

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-19/0161 of 8 May 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Hilti HIT-HY 170 with HAS-U

Metal Injection anchors for use in masonry

Hilti Aktiengesellschaft 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

24 pages including 3 annexes which form an integral part of this assessment

EAD 330076-00-0604

European Technical Assessment ETA-19/0161

Page 2 of 24 | 8 May 2019

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z26038.19 8.06.04-77/19

European Technical Assessment ETA-19/0161

Page 3 of 24 | 8 May 2019

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Injection system Hilti HIT-HY 170 with HAS-U for masonry is a bonded anchor (injection type) consisting of a mortar foil pack with injection mortar Hilti HIT-HY 170, a perforated sieve sleeve and an anchor rod with hexagon nut and washer in the range of M8 to M12. The steel elements are made of zinc coated steel, stainless steel or high corrosion resistant steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond and/or mechanical interlock between steel element, injection mortar and masonry.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance	
Characteristic values for resistance	See Annexes C1 to C7	
Displacements	See Annex C2 to C7	

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1

3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330076-00-0604 the applicable European legal act is: [97/177/EC].

The system to be applied is: 1

Z26038.19 8.06.04-77/19

European Technical Assessment ETA-19/0161

Page 4 of 24 | 8 May 2019

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 8 May 2019 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Baderschneider

Z26038.19 8.06.04-77/19

Installed condition

Figure A1: Hollow and solid brick with HAS-U-... and sieve sleeve HIT-SC (see Table B5)

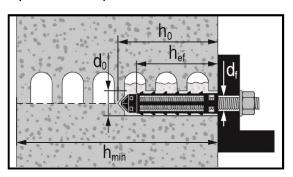
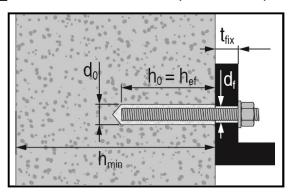
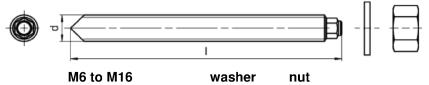



Figure A2: Solid brick with HAS-U-... (see Table B6)

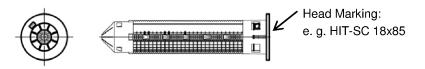
Hilti HIT-HY 170 with HAS-U

Product description | Annex A1 |
Installed condition

Injection mortar Hilti HIT-HY 170: hybrid system with aggregate 330 ml and 500 ml



Static mixer Hilti HIT-RE-M



HAS-U-...

electronic copy of the eta by dibt: eta-19/0161

Sieve sleeve HIT-SC 16 to 22

Hilti HIT-HY 170 with HAS-U	
Product description Injection mortar / Static mixer / Steel elements / Sieve sleeve	Annex A2

8.06.04-77/19 Z29279.19

Table A1: Materials

Decimation	Matarial				
Designation	Material				
Metal parts made of	Metal parts made of zinc coated steel				
HAS-U-5.8(F)	Strength class 5.8, $f_{uk} = 500 \text{ N/mm}^2$, $f_{yk} = 400 \text{ N/mm}^2$. Elongation at fracture ($I_0 = 5d$) > 8% ductile. Electroplated zinc coated $\geq 5 \mu m$, (F) Hot dip galvanized $\geq 45 \mu m$.				
HAS-U-8.8(F)	Strength class 8.8, $f_{uk} = 800 \text{ N/mm}^2$, $f_{yk} = 640 \text{ N/mm}^2$. Elongation at fracture ($I_0 = 5d$) > 12% ductile. Electroplated zinc coated $\geq 5 \mu m$, (F) Hot dip galvanized $\geq 45 \mu m$.				
Washer	Electroplated zinc coated $\geq 5~\mu m$. Hot dip galvanized $\geq 45~\mu m$.				
Nut	Strength class of nut adapted to strength class of threaded rod. Electroplated zinc coated \geq 5 μ m, (F) Hot dip galvanized \geq 45 μ m.				
Metal parts made of	stainless steel				
HAS-U-R	Strength class 70 $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 450 \text{ N/mm}^2$. Elongation at fracture ($I_0 = 5d$) > 8% ductile. Stainless steel A4 according to EN 10088-1: 2014				
Washer	Stainless steel A4 according to EN 10088-1: 2014				
Nut	Strength class of nut adapted to strength class of threaded rod Stainless steel A4 according to EN 10088-1: 2014				
Metal parts made of	high corrosion resistant steel				
HAS-U-HCR					
Washer	High corrosion resistant steel according to EN 10088-1: 2014				
Nut	Strength class of nut adapted to strength class of threaded rod. High corrosion resistant steel according to EN 10088-1: 2014				
Plastic parts	Plastic parts				
Sieve sleeve HIT-SC	Frame: FPP 20T. Sieve: PA6.6 N500/200.				

