

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-19/0381 vom 14. August 2019

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Deutsches Institut für Bautechnik

allchem Verbundmörtel für Mauerwerk

Metall-Injektionsdübel zur Verankerung im Mauerwerk

allfa Dübel GmbH Braukämperstraße 101 45899 Gelsenkirchen DEUTSCHLAND

Werk 1, Deutschland

61 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330076-00-0604

Europäische Technische Bewertung ETA-19/0381

Seite 2 von 61 | 14. August 2019

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z51970.19 8.06.04-189/19

Europäische Technische Bewertung ETA-19/0381

Seite 3 von 61 | 14. August 2019

Besonderer Teil

1 Technische Beschreibung des Produkts

Der allchem Verbundmörtel für Mauerwerk ist ein Verbunddübel (Injektionstyp), der aus einer Mörtelkartusche mit Injektionsmörtel 292 Alfa, einer Siebhülse und einer Gewindestange mit Sechskantmutter und Unterlegscheibe besteht. Die Stahlteile bestehen aus verzinktem Stahl oder aus nichtrostendem Stahl.

Die Ankerstange wird in ein mit Injektionsmörtel gefülltes Bohrloch gesetzt und durch den Verbund und/oder Formschluss zwischen Stahlteil, Injektionsmörtel und Mauerwerk verankert. Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe zur Nutzungsdauer kann nicht als Garantie des Herstellers ausgelegt werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Werte für Widerstand	Siehe Anhang C1 bis C 45
Verschiebungen	Siehe Anhang C 5 bis C 45
Dauerhaftigkeit	Siehe Anhang B 1

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330076-00-0604 gilt folgende Rechtsgrundlage: [97/177/EG].

Folgendes System ist anzuwenden: 1

Z51970.19 8.06.04-189/19

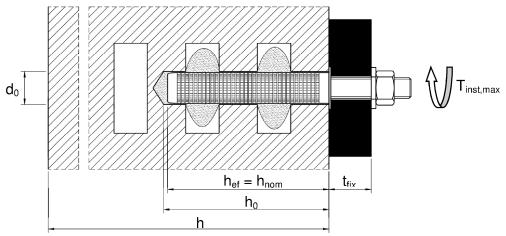
Europäische Technische Bewertung ETA-19/0381

Seite 4 von 61 | 14. August 2019

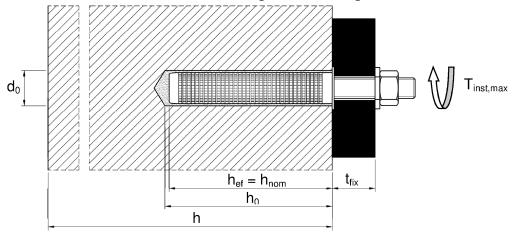
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

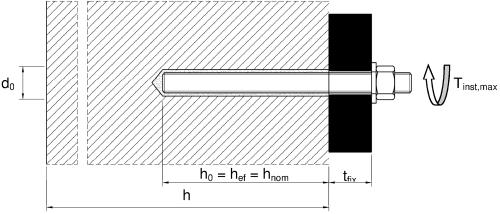
Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 14. August 2019 vom Deutschen Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter

Beglaubigt:


Z51970.19 8.06.04-189/19


Installation in Lochstein; Gewindestange und Innengewindehülse mit Siebhülse

Installation in Vollstein; Gewindestange oder Innengewindehülse mit Siebhülse

Installation in Vollstein; Gewindestange oder Innengewindehülse ohne Siebhülse

Nennbohrlochdurchmesser

Dicke des Anbauteils Max Installationsdrehmoment $T_{inst,max}$

= Bauteildicke h

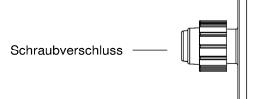
Bohrlochtiefe an der Schulter

effektive Verankerungstiefe h_{ef}

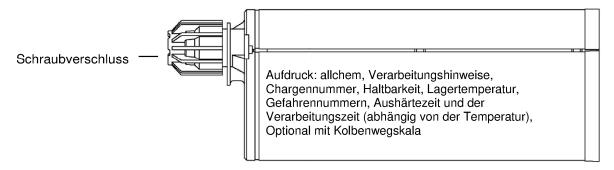
= Gesamtsetztiefe

allchem Verbundmörtel für Mauerwerk

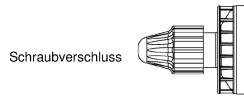
Produktbeschreibung


Einbauzustand

Anhang A 1


Kartusche: allchem

150 ml, 280 ml, 300 ml bis zu 333 ml und 380 ml bis zu 420 ml Kartusche (Typ: koaxial)



