollziegel Mz, 2DF Charakteristische Werte der Tragfähigkeit unter Zuglast und Gruppenfaktor	Anhang C8

Tabelle C15: Zugtragfähigkeit bei Randabstand c ≥ 50 mm

Nutzungskategorie			w/w =	w/w = w/d		d/d	
Gebrauchstemperaturbereich			Та	Tb	Та	Tb	
Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm ²]	$\mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} [kN]$				
Alle Dübel	≥ 50 12		1,5 (1,5*)				
	2 50	20	2,0 (2,0*)				
	> 00	12		3,0 (3,5*)			
	≥ 80	20	3,5 (4,0*)				

^{*} nur CAC Reinigung

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{g}

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α_g [-]	Anordnung	c ≥ [mm]	s ≥ [mm]	α _g [-]
N •	50	-	-	=	-	-	-
N	50	75	1,10	N··	115	50	1,0
N	50	115	1,45	N··	50	115	1,15
N	50	3 h _{ef}	2,0	N··	50	3 h _{ef}	2,0

Tabelle C16: Quertragfähigkeit bei Randabstand c ≥ 1,5 h_{ef}

Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm²]	$V_{Rk,b} = V_{Rk,c II} [kN]$	V _{Rk,c} ⊥		
Alle Dübel	≥ 50	12	5,5			
	2 30	20	7,0	Pomossung gomäß		
HAS-U M8; M10	≥ 80	12	8,0	Bemessung gemäß TR 054 Formel 10		
MAS-U MIO, IVITU	2 00	20	10,0	(bei h _{ef} >80 mm		
HAS-U M12	≥ 80	12	10,5	berechne mit		
	≥ 60	20	12,0	$h_{ef} = 80 \text{ mm}$		
HAS-U M16	≥ 80	12	12,0			
	200	20	12,0]		

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{g}

Anordnung	c ≥ [mm]	s⊥ c [mm]	α _a [-]	Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α_{q} [-]
V _{II}	1,5 h _{ef}	-	-	<u>V.</u>	1,5 h _{ef}	-	-
V , ↓ □	1,5 h _{ef}	75	0,85	<u>V.</u>	1,5 h _{ef}	115	0,75
V , ↓]	1,5 h _{ef}	3 h _{ef}	2,0	<u>V.</u>	1,5 h _{ef}	3 h _{ef}	2,0
Anordnung	c ≥ [mm]	s _{II} [mm]	α_{q} [-]	Anordnung	c ≥ [mm]	s _{II} [mm]	α_{q} [-]
V _{II} •	1,5 h _{ef}	115	1,60	<u>V.</u>	1,5 h _{ef}	115	0,8
V ,	1,5 h _{ef}	3 h _{ef}	2,0	<u>V.</u>	1,5 h _{ef}	3 h _{ef}	2,0

Hilti HIT-HY 270 mit HAS-U	
Leistung Vollziegel Mz, 2DF Charakteristische Werte der Tragfähigkeit unter Querlast und Gruppenfaktor	Anhang C9

Tabelle C17: Quertragfähigkeit bei Randabstand c ≥ 50 mm

Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm ²]	$V_{Rk,b} = V_{Rk,c \parallel} [kN]$
Alle Dübel	≥ 50	12	3,0
	≥ 50	20	4,0
Alle Dübel	≥ 80	12	4,5
		20	5,5

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_q

Anordnung	c ≥ [mm]	s⊥≥ [mm]	α _g [-]
V₁ ↓	50	-	-
V . ↓	50	75	0,70
V , ↓	50	115	1,5
V , ↓	50	3 h _{ef}	2,0
Anordnung	c ≥ [mm]	s∥[mm]	α_{q} [-]
V, •	50	115	2,0

Tabelle C18: Verschiebungen

h _{ef}	N	δ_{N0}	δ _{N∞}	V	$\delta_{ m V0}$	$\delta_{V\infty}$
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
50	0,9	0,1	0,2	1,9	0,6	0,9
80	1,3	0,2	0,4	2,8	1,0	1,5
100	1,7	0,3	0,6	2,8	1,0	1,5

Hilti HIT-HY 270 mit HAS-U

Leistung Vollziegel Mz, 2DF
Charakteristische Werte der Tragfähigkeit unter Querlast und Gruppenfaktor
Verschiebungen

Anhang C10

Art des Mauersteins: Kalksandvollstein KS, 2DF Tabelle C19: Beschreibung des Mauersteins

Steintyp			KS, 2DF
Rohdichte	ρ	[kg/dm³]	≥ 2,0
Druckfestigkeit	f _b	[N/mm²]	≥ 12 / 28
Norm			EN 771 - 2
Hersteller			
Steinabmessungen		[mm]	≥ 240 x 115 x 113
Minimale Wanddicke	h _{min}	[mm]	≥ 115

Charakteristische Werte der Tragfähigkeit für alle Dübelkombinationen (siehe Tabelle B3) Tabelle C20: Zugtragfähigkeit bei Randabstand c ≥ 115 mm

Nutzungskategorie			w/w = w/d		d/d	
Gebrauchstemperaturbereich			Та	Tb	Та	Tb
Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm ²]	$\mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} [kN]$			
Alle Dübel	≥ 50	12	-	-	6,0	5,0
Alle Dubel	≥ 50	28	-	-	9,0	7,5

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_q

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α _g [-]	Anordnung	c ≥ [mm]	s ≥ [mm]	α _g [-]
N •	115	-	-	-	-	-	-
N	115	50	1,0	N	115	50	1,0
N	115	115	1,45	-	-	-	-
N	115	150	2,0	N··	115	115 (H)* 240 (S)*	2,0

^{* (}H) = Binder, (S) = Läufer

Tabelle C21: Zugtragfähigkeit bei Randabstand c ≥ 50 mm

Nutzungskategorie			w/w = w/d		d/d	
Gebrauchstemperaturbereich			Та	Tb	Та	Tb
Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm ²]	$\mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} [kN]$			
Alle Dübel	≥ 50	12		-	4,0	3,5
Alle Dubel		28		-	6,5	5,5

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_q

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α_{g} [-]	Anordnung	c ≥ [mm]	s _{II} ≥ [mm]	α_{g} [-]
N •	50	-	-	-	-	-	-
N	50	115	2,0	N··	50	115 (H)* 240 (S)*	2,0

