

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-19/0200 of 23 October 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik European Technical Assessment: Chemofast Injection System EP 1000 for rebar Trade name of the construction product Product family Systems for post-installed rebar connections with mortar to which the construction product belongs Manufacturer CHEMOFAST Anchoring GmbH Hanns-Martin-Schleyer-Straße 23 47877 Willich DEUTSCHLAND CHEMOFAST Anchoring GmbH Manufacturing plant Hanns-Martin-Schleyer-Straße 23 47877 Willich DEUTSCHLAND This European Technical Assessment 21 pages including 3 annexes which form an integral part contains of this assessment EAD 330087-00-0601 This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-19/0200 English translation prepared by DIBt

Page 2 of 21 | 23 October 2019

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 21 | 23 October 2019

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "Chemofast Injection system EP 1000 for rebar connection" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 40 mm or the tension anchor ZA from sizes M12 to M24 according to Annex A and injection mortar Chemofast EP 1000 are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connection of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 2 and C 3

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-00-0601, the applicable European legal act is: [96/582/EC].

The system(s) to be applied is (are): 1

European Technical Assessment ETA-19/0200 English translation prepared by DIBt

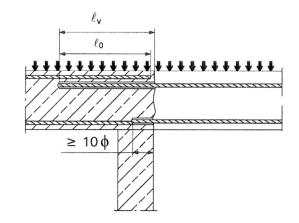
Page 4 of 21 | 23 October 2019

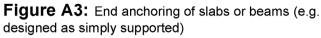
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

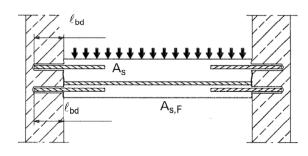
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 23 Ocotber 2019 by Deutsches Institut für Bautechnik

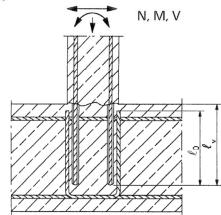
BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Lange


Page 5 of European Technical Assessment ETA-19/0200 of 23 October 2019


English translation prepared by DIBt



Installation post installed rebar


Figure A1: Overlapping joint for rebar connections of slabs and beams

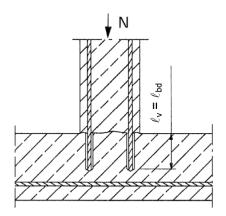
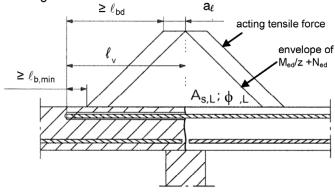


Figure A2: Overlapping joint at a foundation of a wall or column where the rebars are stressed in tension

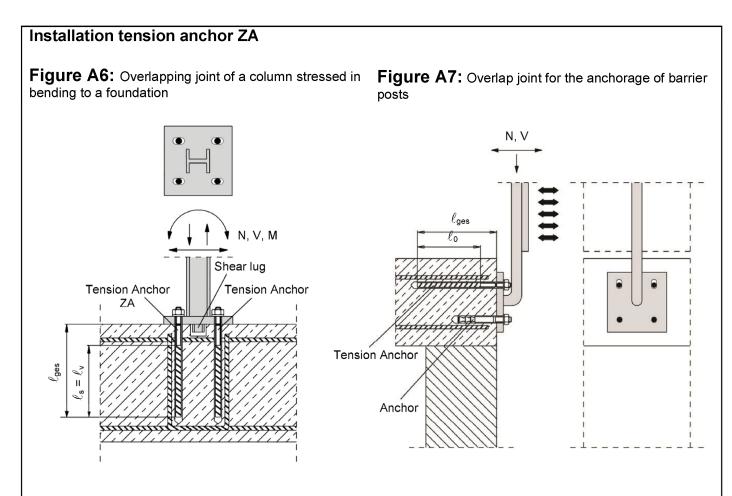

Figure A4: Rebar connection for components stressed primarily in compression. The rebars sre stressed in compression

Note to Figure A1 to A5:

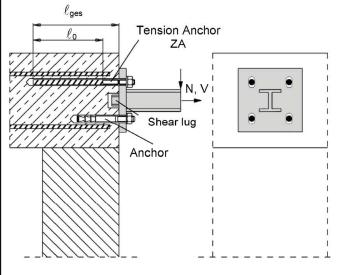
In the Figures no transverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1:2004+AC:2010.