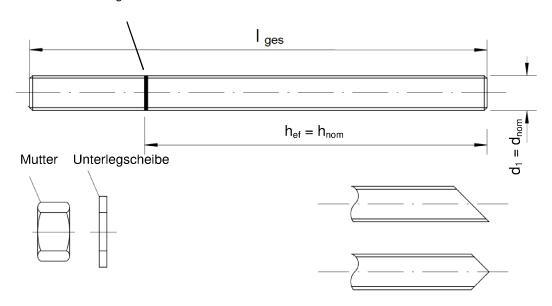
Aufdruck: allchem, Verarbeitungshinweise, Chargennummer, Haltbarkeit, Lagertemperatur, Gefahrennummern, Aushärtezeit und der Verarbeitungszeit (abhängig von der Temperatur), Optional mit Kolbenwegskala

235 ml, 345 ml bis zu 360 ml und 825 ml Kartusche (Typ: "side-by-side")

165 ml und 300 ml Kartusche (Typ: "Schlauchfolie")

Aufdruck: allchem, Verarbeitungshinweise, Chargennummer, Haltbarkeit, Lagertemperatur, Gefahrennummern, Aushärtezeit und der Verarbeitungszeit (abhängig von der Temperatur), Optional mit Kolbenwegskala

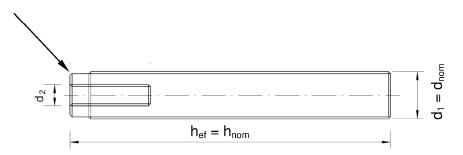
Statikmischer



Anhang A 2 Injektionssystem

Gewindestange M8, M10, M12, M16

Markierung der Setztiefe

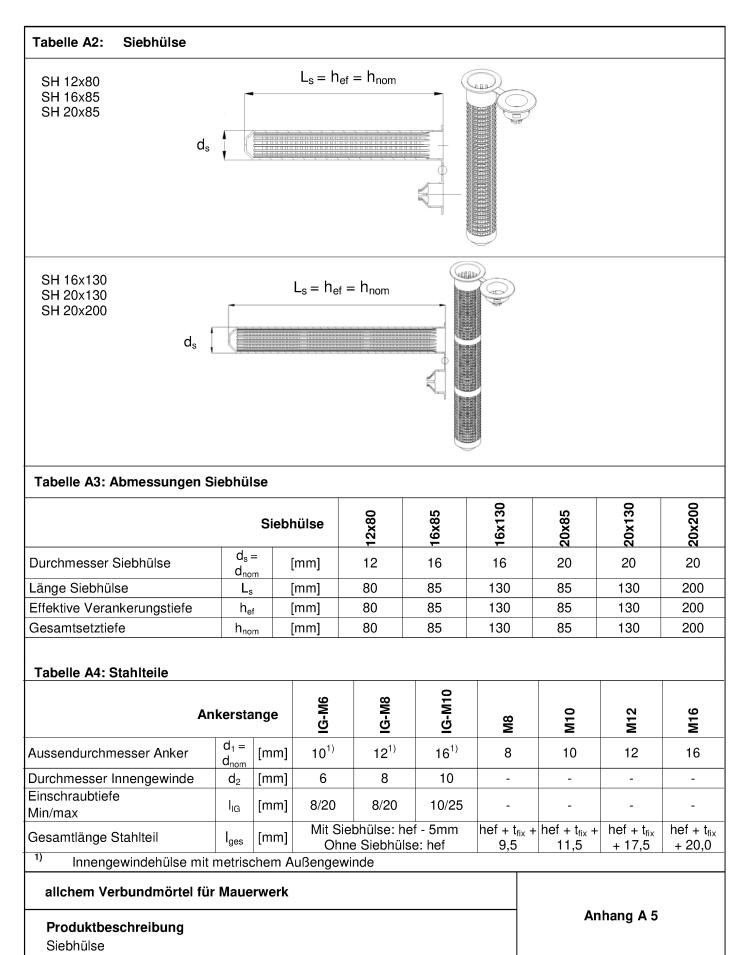


Handelsübliche Gewindestange mit:

- Werkstoff, Abmessungen und mechanische Eigenschaften gem. Tabelle A1
- Abnahmeprüfzeugnis 3.1 gem. EN 10204:2004. Das Dokument muss aufbewahrt werden.
- Markierung der Verankerungstiefe

Innengewindehülse IG-M6, IG-M8, IG-M10

Herstellerprägung


Herstellerprägung : z.B. M8

allchen	n Verbundmörtel für Mauerwerk	
Produk	ktbeschreibung	Anhang A 3
Ankers	tangen	

Bezeichnung	Material			
Stahlteile, galvanisch verzinkt ≥ 5 μm gem. EN gem. EN ISO 1461:2009 und EN ISO 10684:200		zinkt ≥ 40 μm		
Ankerstange	Stahl, EN 10087:1998 oder E Festigkeitsklasse 4.6, 4.8, 5.6 EN 1993-1-8:2005+AC:2009			
Sechskantmutter, EN ISO 4032:2012	Stahl, EN 10087:1998 oder E Festigkeitsklasse 4 (für Anke Festigkeitsklasse 5 (für Anke Festigkeitsklasse 8 (für Anke gem. EN ISO 898-2:2012	rstange der Klasse 4.6, 4.8) rstange der Klasse 5.6, 5.8)		
Scheibe, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000, oder EN ISO 7094:2000	Stahl, verzinkt oder feuerverz	tinkt		
Innengewindehülse	Stahl, verzinkt, Festigkeitsklasse 5.6, 5.8 und	d 8.8 gem. EN ISO 898-1:2013		
Stahlteile aus nichtrostendem Stahl				
Ankerstange	Material 1.4401 / 1.4404 / 1.4 Festigkeitsklasse 70 gem. EN Festigkeitsklasse 80 gem. EN	N ISO 3506-1:2009 N ISO 3506-1:2009		
Sechskantmutter, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 10088-1:2014, Festigkeitsklasse 70 (für Ankerstange der Klasse 70) Festigkeitsklasse 80 (für Ankerstange der Klasse 80) gem. EN ISO 3506-2:2009			
Scheibe, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000, oder EN ISO 7094:2000	Material 1.4401 / 1.4404 / 1.4571 EN 10088-1:2014, EN 10088-1:2014			
Innengewindehülse	Material 1.4401 / 1.4404 / 1.4 Festigkeitsklasse 70 (für Ank EN ISO 3506-1:2009	571 EN 10088-1:2014, kerstange der Klasse 70) gem.		
Stahlteile aus hochkorrosionsbeständigem Sta				
Ankerstange	Material 1.4529 / 1.4565, EN Festigkeitsklasse 70 gem. EN Festigkeitsklasse 80 gem. EN	NISO 3506-1:2009		
Sechskantmutter, EN ISO 4032:2012	Material 1.4529 / 1.4565, EN Festigkeitsklasse 70 (für Ank Festigkeitsklasse 80 (für Ank EN ISO 3506-2:2009			
Scheibe, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000, oder EN ISO 7094:2000	Material 1.4529 / 1.4565, EN	10088-1:2014		
Innengewindehülse	Material 1.4529 / 1.4565, EN Festigkeitsklasse 70 (für Ank EN ISO 3506-1:2009	10088-1:2014 kerstange der Klasse 70) gem.		
Plastiksiebhülse				
Siebhülse	Material Polypropylene			
allchem Verbundmörtel für Mauerwerk				
Produktbeschreibung Werkstoffe		Anhang A 4		

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

Statische und quasi-statische Lasten

Verankerungsgrund:

- Porenbeton (Nutzungskategorie d) entsprechend Anhang B2
- Vollsteinen (Nutzungskategorie b) entsprechend Anhang B2.
- Loch- und Hohlsteinen ((Nutzungskategorie c) entsprechend Anhang B2 und B3
- Mindestanforderung des Mauermörtels: Festigkeitsklasse M2,5 gemäß EN 998-2:2010.
- Bei anderen Steinen im Vollsteinmauerwerk, Lochsteinmauerwerk oder Porenbeton darf die charakteristische Tragfähigkeit des Dübels durch Test auf der Baustelle entsprechend Technical Report TR 053 unter Berücksichtigung des β-Faktors von Anhang C1, Tabelle C1 ermittelt werden.