^{* (}H) = Binder, (S) = Läufer

Hilti HIT-HY 270 mit HAS-U	
Leistung Kalksandvollstein KS, 2DF Charakteristische Werte der Tragfähigkeit unter Zuglast und Gruppenfaktor	Anhang C11

Tabelle C22: Quertragfähigkeit bei Randabstand c ≥ 115 mm

Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm ²]	$V_{Rk,b} = V_{Rk,c II} [kN]$	V _{Rk,c} ⊥
Alle Dübel	≥ 50	12	6,0	Bemessung gemäß
Alle Dubei	2 50	28	9,0	TR 054 Formel 10

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_q

Anordnung	c ≥ [mm]	s _⊥ ≥ [mm]	α _q [-]	Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α _q [-]
V	115	-	-	V.	115	-	-
V , ↓ 1	115	50	0,45	V.	115	50	0,45
V , ↓ 1	115	115	2,0	<u>V</u>	115	115	2,0
Anordnung	c ≥ [mm]	s _{II} [mm]	α _g [-]	Anordnung	c ≥ [mm]	s _{II} [mm]	α _q [-]
V _{II} ·	115	50	0,45	<u>V</u>	115	50	0,45
V ₁ · V ₂ · V ₃ · V ₄ ·	115	115 (H)* 240 (S)*	2,0	<u>V</u>	115	115 (H)* 240 (S)*	2,0

^{* (}H) = Binder, (S) = Läufer

Tabelle C23: Quertragfähigkeit bei Randabstand c ≥ 50 mm

Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm²]	$V_{Rk,b} = V_{Rk,c II} = V_{Rk,c} \perp [kN]$
Alle Dübel	> 50	12	3,0
Alle Dubei	≥ 50	28	4,5

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{g}

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α _a [-]	Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α _q [-]
V.,	50	-	-	<u>V.</u>	50	-	-
V _i	50	115	2,0	V.———	50	115	2,0
Anordnung	c ≥ [mm]	s _{II} [mm]	α_{q} [-]	Anordnung	c ≥ [mm]	s _{II} [mm]	α_{q} [-]
V, •	50	115 (H)* 240 (S)*	2,0	V.	50	115 (H)* 240 (S)*	2,0

^{* (}H) = Binder, (S) = Läufer

Tabelle C24: Verschiebungen

h _{ef}	N	δ_{N0}	δ _{N∞}	V	$\delta_{ m V0}$	$\delta_{V_{\infty}}$
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
≥ 50	2,5	0,3	0,6	2,5	1,0	1,5

Hilti HIT-HY 270 mit HAS-U	
Leistung Kalksandvollstein KS, 2DF Charakteristische Werte der Tragfähigkeit unter Querlast und Gruppenfaktor Verschiebungen	Anhang C12

Art des Mauersteins: Kalksandvollstein KS, 8DF Tabelle C25: Beschreibung des Mauersteins

Steintyp			Solid KS, 8DF
Rohdichte	ρ	[kg/dm³]	≥ 2,0
Druckfestigkeit	f _b	[N/mm²]	≥ 12 / 20 / 28
Norm			EN 771 - 2
Hersteller			
Steinabmessungen		[mm]	≥ 248 x 240 x 248
Minimale Wanddicke	h _{min}	[mm]	≥ 240

Charakteristische Werte der Tragfähigkeit für alle Dübelkombinationen (siehe Tabelle B3) Tabelle C26: Zugtragfähigkeit bei Randabstand c ≥ 120 mm

Nutzungskategorie				w/w = w/d		d/d	
Gebrauchstempera	Gebrauchstemperaturbereich					Та	Tb
Dübeltyp und -größe	Э	h _{ef} [mm]	f _b [N/mm²]		$N_{Rk,p} = N$	I _{Rk,b} [kN]	
			12	=	-	7,0	5,5
Alle Dübel		≥ 50	20	-	-	9,0	7,5
			28	-	-	10,5	8,5
			12	-	-	8,5	7,0
HAS-U	M8, M10		20	-	-	11,0	9,0
			28	-	-	12,0	10,5
HAS-U	M12		12	-	-	11,5	9,5
HAS-U + HIT-SC	M8, M10		20	-	-	12,0	12,0
+	,	≥ 80	28	-	-	12,0	12,0
HAS-U	M16		12	-	-	12,0	12,0
HAS-U + HIT-SC	C M12, M16		20	-	-	12,0	12,0
+			28	-	-	12,0	12,0
			12	-	-	12,0	11,0
HAS-U	M8, M10	≥ 100	20	-	-	12,0	12,0
			28	=		12,0	12,0

Hilti HIT-HY 270 mit HAS-U	
Leistung Kalksandvollstein KS, 8DF Charakteristische Werte der Tragfähigkeit unter Zuglast und Gruppenfaktor	Anhang C13

Tabelle C26 fortgesetzt

HAS-U	M12, M16		12	-	-	12,0	12,0
HAS-U + HIT-SC	M8 to M16	≥ 100	20	-	-	12,0	12,0
+			28	-	-	12,0	12,0

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{g}

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α_{g} [-]	Anordnung	c ≥ [mm]	s _{II} ≥ [mm]	α_{g} [-]
N •	120	-	-	-	-	-	-
N I	120	3 h _{ef}	2,0	N··	120	3 h _{ef}	2,0

Tabelle C27: Zugtragfähigkeit bei Randabstand c ≥ 50 mm

Nutzungskategorie				w/w	w/w = w/d		d/d		
Gebrauchstemper	Та	Tb	Та	Tb					
Dübeltyp und -größe	е	h _{ef} [mm]	f _b [N/mm ²]		$N_{Rk,p} = N_{Rk,b} [kN]$				
			12	1	-	4,0	3,5		
Alle Dübel		≥ 50	20	ı	-	5,5	4,5		
			28	-	-	6,5	5,0		
	140 1440		12	1	-	5,0	4,0		
HAS-U	M8, M10		20	1	-	6,5	5,5		
			28	1	-	7,5	6,5		
HAS-U	M12		12	ı	-	7,0	5,5		
HAS-U + HIT-SC	M8, M10		20	-	-	9,0	7,5		
+		≥ 80	28	1	-	10,5	8,5		
HAS-U	M16		12	ı	-	10,0	8,0		
HAS-U + HIT-SC	M12, M16		20	ı	-	12,0	10,5		
			28	-	-	12,0	12,0		
			12	-	-	8,0	6,5		
HAS-U	M8, M10	≥ 100	20	-	-	10,5	8,5		
			28	-	-	12,0	10,0		