Preparing of joints according to Annex B 2

Figure A5: Anchoring of reinforcement to cover the line of acting tensile force


Chemofast Injection System EP 1000 for rebar connection

Product description Installed condition and examples of use for rebars Annex A 1


Page 6 of European Technical Assessment ETA-19/0200 of 23 October 2019

English translation prepared by DIBt

Figure A8: Overlap joint for the anchorage to centilever members

Note to Figure A6 to A8:

In the Figures no transverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1:2002+AC:2010

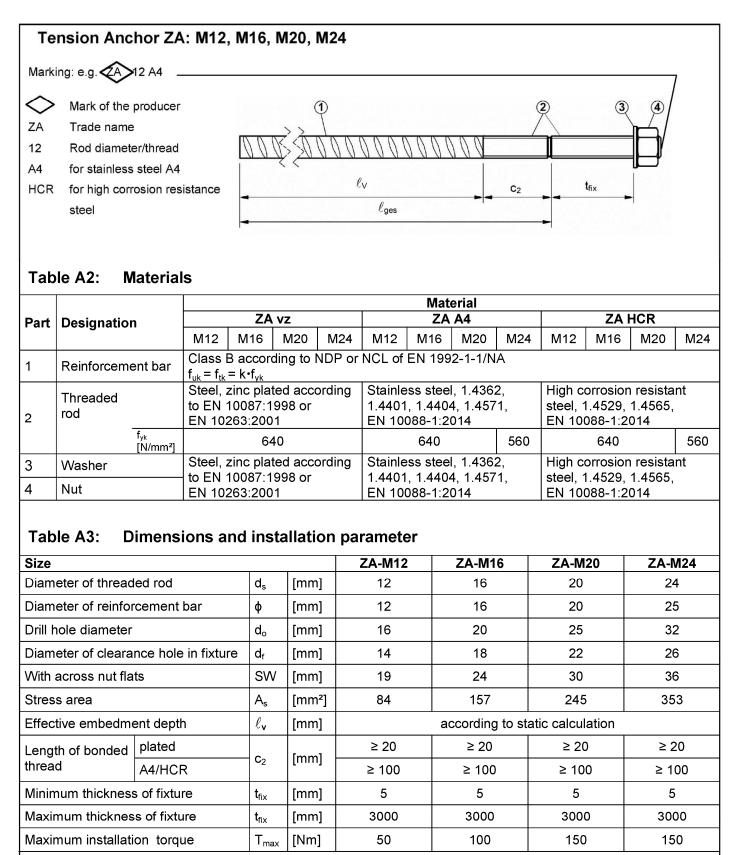
Chemofast Injection System EP 1000 for rebar connection

Product description Installed condition and examples of use for tension anchors ZA Annex A 2

Page 7 of European Technical Assessment ETA-19/0200 of 23 October 2019

English translation prepared by DIBt

Chemofast Injection System EP 1000:	
processing not hazard-code, o	ofast EP 1000, ees, charge-code, shelf life, curing- and processing time the temperature), Optional with
Static Mixer	
Piston plug and mixer extension	
Reinforcing bar (rebar): ø8, ø10, ø12, ø14, ø16, ø20, ø22, ø24, ø25	5, ø28, ø32, ø34, ø36, ø40
Tension Anchor ZA: M12 to M24	
0005300000000000	
Chemofast Injection System EP 1000 for rebar connection Product description	Annex A 3
Injection mortar / Static mixer / Rebar / Tension Anchor ZA	