Hilti HIT-HY 170 with HAS-U	
Product description Materials	Annex A3

Specifications of intended use

Base materials:

- Solid brick masonry (use category b) according to Annex B3.
 Note: The characteristic resistances are also valid for larger brick sizes and larger compressive strengths of the masonry unit.
- · Hollow brick masonry (use category c) according to Annex B3 and B4.
- · Mortar strength class of the masonry: M2,5 at minimum according to EN 998-2:2010.
- For masonry made of other solid, hollow or perforated bricks, the characteristic resistance of the anchor may be determined by job site tests according to EOTA Technical Report TR 053, April 2016, under consideration of the β-factor given in Annex C1, Table C1.

Table B1: Overview use categories

Anchorages s	ubject to:	HIT-HY 170 v	HIT-HY 170 with HAS-U	
		In solid bricks	In hollow bricks	
Hole drilling	6555	Hammer mode, Rotary mode	Rotary mode	
Static and quas	si static loading	Annex: C1 (steel), C2, C3	Annex: C1 (steel), C4, C5, C6, C7	
Use category: o	dry or wet	Category d/d - Installation and use in structures subject to dry internal conditions. Category w/d - Installation in dry or wet substrate and use in structures subject to dry internal conditions Category w/w - Installation and use in structures subject to dry or wet environmental conditions		
Installation dire	ection	Hori	zontal	
Use category		b (solid masonry)	c (hollow or perforated masonry)	
Temperature in material at insta		+5 °C to +40 °C (Table B7) 0 °C to +40 °C (Table B8		
Temperatur range Ta:			ax. long term temperature +24 °C and ax. short term temperature +40 °C)	
temperature	Temperature range Tb:	-40 °C to +80 °C (max. long term temperature +50 °C a max. short term temperature +80 °C)		

Hilti HIT-HY 170 with HAS-U	
Intended Use	Annex B1
Specifications	

English translation prepared by DIBt

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal conditions, if other
 particular aggressive conditions exist
 (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing products are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 supports).
- Anchorages under static or quasi-static loading are designed in accordance with: EOTA Technical Report TR 054, April 2016, Design method A.

Installation:

 Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Hilti HIT-HY 170 with HAS-U	
Intended Use Specifications	Annex B2

Z29279.19 8.06.04-77/19

electronic copy of the eta by dibt: eta-19/0161

Table B2: Overview brick types and properties

Brick type	Picture	Brick size [mm]	Compressive strength [N/mm²]	Bulk density [kg/dm³]	Annex
Solid clay brick EN 771-1		≥ 240x115x113	12	2,0	C2
Solid calcium silicate brick EN 771-2	9	≥ 240x115x113	12 / 28	2,0	C3
Hollow clay brick EN 771-1		300x240x238	12 / 20	1,4	C4
Hollow calcium silicate brick EN 771-2		248x240x238	12 / 20	1,4	C5
Hollow lightweight concrete brick EN 771-3		495x240X238	2/6	0,8	C6
Hollow normal weight concrete brick EN 771-3	Will !	500x200x200	4 / 10	1,0	C7