Hilti HIT-HY 270 mit HAS-U	
Leistung Kalksandvollstein KS, 8DF Charakteristische Werte der Tragfähigkeit unter Zuglast und Gruppenfaktor	Anhang C14

Tabelle C27 fortgesetzt

HAS-U	M12		12	-	-	9,5	8,0
HAS-U + HIT-SC	M8, M10		20	-	-	12,0	10,0
+		> 100	28	-	-	12,0	12,0
HAS-U	M16	≥ 100	12	-	-	12,0	10,5
HAS-U + HIT-SC	M12, M16		20	-	-	12,0	12,0
+	2,		28	-	-	12,0	12,0

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{q}

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α _g [-]	Anordnung	c ≥ [mm]	s _{II} ≥ [mm]	α _g [-]
N •	50	-	-	-	-	1	-
N	50	50	1,0	N	50	50	1,0
N	50	3 h _{ef}	2,0	N··	50	3 h _{ef}	2,0

Tabelle C28: Quertragfähigkeit bei Randabstand c ≥ 120 mm (für V_{II}) und c ≥ 1,5 hef (für V_⊥)

	0 0			`,	,
Dübeltyp und -größe	Dübeltyp und -größe			$V_{Rk,b} = V_{Rk,c II} [kN]$	V _{Rk,c} ⊥
HAS-U	MO M10		12	9,0	
ПАЗ-U	M8, M10		20	12,0	
P			28	12,0	
HAS-U	M12, M16	≥ 50	12	12,0	Bemessung gemäß
HAS-U + HIT-SC	M12, M16		20	12,0	TR 054 Formel 10
+			28	12,0	

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{g}

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α _a [-]	Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α _g [-]
V _{II}	120	-	-	V.	1,5 h _{ef}	-	-
[V _{ii}] ↓	120	3 h _{ef}	2,0	<u>V.</u>	1,5 h _{ef}	3 h _{ef}	2,0
Anordnung	c ≥ [mm]	s _{II} [mm]	α_{q} [-]	Anordnung	c ≥ [mm]	s _∥ [mm]	α_{q} [-]
V . • • • • • • • • • • • • • • • • • • •	120	3 h _{ef}	2,0	<u>V.</u>	1,5 h _{ef}	3 h _{ef}	2,0

Hilti HIT-HY 270 mit HAS-U	
Leistung Kalksandvollstein KS, 8DF Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast und Gruppenfaktor	Anhang C15

Tabelle C29: Quertragfähigkeit bei Randabstand c ≥ 50 mm

Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm²]	$V_{Rk,b} = V_{Rk,c II} = V_{Rk,c} \perp [kN]$
		12	3,0
Alle Dübel	≥ 50	20	4,0
		28	4,5

Zugehörige Achs- und Randabstände und Gruppenfaktoren $\alpha_{\rm g}$

Anordnung	c ≥ [mm]	s⊥≥ [mm]	α _g [-]	Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α _q [-]
V ,	50	-	-	<u>V.</u>	50	-	-
V , ↓	50	250	2,0	<u>V.</u>	50	250	2,0
Anordnung	c ≥ [mm]	s _{II} [mm]	α_{g} [-]	Anordnung	c ≥ [mm]	s _{II} [mm]	α_{g} [-]
V, •	50	250	2,0	<u>V.</u>	50	250	2,0

Tabelle C30: Verschiebungen

h _{ef}	N	δ_{N0}	δ _{N∞}	V	$\delta_{ m V0}$	$\delta_{V\infty}$
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
50	2,3	0,10	0,20	3,4	2,8	4,2
80	3,4	0,15	0,30	3,4	2,8	4,2
100	3,4	0,15	0,30	3,4	2,8	4,2

Hilti HIT-HY 270 mit HAS-U

Leistung Kalksandvollstein KS, 8DF
Charakteristische Werte der Tragfähigkeit unter Querlast und Gruppenfaktor
Verschiebungen

Anhang C16

Art des Mauersteins: Leichtbetonvollstein Vbl, 2DF

Tabelle C31: Beschreibung des Mauersteins

Steintyp			Vbl, 2DF
Rohdichte	ρ	[kg/dm³]	≥ 0,9
Druckfestigkeit	f _b	[N/mm ²]	≥ 4 / 6
Norm			EN 771-3
Hersteller			
Steinabmessungen		[mm]	≥ 240 x 115 x 113
Minimale Wanddicke	h _{min}	[mm]	≥ 115

Charakteristische Werte der Tragfähigkeit für alle Dübelkombinationen (siehe Tabelle B3) Tabelle C32: Zugtragfähigkeit bei Randabstand c ≥ 115 mm

Nutzungskategorie	w/w :	w/w = w/d		d/d			
Gebrauchstemperaturbereich			Та	Tb	Та	Tb	
Dübeltyp und -größe h _{ef} [mm] f _b [N/mm ²]				$\mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} [kN]$			
	≥ 50	4	3,0	2,0	3,0 (3,5*)	2,5	
		6	3,5	3,0	4,0	3,0 (3,5*)	
Alle Dübel	≥ 80	4	4,5	3,5	5,0	4,0 (4,5*)	
Alle Dubei		6	5,5	4,5	6,0 (6,5*)	5,0 (5,5*)	
	≥ 100	4	6,0	5,0	6,5 (7,0*)	5,5 (6,0*)	
		6	7,5	6,0	8,0 (8,5*)	6,5 (7,0*)	

^{*} nur CAC Reinigung

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{g}

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α _a [-]	Anordnung	c ≥ [mm]	s _{II} ≥ [mm]	α _α [-]
N •	115	-	-	-	-	-	-
N I	115	3 h _{ef}	2,0	N··	115	3 h _{ef}	2,0

Tabelle C33: Zugtragfähigkeit bei Randabstand c ≥ 50 mm

Nutzungskategorie	w/w :	= w/d	d/d			
Gebrauchstemperaturbereich	Та	Tb	Та	Tb		
Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} [kN]$			
Alle Dübel	≥ 50	4	1,5	1,2	1,5	1,5
Alle Dubel	≥ 50	6	2,0	1,5	2,0	1,5