Reinforcing bar (rebar): ø8, ø10, ø12,	ø14, ø16, ø20, ø22, ø24, ø25, ø28, ø32, ø34, ø36, ø40
 Minimum value of related rip area f_{R,min} according to the bar shall be in the range 0,0 (φ: Nominal diameter of the bar; h_{rib}: Rib height field the bar height of the bar; h_{rib}: Rib height be held the bar height be held the bar held thebar held the bar held the bar held the bar held the bar held t	$0.5\phi \leq h_{rib} \leq 0,07\phi$
Designation	Material

Chemofast Injection System EP 1000 for rebar connection

Product description Materials Rebar Annex A 4

Chemofast Injection System EP 1000 for rebar connection

Product description Specifications Tension Anchor ZA Annex A 5

Z74255.19

Specifications of intended use

Anchorages subject to:

- Static and guasi-static loads.
- Fire exposure

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013 + A1:2016.
- Strength classes C12/15 to C50/60 according to EN 206:2013 + A1:2016.
- Maximum chloride content of 0,40% (CL 0.40) related to the cement content according to EN 206:2013 + A1:2016.
- · Non-carbonated concrete.

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar.

The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010.

The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Temperature Range:

• - 40°C to +80°C (max. short term temperature +80°C and max long term temperature +50°C).

Use conditions (Environmental conditions) with tension anchor ZA:

• Structures subject to dry internal conditions or subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist

(stainless steel or high corrosion resistant steel).

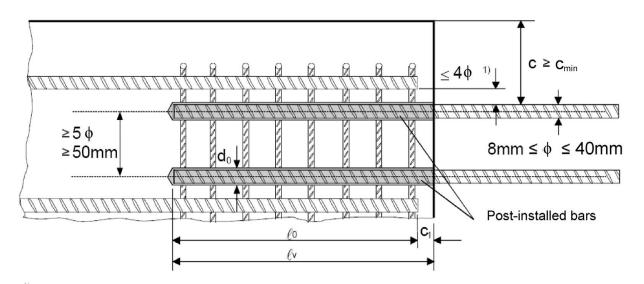
 Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EN 1992-1-1:2004+AC:2010, EN 1992-1-2:2004+AC:2008 and Annex B 2 and B 3.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:


- Dry or wet concrete.
- · It must not be installed in flooded holes.
- Hole drilling by hammer drill (HD), hollow drill (HDB) or compressed air drill (CD).
- The installation of post-installed rebar resp. tension anchors shall be done only by suitable trained installer and under supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

Chemofast Injection System EP 1000 for rebar connection	
Intended use Specifications	Annex B 1

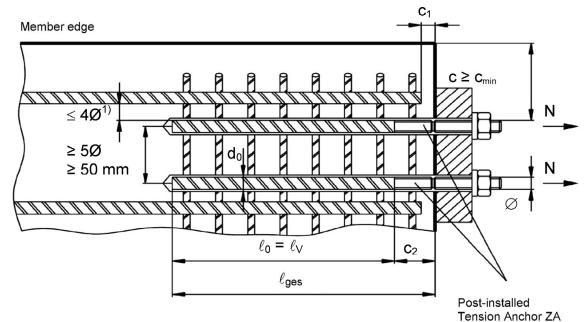
Figure B1: General construction rules for post-installed rebars

- Only tension forces in the axis of the rebar may be transmitted
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.

¹⁾ If the clear distance between lapped bars exceeds 4φ, then the lap length shall be increased by the difference between the clear bar distance and 4φ.

The following applies to Figure B1:

- c concrete cover of post-installed rebar
- c₁ concrete cover at end-face of existing rebar
- c_{min} minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
 φ diameter of post-installed rebar
- $\dot{\ell}_0$ lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
- ℓ_v effective embedment depth, $\geq \ell_0 + c_1$
- d_o nominal drill bit diameter, see Annex B 4


Chemofast Injection System EP 1000 for rebar connection

Intended use General construction rules for post-installed rebars

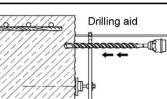
Figure B2: General construction rules for tension anchors ZA

- The length of the bonded-in thread may be not be accounted as anchorage
- Only tension forces in the direction of the bar axis may be transmitted by the tension anchor ZA
- The tension force must be transferred via an overlap joint to the reinforcement in the building part.
- The transfer of shear forces shall be ensured by appropriate additional measures, e.g shear lugs or by anchors with an European technical assessment.
- In the anchor plate, the holes for the tension anchors shall be executed as elongated holes with axis in the direction of the shear force.