Hilti HIT-HY 170 with HAS-U	
Intended Use	Annex B3
Brick types and properties	

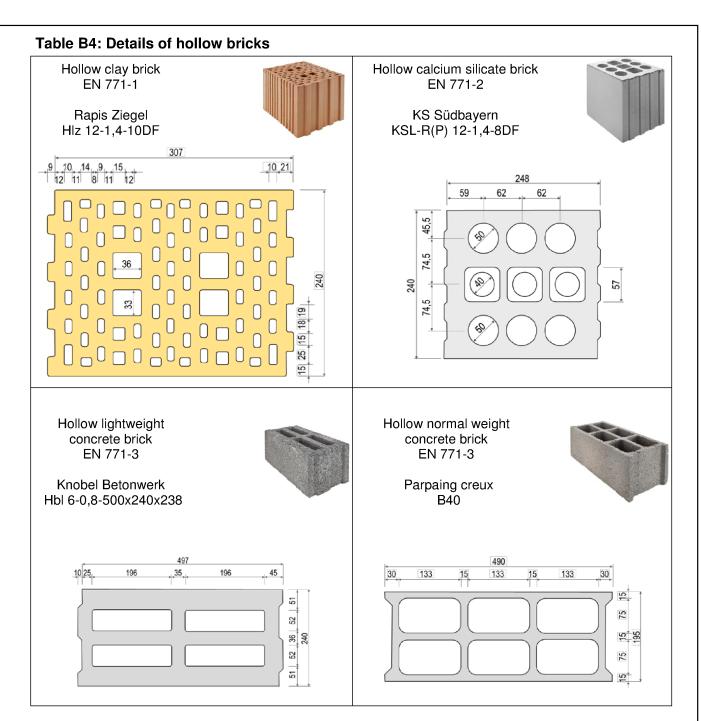


Table B3: Overview fastening elements (including sizes) and corresponding brick types. Embedment depth $h_{\rm ef}$ = 80 mm

Brick type	Picture	HAS-U	HAS-U + HIT-SC	Annex
Solid clay brick EN 771-1		M8 to M12	M8 to M12	C2
Solid calcium silicate brick EN 771-2		M8 to M12	M8 to M12	C3
Hollow clay brick EN 771-1		-	M8 to M12	C4
Hollow calcium silicate brick EN 771-2		-	M8 to M12	C5
Hollow lightweight concrete brick EN 771-3		-	M8 to M12	C6
Hollow normal weight concrete brick EN 771-3	Till I	-	M8 to M12	C7

Hilti HIT-HY 170 with HAS-U	
Intended Use Fastening elements and corresponding brick types	Annex B4

Hilti HIT-HY 170 with HAS-U	
Intended Use Details of hollow bricks	Annex B5

Table B5: Installation parameters of HAS-U-... with sieve sleeve HIT-SC in hollow brick and solid brick (Figure A1)

HAS-U			M8	M10	M12
with HIT-SC	Œ	H	16x85	16x85	18x85
Nominal diameter of drill bit	d_0	[mm]	16	16	18
Drill hole depth	h ₀	[mm]	95	95	95
Effective embedment depth	h _{ef}	[mm]	80	80	80
Maximum diameter of clearance hole in the fixture	df	[mm]	9	12	14
Minimum wall thickness	h_{min}	[mm]	115	115	115
Brush HIT-RB	-	[-]	16	16	18
Maximum torque moment for all brick types except "parpaing creux"	T_{max}	[Nm]	3	4	6
Maximum torque moment for "parpaing creux"	T_{max}	[Nm]	2	2	3
Number of strokes HDM	-	[-]	6	6	8
Number of strokes HDE-500	-	[-]	5	5	6

Table B6: Installation parameters of threaded rod, HAS-U-... in solid brick (Figure A2)

HAS-U			М8	M10	M12
Nominal diameter of drill bit	d_0	[mm]	10	12	14
Drill hole depth = Effective embedment depth	h ₀ = h _{ef}	[mm]	80	80	80
Maximum diameter of clearance hole in the fixture	d_{f}	[mm]	0	12	14
Minimum wall thickness	h_{min}	[mm]	115	115	115
Brush HIT-RB	-	[-]	10	12	14
Maximum torque moment	T_{max}	[Nm]	5	8	10

Hilti HIT-HY 170 with HAS-U	
Intended Use Installation parameters	Annex B6

Table B7: Maximum working time and minimum curing time for solid bricks 1)

Temperature in the base material T	Maximum working time t _{work}	Minimum curing time t _{cure}
5 °C to 10 °C	8 min	2,5 h
> 10 °C to 20 °C	5 min	1,5 h
> 20 °C to 30 °C	3 min	45 min
> 30 °C to 40 °C	2 min	30 min

¹⁾ The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.

Table B8: Maximum working time and minimum curing time for hollow bricks 1)

Temperature in the base material T	Maximum working time t _{work}	Minimum curing time t _{cure}
>0 °C to 5 °C	10 min	5 h
> 5 °C to 10 °C	8 min	2,5 h
> 10 °C to 20 °C	5 min	1,5 h
> 20 °C to 30 °C	3 min	45 min
> 30 °C to 40 °C	2 min	30 min

The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.