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{q}

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α_{g} [-]	Anordnung	c ≥ [mm]	s _{II} ≥ [mm]	α_{q} [-]
N •	50	-	-	1	-	-	-
N	50	115	1,0	N··	50	115	1,0
N	115	50	1,0	N···	115	50	1,0
N	50	3 h _{ef}	2,0	N··	50	3 h _{ef}	2,0

Hilti HIT-HY 270 mit HAS-U Leistung Leichtbetonvollstein Vbl, 2DF Charakteristische Werte der Tragfähigkeit unter Zuglast und Gruppenfaktor Anhang C17

Tabelle C34: Quertragfähigkeit bei Randabstand c ≥ 115 mm (für V_{II}) und c ≥ 1,5 hef (für V_⊥)

Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm²]	$V_{Rk,b} = V_{Rk,c II} [kN]$	V _{Rk,c} ⊥
HAS-U M8		4	2,0	
HAS-0 IVIO	≥ 50 6		2,5	Bemessung gemäß
HAS LIMIO to MIS	2 50	4	2,5	TR 054 Formel 10
HAS-U M10 to M16		6	3,0	

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{g}

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α _a [-]	Anordnung	c ≥ [mm]	s⊥≥ [mm]	α _q [-]
V ,	115	-	-	<u>V.</u>	1,5 h _{ef}	-	-
V , ↓]	115	3 h _{ef}	2,0	<u>V.</u>	1,5 h _{ef}	3 h _{ef}	2,0
Anordnung	c ≥ [mm]	s _{II} [mm]	α [-]	Anordnung	c ≥ [mm]	s∥[mm]	α _a [-]
V _{II} ·	115	3 h _{ef}	2,0	<u>V.</u>	1,5 h _{ef}	3 h _{ef}	2,0

Tabelle C35: Quertragfähigkeit bei Randabstand c ≥ 50 mm

Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm²]	$V_{Rk,b} = V_{Rk,c II} = V_{Rk,c} \perp [kN]$
Alle Dübel	> 50	4	1,20
Alle Dubei	≥ 50	6	1,50

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{g}

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α_g [-]	Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α_{g} [-]
V.,	50	-	-	V.———	50	-	-
V, ↓	115	50	1,0	V.——	115	50	1,0
V _i	50	115	1,0	V.——	50	115	1,0
V, ↓	50	3 h _{ef}	2,0	V.——	50	3 h _{ef}	2,0
Anordnung	c ≥ [mm]	s _{II} [mm]	α_{g} [-]	Anordnung	c ≥ [mm]	s _{II} [mm]	α_{g} [-]
V, •	115	50	1,0	V.	115	50	1,0
V, •	50	115	1,0	V.	50	115	1,0
V, •	50	3 h _{ef}	2,0	V.	50	3 h _{ef}	2,0

Tabelle C36: Verschiebungen

h _{ef}	N	δ_{N0}	δ _{N∞}	V	δ_{V0}	$\delta_{V\infty}$
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
≥ 50	2,5	0,3	0,6	1,8	2,0	3,0

Hilti HIT-HY 270 mit HAS-U	
Leistung Leichtbetonvollstein Vbl, 2DF Charakteristische Werte der Tragfähigkeit unter Querlast und Gruppenfaktor Verschiebungen	Anhang C18

Art des Mauersteins: Normalbetonvollstein Vbn, 2DF

Tabelle C37: Beschreibung des Mauersteins

Steintyp			Vbn, 2DF
Rohdichte	ρ	[kg/dm³]	≥ 2,0
Druckfestigkeit	f _b	[N/mm²]	≥ 6 oder ≥ 16
Norm			EN 771-3
Hersteller			
Steinabmessungen		[mm]	≥ 240 x 115 x 113
Minimale Wanddicke	h _{min}	[mm]	≥ 115

Charakteristische Werte der Tragfähigkeit für alle Dübelkombinationen (siehe Tabelle B3) Tabelle C38: Zugtragfähigkeit bei Randabstand c ≥ 115 mm

Nutzungskategorie	w/w :	= w/d	d/d			
Gebrauchstemperaturbereich	Та	Tb	Та	Tb		
Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm ²]	$\mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} [kN]$			
Alle Dübel	≥ 50	6	3,0	2,5	3,0	2,5
Alle Dubei	≥ 50	16	5,5	4,5	5,5	4,5

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{g}

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α_{g} [-]	Anordnung	c ≥ [mm]	s _∥ ≥ [mm]	α_{g} [-]
N •	115	-	-	1			-
N	115	3 h _{ef}	2,0	N··	115	3 h _{ef}	2,0

Tabelle C39: Zugtragfähigkeit bei Randabstand c ≥ 50 mm

Nutzungskategorie	w/w :	= w/d	d/d			
Gebrauchstemperaturbereich	Та	Tb	Та	Tb		
Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm²]	$N_{Rk,p} = N_{Rk,b} [kN]$			
Alle Dübel	≥ 50	6	1,5	1,2	1,5	1,2
Alle Dubei	_ 50	16	2,5	2,0	2,5	2,0

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_g

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α _g [-]	Anordnung	c ≥ [mm]	s ≥ [mm]	α _g [-]
N •	50	-	-	-	-	-	1
N	50	115	1,0	N··	50	115	1,0
N	115	50	1,0	N··	115	50	1,0
N	50	3 h _{ef}	2,0	N··	50	3 h _{ef}	2,0

Hilti HIT-HY 270 mit HAS-U	
Leistung Normalbetonvollstein Vbn, 2DF Charakteristische Werte der Tragfähigkeit unter Zuglast und Gruppenfaktor	Anhang C19

Tabelle C40: Quertragfähigkeit bei Randabstand c ≥ 115 mm (für V_{II}) und c ≥ 1,5 hef (für V_⊥)

Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm ²]	$V_{Rk,b} = V_{Rk,c II} [kN]$	V _{Rk,c} ⊥
Alle Dübel	≥ 50	6	4,0	Bemessung gemäß
Alle Dubei	= 30	16	6,5	TR 054 Formel 10

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{q}

Anordnung	c ≥ [mm]	s⊥≥ [mm]	α _a [-]	Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α _α [-]
V .	115	-	-	V.	1,5 h _{ef}	-	-
V , ↓ 1	115	3 h _{ef}	2,0	V.	1,5 h _{ef}	3 h _{ef}	2,0
Anordnung	c ≥ [mm]	s _{II} [mm]	α_{q} [-]	Anordnung	c ≥ [mm]	s _{II} [mm]	α _α [-]
V _I	115	3 h _{ef}	2,0	<u>V.</u>	1,5 h _{ef}	3 h _{ef}	2,0