¹⁾ If the clear distance between lapped bars exceeds 4φ, then the lap length shall be increased by the difference between the clear bar distance and 4φ.

The following applies to Figure B2:

- c concrete cover of tension anchor ZA
- c1 concrete cover at end-face of existing rebar
- c₂ Length of bonded thread
- c_{min} minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
- φ diameter of tension anchor
- ℓ_0 lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
- ℓ_v effective embedment depth, $\geq \ell_0 + c_1$
- $\ell_{\text{ges}} \qquad \quad \text{overall embedment depth,} \geq \ell_0 \text{+} c_2$
- d₀ nominal drill bit diameter, see Annex B 4


Chemofast Injection System EP 1000 for rebar connection

Intended use

General construction rules for tension anchors

Table B1: Minimum concrete cover min c1) of
post-installed rebar and tension anchor ZA
depending of drilling method

Drilling method	Rebar diameter	With drilling aid	
Hammer drilling (HD)	< 25 mm	30 mm + 0,06 $\cdot \ell_{v} \ge 2 \phi$	30 mm + 0,02 $\cdot \ell_{v} \ge 2 \phi$
Hollow drilling (HDB)	≥ 25 mm	40 mm + 0,06 $\cdot \ell_{v} \ge 2 \phi$	40 mm + 0,02 · ℓ _v ≥ 2 φ
Compressed air drilling (CD)	< 25 mm	50 mm + 0,08 · ℓ _v	50 mm + 0,02 · ℓ _v
Compressed air drilling (CD)	≥ 25 mm	60 mm + 0,08 · ℓ_v	60 mm + 0,02 · $\ell_{ m v}$

¹⁾ see Annex B 2, Figure B1 and Annex B 3, Figure B2

Comments: The minimum concrete cover acc. EN 1992-1-1:2004+AC:2010 must be observed

Table B2: maximum embedment depth $\ell_{v,max}$

Rebar	Tension anchor	HD / CD	HDB
φ	φ	$\ell_{ m v,max}$ [mm]	ℓ _{v,max} [mm]
8 mm		800	800
10 mm		1000	1000
12 mm	ZA-M12	1200	1000
14 mm		1400	1000
16 mm	ZA-M16	1600	1000
20 mm	ZA-M20	2000	1000
22 mm		2000	1000
24 mm		2000	1000
25 mm	ZA-M24	2000	1000
28 mm		2000	1000
32 mm		2000	1000
34 mm		2000	-
36 mm		2000	-
40 mm		2000	-

Table B3: Base material temperature, gelling time and curing time

Concrete temperature	Gelling- / working time ¹⁾	Minimum curing time in dry concrete	Minimum curing time in wet concrete					
	t _{gel}	t _{cure,dry}	t _{cure,wet}					
+ 5 °C to + 9°C	80 min	48 h	96 h					
+ 10 °C to + 14°C	60 min	28 h	56 h					
+ 15 °C to + 19°C	40 min	18 h	36 h					
+ 20 °C to + 24°C	30 min	12 h	24 h					
+ 25 °C to + 34°C	12 min	9 h	18 h					
+ 35 °C to + 39°C	8 min	6 h	12 h					
+40 °C	8 min	4 h	8 h					
Cartridge temperature		+5°C to +40°C						

 t_{gel} : maximum time from starting of mortar injection to completing of rebar setting.