Bemerkung: Der charakteristische Widerstand für Vollsteine und Porenbeton gilt auch für größere Steinabmessungen und höhere Steindruckfestigkeiten.

Temperaturbereich:

- T_a: 40°C bis +40°C (max. Kurzzeittemperatur +40°C und max. Langzeittemperatur +24°C)
- T_b: 40°C bis +80°C (max. Kurzzeittemperatur +80°C und max. Langzeittemperatur +50°C)
- T_c: 40°C bis +120°C (max. Kurzzeittemperatur +120°C und max. Langzeittemperatur +72°C)

Anwendungsbedingungen (Umgebungsbedingungen):

- Trockenes und nasses Mauerwerk (in Bezug auf den Injektionsmörtel).
- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien, einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl).

Anmerkung: Agressive Bedingunen sind z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Nutzungskategorie:

- Kategorie d/d - Installation und Verwendung in trockenem Mauerwerk.
- Kategorie w/w Installation und Verwendung in nassem Mauerwerk (inkl. w/d Installation im nassem Mauerwerk und Verwendung im trockenem Mauerwerk)

Bemessung:

- Unter Berücksichtigung des Mauerwerks im Verankerungsbereich, der zu verankernden Lasten und der Weiterleitung der Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben.
- Die Bemessung der Verankerungen erfolgt, gemäß Technical Report TR 054, Design Methode A, unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- N_{Rk,p} = N_{Rk,b} siehe Anhang C4 bis C45; N_{Rk,s} siehe Anhang C2; N_{Rk,pb} siehe Technical Report TR 054 V_{Rk,b} und V_{Rk,c} siehe Anhang C4 bis C45; V_{Rk,s} siehe Anhang C2; V_{Rk,pb} siehe Technical Report TR 054 Bei Anwendungen mit Siebhülse mit Bohrlochdurchmessern ≤15mm, installiert in nichtgefüllte Fugen:
- - $(N_{Rk,p} = N_{Rk,b} \text{ siehe Anhang C4 bis C45})$
- (V_{Rk,b} und V_{Rk,c} siehe Anhang C4 bis C45)

Einbau:

- Trockenes oder nasses Mauerwerk.
- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Schrauben oder Gewindestangen (inkl. Mutter und Unterlegscheibe) müssen dem Material und der Festigkeitsklasse der Innengewindehülse entsprechen.