Tabelle C41: Quertragfähigkeit bei Randabstand c ≥ 50 mm

Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm²]	$V_{Rk,b} = V_{Rk,c II} = V_{Rk,c} \perp$
Alla Dübal	≥ 50	4	1,5
Alle Dübel	2 50	6	3,0

Zugehörige Achs- und Randabstände und Gruppenfaktoren $\alpha_{\text{\tiny q}}$

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α _g [-]	Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α _g [-]
V , ↓	50	-	-	V.———	50	-	-
V , ↓]	115	50	1,0	<u>V.</u>	115	50	1,0
V ₁ ↓	50	115	1,0	<u>V.</u>	50	115	1,0
V, ↓	50	3 h _{ef}	2,0	<u>V.</u>	50	3 h _{ef}	2,0
Anordnung	c ≥ [mm]	s _{II} [mm]	α _g [-]	Anordnung	c ≥ [mm]	s _{II} [mm]	α _g [-]
V _{II} · V	115	50	1,0	<u>V.</u>	115	50	1,0
V, •	50	115	1,0	V.	50	115	1,0
V., • •	50	3 h _{ef}	2,0	V.	50	3 h _{ef}	2,0

Tabelle C42: Verschiebungen

h _{ef}	N	δ_{N0}	δ _{N∞}	V	$\delta_{ m V0}$	$\delta_{V\infty}$
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
≥ 50	1,5	0,3	0,6	1,8	2,0	3,0

Hilti HIT-HY 270 mit HAS-U	
Leistung Normalbetonvollstein Vbn, 2DF Charakteristische Werte der Tragfähigkeit unter Querlast und Gruppenfaktor Verschiebungen	Anhang C20

Art des Mauersteins: Lochziegel Hlz, 10DF Tabelle C43: Beschreibung des Mauersteins

0			111 40 4 4 40 55
Steintyp			Hlz12-1,4-10 DF
Rohdichte	ρ	[kg/dm³]	≥ 1,4
Druckfestigkeit	f _b	[N/mm²]	≥ 12 / 20
Norm			EN 771 - 1
Hersteller			Rapis (D)
Steinabmessungen		[mm]	300 x 240 x 238
Minimale Wanddicke	h _{min}	[mm]	≥ 240

Charakteristische Werte der Tragfähigkeit für alle Dübelkombinationen (siehe Tabelle B3) Tabelle C44: Zugtragfähigkeit bei Randabstand c ≥ 150 mm

Nutzungskategorie	w/w = w/d		d/d			
Gebrauchstemperaturbereich	Та	Tb	Та	Tb		
Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm ²]	$\mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} [kN]$			
Alla Dübal	> 00	12	5,5 (6,0*)			
Alle Dübel	≥ 80	20	7,0 (8,0*)			

^{*} nur CAC Reinigung

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{g}

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α _g [-]	Anordnung	c ≥ [mm]	s _{II} ≥ [mm]	α _g [-]
N •	150	-	-	-	-	-	-
N	150	240	2,0	N	150	300	2,0

Tabelle C45: Zugtragfähigkeit bei Randabstand c ≥ 50 mm

Nutzungskategorie	w/w :	= w/d	d/d			
Gebrauchstemperaturbereich	Та	Tb	Та	Tb		
Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm ²]	$N_{Rk,p} = N_{Rk,b} [kN]$			
Alla Dühal	> 00	12	1,5 (2,0*)			
Alle Dübel	≥ 80	20	2,0 (2,5*)			

^{*} nur CAC Reinigung

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_q

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α_{g} [-]	Anordnung	c ≥ [mm]	s _{II} ≥ [mm]	α_{q} [-]
N •	50	-	ī	-	-	-	-
N	50	5 d ₀	1,0	N··	50	5 d ₀	1,0
N	50	240	2,0	N·•	50	300	2,0

Hilti HIT-HY 270 mit HAS-U	
Leistung Lochziegel Hlz, 10DF Charakteristische Werte der Tragfähigkeit unter Zuglast und Gruppenfaktor	Anhang C21

Tabelle C46: Quertragfähigkeit bei Randabstand c ≥ 300 mm

Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm²]	$V_{Rk,b} = V_{Rk,c \mid I} = V_{Rk,c} \perp^{1)} [kN]$
HAS-U M8, M10		12	4,5
HAS-0 M6, MT0	> 00	20	5,5
HAS-U M12, M16	- ≥ 80	12	9,5
HAS-U WITZ, WITE		20	10

V_{Rk,b} kann als V_{Rk,c}⊥eingesetzt werden wenn:

- die Lagerfugen vollständig mit Mörtel verfüllt sind und
- die Stoßfugen vollständig mit Mörtel verfüllt sind oder die Steine direkten Kontakt zueinander haben.

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_q

Anordnung	c ≥ [mm]	s⊥≥ [mm]	α _g [-]	Anordnung	c ≥ [mm]	s⊥≥ [mm]	α _g [-]
V.,	300	-	-	<u>V.</u>	300	-	-
V. ↓	300	240	2,0	<u>V.</u>	300	240	1,0
Anordnung	c ≥ [mm]	s _{II} [mm]	α_{g} [-]	Anordnung	c ≥ [mm]	s _{II} [mm]	α_{g} [-]
V	300	300	2,0	<u>V.</u>	300	300	2,0

Tabelle C47: Quertragfähigkeit bei Randabstand c ≥ 50 mm

Dübeltyp und -größe	h _{ef} [mm]	c [mm]	V _{Rk,c,} ⊥ [kN]
		≥ 50	1,25
		≥ 250	2,5
Alle Dübel	≥ 80	c [mm]	$V_{Rk,b} = V_{Rk,c,II} [kN]$
		≥ 50	1,25
		≥ 100 und ≥ $6*d_0$	2,5