Chemofast Injection System EP 1000 for rebar connection

Intended use Minimum concrete cover Maximum embedment depth

Table B4: Dispensing tools									
Cartridge type/size	Hai	nd tool	Pneumatic tool						
Side-by-side cartridges 440, 585 ml									
	e.g. SA 296C585	e.g. Тур Н 244 С	e.g. Typ TS 444 KX						
Side-by-side cartridges 1400 ml	-	-	e.g. Typ TS 471						
HDB – Hollow drill bit s The hollow drill bit system	Cleaning and installation tools HDB - Hollow drill bit system The hollow drill bit system contains the Heller Duster Expert hollow drill bit and a class M vacuum with minimum negative pressure of 253 hPa and flow rate of								
Brush RB: ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		SDS Plus Ac	lapter:						
Brush extension:									
Rec. compressed a hand slide valve (m									
Chemofast Injection S	System EP 1000 for reb	ar connection							
Intended Use Dispensing, cleaning and	installation tools		Annex B 5						

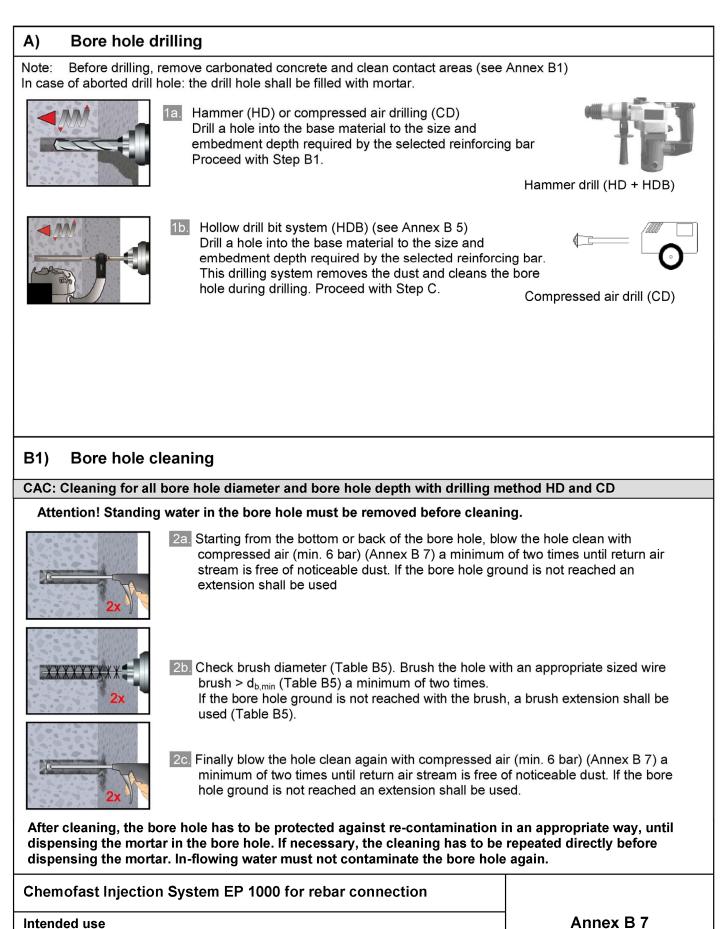
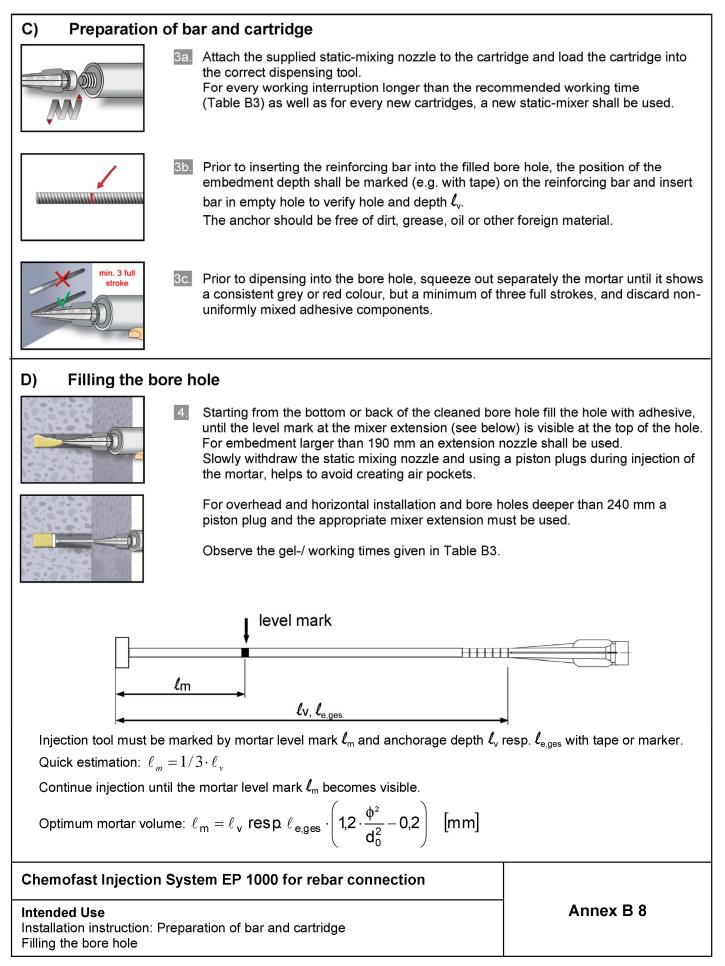
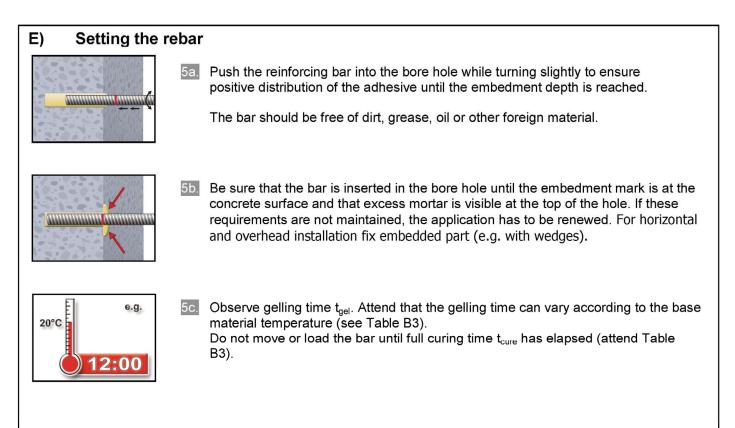