Table B9: Cleaning tools

Manual Cleaning (MC):

Hilti hand pump for blowing out drill holes

Compressed air cleaning (CAC) 1):

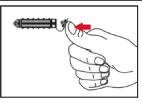
air nozzle with an orifice opening of minimum 3,5 mm in diameter for blowing out drill hole

Steel brush HIT-RB:

according to tables B5 to B6 depending on drill hole diameter for MC and CAC

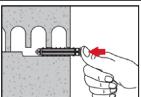
Hilti HIT-HY 170 with HAS-U	
Intended Use	Annex B7
Maximum working time and minimum curing time. Cleaning tools	

¹⁾ Compressed Air Cleaning (CAC) is also allowed

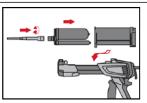


Installation Hole drilling If no significant resistance is felt over the entire depth of the hole when drilling (e.g. in unfilled butt joints), the anchor should not be set at this position. **Drilling mode** In hollow and solid bricks (use category c): rotary mode Drill hole to the required embedment depth with a hammer drill set in rotary mode using an appropriately sized carbide drill bit. In solid bricks (use category b): hammer mode Drill hole to the required embedment depth with a hammer drill set in hammer mode using an appropriately sized carbide drill bit. **Drill hole cleaning** Just before setting the anchor, the drill hole must be free of dust and debris. Inadequate hole cleaning = poor load values. Manual Cleaning (MC): For hollow and solid bricks Blow out at least 2 times from the back of the drill hole with the Hilti hand pump until return air stream is free of noticeable dust. Brush 2 times with the specified steel brush (tables B5 to B6) by inserting the steel brush Hilti HIT-RB to the back of the hole in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge \text{drill hole } \emptyset$) - if not the brush is too small and must be replaced with the proper brush diameter. Blow out again with the Hilti hand pump at least 2 times until return air stream is free of noticeable dust.

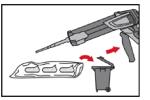
Hilti HIT-HY 170 with HAS-U	
Intended Use Installation instructions	Annex B8



Injection preparation in masonry with holes or voids: installation with sieve sleeve HIT-SC


Sieve sleeve HIT-SC

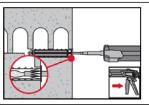
Close lid.


Insert sieve sleeve manually.

For all applications

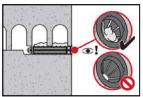
Tightly attach new Hilti mixing nozzle HIT-RE-M to foil pack manifold (snug fit). Do not modify the mixing nozzle.

Observe the instruction for use of the dispenser and foil pack. Check foil pack holder for proper function. Do not use damaged foil packs / holders. Insert foil pack into foil pack holder and put holder into HIT-dispenser.



Discard initial adhesive. The foil pack opens automatically as dispensing is initiated. Depending on the size of the foil pack an initial amount of adhesive has to be discarded. Discarded quantities are:

2 strokes for 330 ml foil pack, 3 strokes for 500 ml foil pack.


Inject adhesive without forming air voids

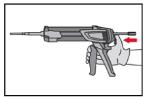
Installation with sieve sleeve HIT-SC

Sieve sleeve HIT-SC

Insert mixer approximately 1 cm through the lid. Inject required amount of adhesive (see table B5). Adhesive must emerge through the lid.

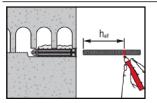
Control amount of injected mortar. Adhesive has to protrude into the lid.

After injection is completed, depressurize the dispenser by pressing the release trigger. This will prevent further adhesive discharge from the mixer.

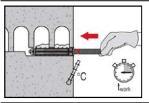

Hilti HIT-HY 170 with HAS-U	
Intended Use Installation instructions	Annex B9

Solid bricks: installation without sieve sleeve

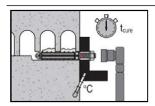
Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull.


Fill holes approximately 2/3 full to ensure that the annular gap between the anchor and the base material is completely filled with adhesive along the embedment length.

After injection is completed, depressurize the dispenser by pressing the release trigger. This will prevent further adhesive discharge from the mixer.


Setting the element:

Before use, verify that the element is dry and free of oil and other contaminants.


HAS-U-... in hollow and solid bricks: Pre-setting (Figure A1 to Figure A2)

Mark the element to the required embedment depth hef acc. to Table B5 and B6.

Set element to the required embedment depth until working time t_{work} has elapsed. The working time t_{work} is given in Table B7 and Table B8.