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{g}

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α_{g} [-]	Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α_{g} [-]
V.,	siehe Tabelle C47	-	-	V.——	siehe Tabelle C47	-	-
V ₁ ↓	siehe Tabelle C47	5 d ₀	1,0	V.—	siehe Tabelle C47	5 d ₀	1,0
V, ↓	siehe Tabelle C47	240	2,0	V.—	siehe Tabelle C47	240	2,0
Anordnung	c ≥ [mm]	s _{II} [mm]	α_{q} [-]	Anordnung	c ≥ [mm]	s∥[mm]	α_{q} [-]
V, •	siehe Tabelle C47	5 d ₀	1,0	V.	siehe Tabelle C47	5 d ₀	1,0
V., • • •	siehe Tabelle C47	300	2,0	<u>V.</u>	siehe Tabelle C47	300	2,0

Tabelle C48: Verschiebungen

	h_{ef}	N	δ_{N0}	$\delta_{N_{\infty}}$	V	$\delta_{ m V0}$	$\delta_{V_{\infty}}$
	[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
l	≥ 80	2,5	0,4	0,8	1,7	1,0	1,5

Hilti HIT-HY 270 mit HAS-U	
Leistung Lochziegel Hlz, 10DF Charakteristische Werte der Tragfähigkeit unter Querlast und Gruppenfaktor Verschiebungen	Anhang C22

Art des Mauersteins: Kalksandlochstein KSL, 8DF Tabelle C49: Beschreibung des Mauersteins

Steintyp			KSL-12-1,4-8 DF
Rohdichte	ρ	[kg/dm³]	≥ 1,4
Druckfestigkeit	f _b	[N/mm ²]	≥ 12 / 20
Norm			EN 771 – 2
Hersteller			KS Wemding (D)
Steinabmessungen		[mm]	248 x 240 x 238
Minimale Wanddicke	h _{min}	[mm]	≥ 240

Charakteristische Werte der Tragfähigkeit für alle Dübelkombinationen (siehe Tabelle B3) Tabelle C50: Zugtragfähigkeit bei Randabstand c ≥ 50 mm

Nutzungskategorie	w/w = w/d		d/d			
Gebrauchstemperaturbereich	Та	Tb	Та	Tb		
Dübeltyp und -größe h _{ef} [mm] f _b [N/mm²]			$\mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} [kN]$			
	≥ 80	12	-	-	4,0	3,0
HAS-U M8 bis M16	≥ 00	20	-	-	5,5	4,5
HAS-U IVIO DIS IVI I'O	≥ 130	12	-	-	5,0	4,0
		20	-	-	7,5	6,0

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_q

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α_{g} [-]	Anordnung	c ≥ [mm]	s _{II} ≥ [mm]	α_{g} [-]
N	50	-	-	-	-	-	-
N	50	50	1,0	N	50	50	1,0
N	50	240	2,0	N	50	250	2,0

Tabelle C51: Quertragfähigkeit bei Randabstand c ≥ 125 mm (für V_{II}) und c ≥ 250 mm (für V_⊥)

Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm²]	$V_{Rk,b} = V_{Rk,c II} = V_{Rk,c \perp}^{1)} [kN]$
HAS-U M8		12	6,0
HAS-U MO		20	9,0
HAS-U M10	≥ 80	12	9,0
TIAG-0 WT0		20	12,0
HAS-U M12 to M16		12	12,0
HA3-0 W12 to W10		20	12,0

⁾ V_{Rk,b} darf als V_{Rk,c}⊥eingesetzt werden wenn:

- die Lagerfugen vollständig mit Mörtel verfüllt sind und
- die Stoßfugen vollständig mit Mörtel verfüllt sind oder die Steine direkten Kontakt zueinander haben und
- max V_{Rk,c}⊥ = 9 kN

Hilti HIT-HY 270 mit HAS-U	
Leistung Kalksandlochstein KSL, 8DF Charakteristische Werte der Tragfähigkeit unter Zuglast und Gruppenfaktor	Anhang C23

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{g}

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α_{g} [-]	Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α_{g} [-]
V _{ii}	125	-	-	<u>V.</u>	250	-	-
V , ↓ □	125	240	2,0	-	-	-	-
Anordnung	c ≥ [mm]	s _{II} [mm]	$\alpha_{\rm g}$ [-]	Anordnung	c ≥ [mm]	s∥[mm]	α_{g} [-]
V , • •	125	250	2,0	<u>V.</u>	250	250	2,0

Tabelle C52: Quertragfähigkeit bei Randabstand c ≥ 50 mm

Dübeltyp und -größe	h _{ef} [mm]	c [mm]	f _b [N/mm²]	V _{Rk,e,} ⊥ [kN]
		> 50	12	4,0
		≥ 50	20	6,0
Alle Dübel	≥ 80	c [mm]	f _b [N/mm²]	$V_{Rk,b} = V_{Rk,c,II}$ [kN]
		≥ 50	12	4,0
		≥ 50	20	6,0

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_q

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α _g [-]	Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α _g [-]
V , ↓	50	-	-	V.——	50	-	-
V , ↓	50	50	1,0	V.———	50	50	1,0
V , ↓	50	240	2,0	V.———	50	240	2,0
Anordnung	c ≥ [mm]	s _{II} [mm]	α_g [-]	Anordnung	c ≥ [mm]	s _{II} [mm]	α_{g} [-]
V _i	50	50	1,0	V.	50	50	1,0
V _i	50	250	2,0	V.	50	250	2,0

Tabelle C53: Verschiebungen

h _{ef}	N	δ_{N0}	δ _{N∞}	V	$\delta_{ m V0}$	$\delta_{V\infty}$
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	1,0	0,3	0,6	4,3	2,0	3,0
130	2,1	0,3	0,6	4,3	2,0	3,0

Hilti HIT-HY 270 mit HAS-U	
Leistung Kalksandlochstein KSL, 8DF Charakteristische Werte der Tragfähigkeit unter Querlast und Gruppenfaktor Verschiebungen	Anhang C24

Art des Mauersteins: Leichtbeton Hohlblockstein Hbl, 16DF Tabelle C54: Beschreibung des Mauersteins

Steintyp			Hbl-4-0,7
Rohdichte	ρ	[kg/dm³]	≥ 0,7
Druckfestigkeit	f _b	[N/mm ²]	≥ 2 / 6
Norm			EN 771-3
Hersteller			Knobel (D)
Steinabmessungen		[mm]	495 x 240 x 238
Minimale Wanddicke	h _{min}	[mm]	≥ 240

siehe Tabelle B4

Charakteristische Werte der Tragfähigkeit für alle Dübelkombinationen (siehe Tabelle B3) Tabelle C55: Zugtragfähigkeit bei Randabstand c ≥ 125 mm