Table B5:Brushes, piston plugs, max anchorage depth and mixer extension, hammer (HD) and compressed air (CD) drilling														
	Tanalan	Dr	rill			d _{b,min}		Cartridge: 440 ml or 585 ml			Cartridge: 440 ml or 585 ml Cartridge: 1400 r		ge: 1400 ml	
Bar size	Tension anchor	bit		d Brus	-	min. Brush -	Piston plug		or battery tool	Pneu	matic tool	Pneur	matic tool	
φ	φ	HD	CD	Dius	ii - ©	Ø	piug	I _{v,max}	Mixer extension	I _{v,max}	Mixer extension	I _{v,max}	Mixer extension	
[mm]	[mm]	[m	m]		[mm]	[mm]		[mm]		[mm]		[mm]		
8	-	10	-	RB10	11,5	10,5	-	250		250		250		
	-	12	_	RB12	13 5	12,5	_	700		800		800	VL10/0,75	
10	-	12			15,5	12,5	_	250		250		250	or	
10	-	14		RB14	155	14,5	VS14	700		1000		1000	VL16/1,8	
12	ZA-M12	14	-	11014	15,5	14,5	V314	250		250		250		
12		1	6	RB16	17,5	16,5	VS16					1200		
14	-	1	8	RB18	20,0	18,5	VS18	700	VL10/0,75	1300		1400		
16	ZA-M16	2	0	RB20	22,0	20,5	VS20		or			1600		
20	ZA-M20	25	-	RB25	27,0	25,5	VS25		VL16/1,8		VL10/0,75			
20	27-10120	-	26	RB26	28,0	26,5	VS25				or VL16/1,8			
22	-	2	8	RB28	30,0	28,5	VS28							
24	-	3	2	RB32	34,0	32,5	VS32	500					VL16/1,8	
25	ZA-M24	3	2	RB32	34,0	32,5	VS32			1000		0000		
28	-	3	5	RB35	37,0	35,5	VS35	35	VS35		1000		2000	
32	-	4	0	RB40	43,5	40,5	VS40							
34	-	4	0	RB40	43,5	40,5	VS40							
36	-	4	5	RB45	47,0	45,5	VS45	-	-					
40	-	5	5	RB55		55,5	VS55							