Loading the anchor

electronic copy of the eta by dibt: eta-19/0161

After required curing time t_{cure} (see Table B7 and Table B8) the anchor can be loaded.

The applied installation torque shall not exceed the values T_{max} given in Table B5 to Table B6.

Hilti HIT-HY 170 with HAS-U

Intended Use
Installation instructions

Annex B10

Table C1: β-factor for job-site testing under tension loading

Use categories		w/w an	d w/d	d/d		
Temperature range		Ta ¹⁾	Tb ¹⁾	Ta ¹⁾	Tb ¹⁾	
Base material	Elements					
Solid clay brick EN 771-2	HAS-U HAS-U + HIT-SC	0,97	0,83	0,97	0,83	
Solid calcium silicate brick	HAS-U	0,96	0,84	0,97	0,84	
EN 771-2	HAS-U + HIT-SC	0,69	0,62	0,91	0,82	
Hollow clay brick EN 771-1	HAS-U + HIT-SC	0,97	0,83	0,97	0,83	
Hollow calcium silicate brick EN 771-2	HAS-U + HIT-SC	0,69	0,62	0,91	0,82	
Hollow light weight concrete brick EN 771-3	HAS-U + HIT-SC	0,89	0,81	0,97	0,86	
Hollow normal weight concrete brick EN 771-3	HAS-U + HIT-SC	0,97	0,80	0,97	0,80	

¹⁾ Temperature range Ta / Tb see Annex B1.

Table C2: Characteristic values of steel resistance for HAS-U-... under tension and shear loads in masonry

HIT-HY 170 with HAS-U			М8	M10	M12
Steel failure tension loads		·			
Characteristic steel resistance	$N_{Rk,s}$	[kN]		$A_s \cdot f_{uk}$	
Steel failure shear loads without lever arm		•			
Characteristic steel resistance	$V_{Rk,s}$	[kN]		$0.5 \cdot A_s \cdot f_{uk}$	
Steel failure shear loads with lever arm					
Characteristic bending moment	$M_{Rk,s}$	[kN]		1,2 · W _{el} · f _{uk}	

Hilti HIT-HY 170 with HAS-U	
Performances	Annex C1
β -factors for job-site testing under tension load	
Characteristic resistances under tension and shear load – steel failure	

Brick type: Solid clay brick Mz, 2DF

Table C3: Description of brick

Brick type		[-]	Solid Mz, 2DF
Bulk density	ρ	[kg/dm³]	≥ 2,0
Compressive strength	f _b	[N/mm²]	≥ 12
Code		[-]	EN 771 - 1
Producer		[-]	-
Brick dimensions		[mm]	≥ 240 x 115 x 113
Minimum wall thickness	h _{min}	[mm]	≥ 115

Table C4: Installation parameter for all anchor combinations (see Table B3)

Anchor type		see Table B3
Edge distance	$c_{min} = c_{cr} [mm]$	115
Chaoina	$s_{min II} = s_{cr II} [mm]$	240
Spacing	$S_{\min} \perp = S_{cr} \perp [mm]$	115

Table C5: Group factor for group fastenings

Group factor	$\alpha_{q,N \parallel} \alpha_{q,V \parallel} \alpha_{q,N} \perp \alpha_{q,V} \perp [-]$	2 at c _{cr} and s _{cr}
	q,iv iiq,v iiq,iv —q,v — []	_ 511 5(1 511 151 5(1

Table C6: Characteristic tension resistance at edge distance c ≥ c_{cr}

Use category				w/w	= w/d	d/d	
Service temperature range				(Ta)	(Tb)	(Ta)	(Tb)
Anchor type and size		h _{ef} [mm]	f _b [N/mm²]	N _{Rk} [kN]			
HAS-U	M8, M10, M12	80	12	3,0	2,5	3,0	2,5
HAS-U + HIT-SC	M8, M10, M12	80	12	4,0	3,5	4,0	3,5

Table C7: Characteristic shear resistance at edge distance c ≥ c_{cr}

Use category					w/w = w/d d/d		
Service temperature range				(Ta)	(Tb)	(Ta)	(Tb)
Anchor type and	d size	h _{ef} [mm]	f _b [N/mm²]	V _{Rk} [kN]			
All anchors	M8. M10, M12	80	12	3,5			