Nutzungskategorie	w/w = w/d		d/d			
Gebrauchstemperaturbereich	Та	Tb	Та	Tb		
Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} \left[kN \right]$			
HAS-U M8 und M10,	≥ 80	2	3,5	3,0	4,0	3,0 (3,5*)
HAS-O IVIO UITO IVITO,	≥ 00	6	6,0	5,0	6,5 (7,0*)	5,5 (6,0*)
HAC II M12 upd M16	≥ 80	2	4,0	3,5	4,5	3,5 (4,0*)
HAS-U M12 und M16		6	7,0	6,0	8,0	6,5 (7,0*)

^{*} nur CAC Reinigung

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{g}

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	$\alpha_{\rm g}$ [-]	Anordnung	c ≥ [mm]	s _{II} ≥ [mm]	α_{g} [-]
N	125	-	-	-	-	-	-
N	125	240	2,0	N	125	240	2,0

Hilti HIT-HY 270 mit HAS-U	
Leistung Leichtbeton Hohlblockstein Hbl, 16DF Charakteristische Werte der Tragfähigkeit unter Zuglast und Gruppenfaktor	Anhang C25

Tabelle C56: Zugtragfähigkeit bei Randabstand c ≥ 50 mm

Nutzungskategorie	w/w = w/d		d/d			
Gebrauchstemperaturbereich	Та	Tb	Та	Tb		
Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} [kN]$			
	≥ 80	2	1,5	1,2	1,5	1,5
 HAS-U M8 bis M16		6	2,5	2,0	3,0	2,5
HAS-U INIO DIS INITO	160	2	2,0	1,5	2,0	1,5 (2,0*)
		6	3,5	2,5	3,5 (4,0*)	3,0

^{*} nur CAC Reinigung

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{g}

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α_{q} [-]	Anordnung	c ≥ [mm]	s _{II} ≥ [mm]	α_{q} [-]
N •	50	-	-	-	-	-	-
N	50	50	1,0	N	50	50	1,0
N	50	240	2,0	N	50	240	2,0

Tabelle C57: Quertragfähigkeit bei Randabstand c ≥ 250 mm (für V_{II}) und c ≥ 500 mm (für V_⊥)

Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm²]	$V_{Rk,b} = V_{Rk,c II} = V_{Rk,c \perp}^{1)} [kN]$
HAS-U M8, M10	≥ 80	2	4,0
TIAG-0 Wo, WTO	2 00	6	6,5
HAS-U M12	> 00	2	5,5
HAS-U W12	≥ 80	6	9,5
HAS-U M16	≥ 80	2	6,0
TAS-U WITO		6	10,0

V_{Rk,b} darf als V_{Rk,c}⊥eingesetzt werden, wenn:

- die Lagerfugen vollständig mit Mörtel verfüllt sind und
- die Stoßfugen vollständig mit Mörtel verfüllt sind oder die Steine direkten Kontakt zueinander haben.

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{g}

Anordnung	c ≥ [mm]	s⊥≥ [mm]	α_{g} [-]	Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α_{g} [-]
V.,	250	-	-	<u>V.</u>	500	-	-
V , ↓]	250	240	2,0	<u>V.</u>	500	240	1,0
Anordnung	c ≥ [mm]	s _{II} [mm]	α_{g} [-]	Anordnung	c ≥ [mm]	s _∥ [mm]	α_{g} [-]
V , · I	250	250	2,0	<u>V.</u>	500	500	2,0

Hilti HIT-HY 270 mit HAS-U	
Leistung Leichtbeton Hohlblockstein Hbl, 16DF Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast und Gruppenfaktor	Anhang C26

Tabelle C58: Quertragfähigkeit bei Randabstand c ≥ 50 mm

Dübeltyp und -größe	h _{ef} [mm]	c [mm]	f _b [N/mm²]	V _{Rk,c,} ⊥ [kN]
		≥ 50	2	1,5
		≥ 50	6	3,0
		≥ 250	2	2,5
Alle Dübel	≥ 80	c [mm]	f _b [N/mm²]	$V_{Rk,b} = V_{Rk,c,II}$ [kN]
Alle Dubei	200	≥ 50	2	1,5
			6	3,0
	-	≥ 100 ≥ 6 d ₀	2	2,5

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{g}

Anordnung	c ≥ [mm]	s⊥≥ [mm]	α _g [-]	Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	$\alpha_{g}[-]$
V ₁	siehe Tabelle C58	-	-	<u>V.</u>	siehe Tabelle C58	-	-
V , ↓	siehe Tabelle C58	50	1,0	V.—	siehe Tabelle C58	50	1,0
V _i , ↓	siehe Tabelle C58	240	2,0	V.—	siehe Tabelle C58	240	2,0
Anordnung	c ≥ [mm]	s _{II} [mm]	α_{g} [-]	Anordnung	c ≥ [mm]	s _{II} [mm]	α_{g} [-]
V, •	siehe Tabelle C58	50	1,0	V	siehe Tabelle C58	50	1,0
V, •	siehe Tabelle C58	250	2,0	V.	siehe Tabelle C58	250	2,0

Tabelle C59: Verschiebungen

h _{ef}	N	δ_{N0}	δ _{N∞}	V	$\delta_{ m V0}$	$\delta_{V\infty}$
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	0,8	0,20	0,4	2,3	1,0	1,5
160	1,1	0,25	0,5	2,3	1,0	1,5

Hilti HIT-HY 270 mit HAS-U

Leistung Leichtbeton Hohlblockstein Hbl, 16DF
Charakteristische Werte der Tragfähigkeit unter Querlast und Gruppenfaktor
Verschiebungen

Anhang C27

Art des Mauersteins: Normalbeton Lochstein - parpaing creux Tabelle C60: Beschreibung des Mauersteins

Steintyp			B40
Rohdichte	ρ	[kg/dm³]	≥ 0,9
Druckfestigkeit	f _b	[N/mm²]	≥ 4 oder ≥ 10
Norm			EN 771-3
Hersteller			Fabemi (F)
Steinabmessungen		[mm]	500 x 200 x 200
Minimale Wanddicke	h _{min}	[mm]	≥ 200

Charakteristische Werte der Tragfähigkeit für alle Dübelkombinationen (siehe Tabelle B3) Tabelle C61: Zugtragfähigkeit bei Randabstand c ≥ 50 mm