Table B6: Brushes, piston plugs, max anchorage depth and mixer extension, hammerdrilling with hollow drill bit system (HDB)


		U		d _{b,min}		•	, artridge: 440	0 ml or	585 ml	Cartrid	ge: 1400 ml
Bar size	Tension anchor	Drill bit - Ø	d _b min. Brush - Ø Brush -		Piston plug	Hand	or battery tool		matic tool		natic tool
φ	φ	HDB	Braon 2	Ø	Prag	I _{v,max}	Mixer extension	I _{v,max}	Mixer extension	I _{v,max}	Mixer extension
[mm]	[mm]	[mm]				[mm]		[mm]		[mm]	
8	-	10				250		250	-	250	
	-	12			_	700		800		800	
10	-	12				250		250	-	250	
	-	14				700		1000	-	1000	
12	ZA-M12				VS14	250		250	-	250	
	2/(10112	16	No olooni	VS16							
14	-	18	required	No cleaning			VL10/0,75 or		VL10/0,75 or		VL10/0,75 or
16	ZA-M16	20	requires	required			VL16/1,8		VL16/1,8		VL16/1,8
20	ZA-M20	25			VS25		1,0	1000			
22	-	28			VS28					1000	
24	-	32			VS32	500					
25	ZA-M24	32			VS32	500					
28	-	35			VS35						
32	-	40			VS40						
Chemofast Injection System EP 1000 for rebar connection											
	nded use llation too	ls							Anı	nex B (6



Installation instruction: Bore hole drilling and cleaning (HD, HDB and CD)

Chemofast Injection System EP 1000 for rebar connection

Intended Use Installation instruction: Inserting rebar

Minimum anchorage length and minimum lap length

The minimum anchorage length $\ell_{b,min}$ and the minimum lap length $\ell_{0,min}$ according to EN 1992-1-1:2004+AC:2010 ($\ell_{b,min}$ acc. to Eq. 8.6 and Eq. 8.7 and $\ell_{0,min}$ acc. to Eq. 8.11) shall be multiply by the amplification factor α_{lb} according to Table C1.

Table C1: Amplification factor α_{lb} related to concrete class and drilling method

Concrete class	Drilling method	Bar size	Amplification factor α_{lb}
C12/15 to C50/60	all drilling methods	8 mm to 40 mm ZA-M12 to ZA-M24	1,0

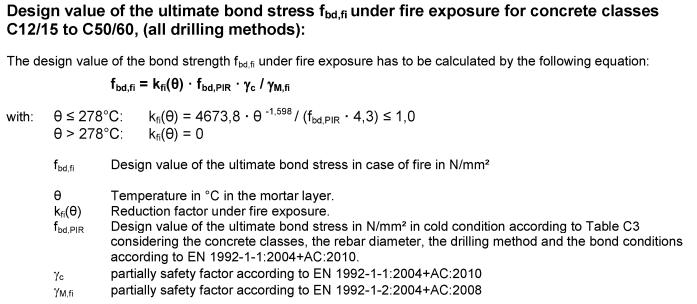
Table C2: Reduction factor kb for all drilling methods

Rebar	Concrete class								
ф	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 40 mm ZA-M12 to ZA-M24					1,0				

Table C3: Design values of the ultimate bond stress f_{bd,PIR} in N/mm² for all drilling methods and for good conditions