Table C8: Displacements

h _{ef} [mm]	N [kN]	δ_{N0} [mm]	δ _{N∞} [mm]	V [kN]	δ_{V0} [mm]	δ _{V∞} [mm]
80	0,9	0,2	0,4	1,0	1,0	1,5

Hilti HIT-HY 170 with HAS-U	
Performances solid clay brick Mz, 2DF Installation parameters and group factor.	Annex C2
Characteristic values of resistance under tension and shear loads. Displacements	

Brick type: Solid calcium silicate brick KS, 2DF

Table C9: Description of brick

Brick type		[-]	Solid KS, 2DF
Bulk density	ρ	[kg/dm³]	≥ 2,0
Compressive strength	f _b	[N/mm²]	≥ 12 or ≥ 28
Code		[-]	EN 771 - 2
Producer		[-]	-
Brick dimensions		[mm]	≥ 240 x 115 x 113
Minimum wall thickness	h _{min}	[mm]	≥ 115

Table C10: Installation parameter for all anchor combinations (see Table B3)

Anchor type		see Table B3
Edge distance	$c_{min} = c_{cr} [mm]$	115
Chaoina	$s_{min I} = s_{cr I} [mm]$	240
Spacing	$s_{min} \perp = s_{cr} \perp [mm]$	115

Table C11: Group factor for group fastenings

Group factor	$\alpha_{g,N II} \alpha_{g,V II} \alpha_{g,N} \perp \alpha_{g,V} \perp [-]$	2 at c _{cr} and s _{cr}	
--------------	---	--	--

Table C12: Characteristic tension resistance at edge distance c ≥ c_{cr}

Use category				w/w :	= w/d	d	/d
Service temperature range				(Ta)	(Tb)	(Ta)	(Tb)
Anchor type and size			N _{Rk} [kN]				
HAS-U	M8, M10, M12	80	12	5,5	5,0	6,0	5,0
	1010, 10110, 10112	80	28	8,5	7,5	8,5	7,5
HAS-U + HIT-SC	M8, M10, M12	90	12	4,0	3,5	5,5	5,0
+	₩ + ₩ 108, W10, W12	80	28	6,0	5,5	8,0	7,5

Table C13: Characteristic shear resistance at edge distance c ≥ c_{cr}

Use category					= w/d	d/d	
Service temperature range				(Ta) (Tb) (Ta) (Tb)			(Tb)
Anchor type and size h		h _{ef} [mm]	f _b [N/mm²]	V _{Rk} [kN]			
All anchors	M8, M10, M12	80	12	4,0			
All afficitors Mo, MTO, MT2	00	28	6,0				

Table C14: Displacements

h _{ef} [mm]	N [kN]	δ _{N0} [mm]	δ _{N∞} [mm]	V [kN]	δ _{v0} [mm]	δ _{V∞} [mm]
80mm	2,3	0,2	0,4	1,5	1,2	1,8

Hilti HIT-HY 170 with HAS-U	
Performances solid silica brick KS, 2DF Installation parameters and group factor. Characteristic values of resistance under tension and shear loads. Displacements	Annex C3

Brick type: Hollow clay brick Hlz, 10DF

Table C15: Description of brick

Brick type		[-]	Hlz 12-1,4-10 DF
Bulk density	ρ	[kg/dm³]	≥ 1,4
Compressive strength	fb	$[N/mm^2]$	≥ 12 or ≥ 20
Code		[-]	EN 771 - 1
Producer		[-]	Rapis (D)
Brick dimensions		[mm]	300 x 240 x 238
Minimum wall thickness	h _{min}	[mm]	≥ 240

Table C16: Installation parameter for all anchor combinations (see Table B3)

Anchor type		see Table B3
Edge distance	$c_{min} = c_{cr} [mm]$	150
Spacing -	$s_{min II} = s_{cr II}[mm]$	300
	$s_{min} \perp = s_{cr} \perp [mm]$	240

Table C17: Group factor for group fastenings

Group factor	$\alpha_{g,N\;II}\;\alpha_{g,V\;II}\;\alpha_{g,N}\perp\alpha_{g,V}\perp$ [-]	2 at c _{cr} and s _{cr}
--------------	--	--

Table C18: Characteristic tension resistance at edge distance c ≥ c_{cr}

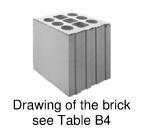
Use category				w/w :	= w/d	d,	/d
Service temperature range			(Ta)	(Tb)	(Ta)	(Tb)	
Anchor type and size		h _{ef} [mm]	f _b [N/mm²]		N _{Rk} [kN]		
HAS-U + HIT-SC	M8, M10, M12	80	12	3,0	2,5	3,0	2,5
+			20	3,5	3,0	3,5	3,0