Nutzungskategorie			w/w = w/d		d/d									
Gebrauchstemperaturbereich	Та	Tb	Та	Tb										
Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm ²]		$N_{Rk,p} = N$	I _{Rk,b} [kN]									
Alle Dübel	≥ 50	4	0,9	0,9	0,9	0,9								
Alle Dubel	≥ 50	2 30	2 30	2 30	2 30	2 30	2 30	2 30	2 30	10	2,0	1,5	2,0	1,5
Allo Dübol	≥ 130	4	1,5	1,2	1,5	1,2								
Alle Dübel	= 130	10	2,5	2,0	2,5	2,0								

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{α}

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α _g [-]	Anordnung	c ≥ [mm]	s ≥ [mm]	α _g [-]
N •	50	-	-	-	-	-	-
N	50	200	2,0	N	50	200	2,0

Tabelle C62: Quertragfähigkeit bei Randabstand c ≥ 200 mm (für V_{II}) und c ≥ 500 mm (für V_⊥)

Dübeltyp und -größe	h _{ef} [mm]	f _b [N/mm²]	$V_{Rk,b} = V_{Rk,c II} = V_{Rk,c} \perp^{1} [kN]$	
	≥50	4	4	
Alla Dübal	≥50	10	6,5	
Alle Dübel	>00	≥80	4	5
	_ ≥00	10	7,5	

⁾ V_{Rk,b} darf als V_{Rk,c}⊥eingesetzt werden, wenn:

- die Lagerfugen vollständig mit Mörtel verfüllt sind und
- die Stoßfugen vollständig mit Mörtel verfüllt sind oder die Steine direkten Kontakt zueinander haben.

Hilti HIT-HY 270 mit HAS-U	
Leistung Normalbeton Lochstein - parpaing creux Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast und Gruppenfaktor	Anhang C28

Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{g}

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α_{g} [-]	Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α_{g} [-]
V	200	-	-	V.	500	-	-
V , ↓ □	200	200	2,0	<u>V.</u>	500	200	1,0
Anordnung	c ≥ [mm]	s _{II} [mm]	α _g [-]	Anordnung	c ≥ [mm]	s [mm]	α_{g} [-]
V , • • •	200	200	2,0	<u>V.</u>	500	500	2,0

Tabelle C63: Quertragfähigkeit bei Randabstand c ≥ 50 mm

Dübeltyp und -größe	h _{ef} [mm]	c [mm]	f _b [N/mm²]	V _{Rk,c,} ⊥ [kN]
	≥ 50	≥ 50	4	1,2
		≥ 50	10	1,5
Alle Dübel		≥ 250	4/10	2,5
		c [mm]	f _b [N/mm²]	$V_{Rk,b} = V_{Rk,c,II}$ [kN]
		> 50	4	2,0
		≥ 50	10	3,0

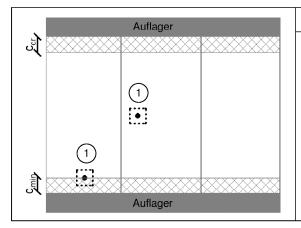
Zugehörige Achs- und Randabstände und Gruppenfaktoren α_{g}

Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α_{q} [-]	Anordnung	c ≥ [mm]	s⊥ ≥ [mm]	α_{q} [-]
V _i	50	-	-	V.———	siehe Tabelle C63	-	-
V , ↓	50	50	1,0	V.——	siehe Tabelle C63	50	1,0
V, ↓	50	200	2,0	V.——	siehe Tabelle C63	200	2,0
Anordnung	c ≥ [mm]	s _{II} [mm]	α_{q} [-]	Anordnung	c ≥ [mm]	s∥[mm]	α_{q} [-]
V. •	50	50	1,0	V.	siehe Tabelle C63	50	1,0
V. • •	50	200	2,0	V.	siehe Tabelle C63	200	2,0

Tabelle C64: Verschiebungen

h _{ef}	N	δ_{N0}	δ _{N∞}	V	$\delta_{ m V0}$	$\delta_{V^{\infty}}$
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
≥ 50	0,7	0,5	1,0	1,7	1,0	1,5

Hilti HIT-HY 270 mit HAS-U	
Leistung Normalbeton Lochstein - parpaing creux Charakteristische Werte der Tragfähigkeit unter Querlast und Gruppenfaktor Verschiebungen	Anhang C29



Art des Mauersteins: Deckenziegel

Tabelle C65: Beschreibung des Deckenziegels

Steintyp		Ds-1,0
Rohdichte	ρ≥ [kg/dm³]	1,0
Festigkeit		DIN EN 15037-3,
I estignett		Klasse R2
Norm		DIN 4160
Hersteller		Fiedler Marktredwitz (D)
Steinabmessungen	[mm]	510 x 250 x 180
Minimale Deckendicke	h _{min} ≥ [mm]	≥ 180

Einzelbefestigung
 Maximal ein Dübel pro Deckenziegel

Tabelle C66: Montageparameter für alle Dübelkombinationen (siehe Tabelle B3)

Befestigungselement		HAS-U M6 mit HIT-SC 12x85
Randabstand	$c_{min} = c_{cr} [mm]$	100 vom Auflager
Achsabstand	s _{min II} [mm]	510
	$s_{min} \perp = s_{cr} [mm]$	250

Tabelle C67: Gruppenfaktor

Gruppenfaktor	$\alpha_{g,N \parallel} \alpha_{g,V \parallel} \alpha_{g,N} \perp \alpha_{g,V} \perp [-]$	1	
---------------	---	---	--

Tabelle C68: Zugtragfähigkeit für alle Dübelkombinationen (siehe Tabelle B3)

Nutzungskategorie		w/w		d/d		
Gebrauchstemperaturbereich		Та	Tb	Та	Tb	
Dübeltyp und -größe	h _{ef} [mm]	Konsolentragfähigkeit [kN]	$\mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} [kN]$			
Alle Dübel	≥ 80	3	1,5	1,5	1,5	1,5

Tabelle C69: Verschiebungen

h _{ef}	N	δ_{N0}	δ _{N∞}
[mm]	[kN]	[mm]	[mm]
≥ 80	0,4	0,15	0,30

Hilti HIT-HY 270 mit HAS-U	
Leistung Deckenziegel	Anhang C30
Montageparameter und Gruppenfaktor	
Charakteristische Werte der Tragfähigkeit unter Zuglast und Verschiebungen	