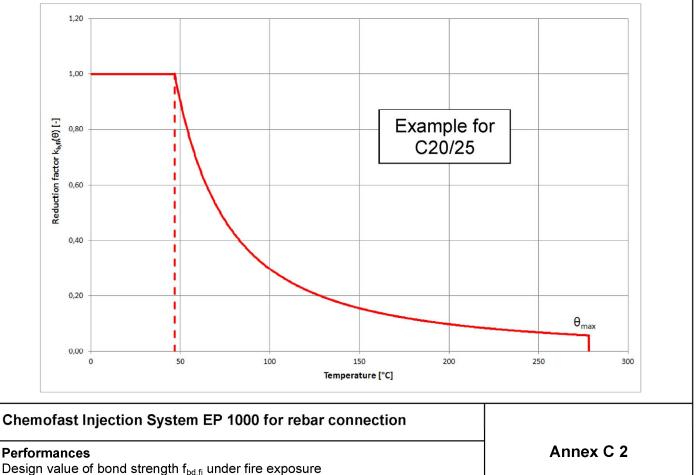
 $\mathbf{f}_{bd,PIR} = \mathbf{k}_b \cdot \mathbf{f}_{bd}$

with


 f_{bd} : Design value of the ultimate bond stress in N/mm² considering the concrete classes, the rebar diameter, the drilling method according to EN 1992-1-1:2004+AC:2010. (for all other bond conditions multiply the values by 0.7) k_b : Reduction factor according to Table C2

Rebar	Concrete class								
ф	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 32 mm ZA-M12 to ZA-M24	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3
34 mm	1,6	2,0	2,3	2,6	2,9	3,3	3,6	3,9	4,2
36 mm	1,5	1,9	2,2	2,6	2,9	3,3	3,6	3,8	4,1
40 mm	1,5	1,8	2,1	2,5	2,8	3,1	3,4	3,7	4,0

Chemofast li	njection	System	EP 1000	for rebar	connection


Performances Amplification factor α_{lb} , Reduction factor k_b Design values of ultimate bond resistance $f_{bd,PIR}$ Annex C 1

For evidence under fire exposure the anchorage length shall be calculated according to EN 1992-1-1:2004+AC:2010 Equation 8.3 using the temperature-dependent ultimate bond stress $f_{bd,fi}$.

Example graph of Reduction factor $k_{\rm fi}(\theta)$ for concrete classes C20/25 for good bond conditions:

Table C6: Characteristic tension strength for tension anchor ZA under fire exposure, concrete classes C12/15 to C50/60, according to Technical Report TR 020										
Tension Ancho	r			M12	M16	M20	M24			
Steel, zinc plated (ZA vz)										
	R30		[N/mm²]	20						
Characteristic	R60	$\sigma_{Rk,s,fi}$		15						
steel strength	R90					13				
	R120					10				
Stainless Steel (ZA A4 or ZA HCR)										
	R30				30					
Characteristic	R60	$\sigma_{Rk,s,fi}$	[N/mm²]	25						
steel strength	R90			20						
	R120			16						
Design value	e of the s	teel strer	igth $\sigma_{{\scriptscriptstyle Rd},{\scriptscriptstyle s},{\scriptscriptstyle fi}}$	under fire e	xposure					
The design value	e of the ste	el strength	$\sigma_{\text{Rd,s,fi}}$ under	fire exposure h	as to be calculat	ed by the followin	g equation:			
$\sigma_{\mathrm{Rd,s,fi}}$ =	$\sigma_{Rk,s,fi}$ / $\gamma_{M,M}$	fi								
with:										
$\sigma_{Rk,s,fi}$	σ _{Rk,s,fi} characteristic steel strength according to Table C4									
ŶM,fi	par	tially safety	factor accor	ding to EN 199	2-1-2:2004+AC:2	2008				
Chemofast Injection System EP 1000 for rebar connection										
Performances						Anne	« C 3			
Design value of texposure	the steel st	rength $\sigma_{{\scriptscriptstyle Rd},{\scriptscriptstyle s}}$	_{,fi} for tensior	n anchor ZA und	der fire					