Table C19: Characteristic shear resistance at edge distance c ≥ c_{cr}

Use category			w/w = w/d		d/d		
Service temperature range			(Ta)	(Tb)	(Ta)	(Tb)	
Anchor type and size		h _{ef} [mm]	f _b [N/mm²]	V _{Rk} [kN]			
HAS-U + HIT-SC	MO M10 M10	80	12	2,0			
	M8, M10, M12		20	3,0			

Table C20: Displacements

h _{ef} [mm]	N [kN]	δ _{N0} [mm]	δ _{N∞} [mm]	V [kN]	δ _{v0} [mm]	δ _{ν∞} [mm]
80	0,9	0,2	0,3	0,9	1,0	1,5


Hilti HIT-HY 170 with HAS-U	
Performances hollow clay brick Hlz, 10DF Installation parameters and group factor.	Annex C4
Characteristic values of resistance under tension and shear loads. Displacements	

Brick type: Hollow calcium silicate brick KSL, 8DF

Table C21: Description of brick

Brick type		[-]	KSL-12-1,4-8 DF
Bulk density	ρ	[kg/dm³]	≥ 1,4
Compressive strength	f _b	[N/mm ²]	≥ 12 or ≥ 20
Code		[-]	EN 771 – 2
Producer		[-]	KS Südbayern (D)
Brick dimensions	-	[mm]	248 x 240 x 238
Minimum wall thickness	h _{min}	[mm]	≥ 240

Table C22: Installation parameter for all anchor combinations (see Table B3)

Anchor type		see Table B3
Edge distance	$c_{min} = c_{cr} [mm]$	125
Spacing -	$s_{min II} = s_{cr II}[mm]$	248
	$S_{\min} \perp = S_{cr} \perp [mm]$	240

Table C23: Group factor for group fastenings

Group factor	$\alpha_{g,N \; \text{II}} \; \alpha_{g,V \; \text{II}} \; \alpha_{g,N} \perp \alpha_{g,V} \perp \text{[-]}$	2 at c_{cr} and s_{cr}
--------------	--	----------------------------

Table C24: Characteristic tension resistance at edge distance c ≥ c_{cr}

Use category				w/w = w/d		d/d	
Service temperature range				(Ta)	(Tb)	(Ta)	(Tb)
Anchor type and siz	Anchor type and size h_{ef} [mm] f_b [N/mm ²]		N _{Rk} [kN]				
HAS-U + HIT-SC	MO M10 M10	90	12	3,0	2,5	3,5	3,0
——————————————————————————————————————	M8, M10, M12	80	20	4,0	3,5	5,0	4,5

Table C25: Characteristic shear resistance at edge distance c ≥ c_{cr}

Use category	w/w = w/d		d/d				
Service temperature range				(Ta)	(Tb)	(Ta)	(Tb)
Anchor type and siz	e	h _{ef} [mm]	f _b [N/mm ²]	V _{Rk} [kN]		[kN]	
HAS-U + HIT-SC) MO M10 M10	80	12		8,	5	
+	M8, M10, M12	00	20		12	,0	

Table C26: Displacements

h _{ef} [mm]	N [kN]	δ _{N0} [mm]	δ _{N∞} [mm]	V [kN]	δ _{V0} [mm]	δ _{V∞} [mm]
80	1.8	0.2	0.3	3.4	2.5	3.8

Hilti HIT-HY 170 with HAS-U	
Performances hollow silica brick KSL, 8DF	Annex C5
Installation parameters and group factor.	
Characteristic values of resistance under tension and shear loads. Displacements	

Brick type: Hollow lightweight concrete brick Hbl, 16DF

Table C27: Description of brick

Brick type		[-]	Hbl-4-0,7
Bulk density	ρ	[kg/dm³]	≥ 0,8
Compressive strength	f_b	[N/mm ²]	≥ 2 or ≥ 6
Code		[-]	EN 771-3
Producer		[-]	Knobel (D)
Brick dimensions		[mm]	495 x 240 x 238
Minimum wall thickness	h _{min}	[mm]	≥ 240

Table C28: Installation parameter for all anchor combinations (see Table B3)

Anchor type		see Table B3
Edge distance	$c_{min} = c_{cr} [mm]$	250
Cassing	$s_{min II} = s_{cr II} [mm]$	240
Spacing	$s_{min} \perp = s_{cr} \perp [mm]$	240

Table C29: Group factor for group fastenings

Group factor	$\alpha_{g,N \mid I} \alpha_{g,V \mid I} \alpha_{g,N} \perp \alpha_{g,V} \perp [-]$	2 at c _{cr} and s _{cr}
--------------	---	--

Table C30: Characteristic tension resistance at edge distance c ≥ c_{cr}

Use category	w/w = w/d		d/d			
Service temperature range			(Ta)	(Tb)	(Ta)	(Tb)
Anchor type and size		f _b [N/mm²]	N _{Rk} [kN]			
HAS-U + HIT-SC M8, M10, M12	80	2	1,2	0,9	1,5	1,2
+ WIO, WIO, WIZ		6	2,0	1,5	2,5	2,0

Table C31: Characteristic shear resistance at edge distance c ≥ c_{cr}

Use category	w/w = w/d		d/d				
Service temperature range				(Ta)	(Tb)	(Ta)	(Tb)
Anchor type and siz	е	h _{ef} [mm]	f _b [N/mm²]	Y _{Rk} [kN]			
HAS-U + HIT-SC	MO M10 M10	90	2		2,	5	
+	M8, M10, M12	80	6		4,	0	

Table C32: Displacements

h _{ef} [mm]	N [kN]	δ _{N0} [mm]	δ _{N∞} [mm]	V [kN]	δ _{v0} [mm]	δ _{ν∞} [mm]
80	2.4	0.2	0.4	3.4	1.3	1.9

Hilti HIT-HY 170 with HAS-U	
Performances hollow lightweight concrete brick Hbl 16DF Installation parameters and group factor. Characteristic values of resistance under tension and shear loads. Displacements	Annex C6

English translation prepared by DIBt

Brick type: Hollow normal weight concrete brick - parpaing creux

Table C33: Description of brick

Brick type		[-]	B40
Bulk density	ρ	[kg/dm³]	≥ 1,0
Compressive strength	f _b	[N/mm²]	≥ 4 or ≥ 10
Code		[-]	EN 771-3
Producer		[-]	Fabemi (F)
Brick dimensions		[mm]	500 x 200 x 200
Minimum wall thickness	h _{min}	[mm]	≥ 200

Table C34: Installation parameter for all anchor combinations (see Table B3)

Anchor type		see Table B3
Edge distance	$c_{min} = c_{cr} [mm]$	200
Cassing	$s_{min II} = s_{cr II}[mm]$	200
Spacing -	$s_{min} \perp = s_{cr} \perp [mm]$	200

Table C35: Group factor for group fastenings

Group factor	$\alpha_{g,N\;II}\;\alpha_{g,V\;II}\;\alpha_{g,N}\perp\alpha_{g,V}\perp$ [-]	2 at c _{cr} and s _{cr}
--------------	--	--

Table C36: Characteristic tension resistance at edge distance c ≥ c_{cr}

Use category				w/w = w/d		d/d	
Service temperature range				(Ta)	(Tb)	(Ta)	(Tb)
Anchor type and siz	e	h _{ef} [mm]	f _b [N/mm²]		N_{Rk}	[kN]	
HAS-U + HIT-SC	S-U + HIT-SC M8, M10, M12	80	4	0,9	0,9	0,9	0,9
——————————————————————————————————————			10	1,2	1,2	1,5	1,5

Table C37: Characteristic shear resistance at edge distance c ≥ c_{cr}

Use category				w/w = w/d		d/d	
Service temperature range				(Ta)	(Tb)	(Ta)	(Tb)
Anchor type and size			V _{Rk} [kN]				
HAS-U + HIT-SC Mg M40 M4		80	4	2,5			
+	M8, M10, M12	00	10	4,0			

Table C38: Displacements

h _{ef} [mm]	N [kN]	δ _{N0} [mm]	δ _{N∞} [mm]	V [kN]	δ _{v0} [mm]	δ _{V∞} [mm]
80	1,0	0,6	1,2	2,3	0,6	0,9

Hilti HIT-HY 170 with HAS-U	
Performances hollow normal weight concrete brick - parpaing creux Installation parameters and group factor.	Annex C7
Characteristic values of resistance under tension and shear loads. Displacements	