allchem Verbundmörtel für Mauerwerk	
Verwendungszweck Spezifikationen	Anhang B 1

Stein-Nr.	Steinart	Foto	Ab- messungen Länge Breite Höhe	Druck- festigkeit	Rohdichte	S	iebhülse - Ankertyp	Anhang
			[mm]	[N/mm ²]	[kg/dm ³]			
ore	nbetonsteine ger	näß EN 771-4						
1	Porenbeton AAC6	I	499 240 249	6	0,6	M8/M10/M12	/M16/IG-M6/IG-M8/IG -M10	C4 - C5
alk	sandsteine gemä	B EN 771-2						
2	Kalksand- vollstein KS-NF		240 115 71	10 20 27	2,0	SH 12x80 - I SH 16x85 - I SH 16x130 - SH 20x85 - I SH 20x130 - SH 20x200 -	M8/M10/IG-M6 - M8/M10/IG-M6 M12/M16/IG-M8/IG-M10 - M12/M16/IG-M8/IG-M10 - M12/M16/IG-M8/IG-M10	C6 - C8
3	Kalksand- lochstein KSL-3DF		240 175 113	8 12 14	1,4	SH 16x130 - SH 20x85 - I SH 20x130 -	M8 M8/M10/IG-M6 - M8/M10/IG-M6 M12/M16/IG-M8/IG-M10 - M12/M16/IG-M8/IG-M10 - M12/M16/IG-M8/IG-M10	C9 - C11
4	Kalksand- lochstein KSL-12DF	a second	498 175 238	10 12 16	1,4	SH 16x130 - SH 20x85 -	M8 M8/M10/IG-M6 - M8/M10/IG-M6 M12/M16/IG-M8/IG-M10 - M12/M16/IG-M8/IG-M10	C12 C14
Zieg	elsteine gemäß E	N 771-1						
5	Vollziegel Mz – DF		240 115 55	10 20 28	1,6	SH 12x80 - I SH 16x85 - I SH 16x130 - SH 20x85 - I SH 20x130 -	2/M16/IG-M6/IG-M8/IG-M10 M8 M8/M10/IG-M6 - M8/M10/IG-M6 M12/M16/IG-M8/IG-M10 - M12/M16/IG-M8/IG-M10 - M12/M16/IG-M8/IG-M10	C15 C17
6	Hochloch -ziegel Hlz-16DF		497 240 238	6 8 12 14	0,8	SH 16x130 - SH 20x85 - I SH 20x130 -	M8 M8/M10/IG-M6 - M8/M10/IG-M6 M12/M16/IG-M8/IG-M10 - M12/M16/IG-M8/IG-M10 - M12/M16/IG-M8/IG-M10	C18 C20
7	Lochziegel Porotherm Homebric		500 200 299	4 6 10	0,7	SH 16x130 - SH 20x85 -	M8 M8/M10/IG-M6 - M8/M10/IG-M6 M12/M16/IG-M8/IG-M10 - M12/M16/IG-M8/IG-M10	C21 C23
	llchem Verbund	mörtel für Maue	rwerk					
a	verbullo		MEIV				Anhang B 2	

Steinart	Foto	Ab- messungen Länge Breite Höhe	Druck- festigkeit	Rohdichte	Siebhülse - Ankertyp	Anhang
		[mm]	[N/mm ²]	[kg/dm ³]		
elsteine gemäß	EN 771-1				OU 40, 00 MO	
Lochziegel BGV Thermo		500 200 314	4 6 10	0,6	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10	C24
Lochziegel Calibric R+		500 200 314	6 9 12	0,6	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10	C27
Lochziegel Urbanbric		560 200 274	6 9 12	0,7	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10	C30 C32
Lochziegel Brique creuse C40		500 200 200	4 8 12	0,7	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10	C33
Lochziegel Blocchi Leggeri		250 120 250	4 6 8 12	0,6	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10 SH 20x200 – M12/M16/IG-M8/IG-M10	C36
Lochziegel Doppio Uni		250 120 120	10 16 20 28	0,9	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10 SH 20x200 – M12/M16/IG-M8/IG-M10	C39 C41
	gemäß EN 771-3				OH 10::00 M0	
Lochstein aus Leichtbeton Bloc creux B40		494 200 190	4	0,8	SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10	C42 C43
Vollstein aus Leichtbeton		300 123 248	2	0,6	M8/M10/M12/M16/IG-M6/IG-M8/IG-M1 SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10 SH 20x200 – M12/M16/IG-M8/IG-M10	0 C44 C45
	Lochziegel BGV Thermo Lochziegel Calibric R+ Lochziegel Urbanbric Lochziegel Brique creuse C40 Lochziegel Blocchi Leggeri Lochziegel Blocchi Leggeri Vollstein aus Leichtbeton Bloc creux B40 Vollstein aus	Lochziegel Calibric R+ Lochziegel Urbanbric Lochziegel Brique creuse C40 Lochziegel Blocchi Leggeri Lochziegel Doppio Uni Lochstein aus Leichtbeton Bloc creux B40 Vollstein aus	Steinart Foto Canage Breite Höhe Emm] Elsteine gemäß EN 771-1 Lochziegel BGV Thermo Source Sour	Steinart Foto	Steinart Foto	Steinart Foto Elange Breite Höhe Flow Flow

Tabelle B2: Montagekennwerte für Porenbeton und Vollstein (ohne Siebhülse)

Ankergröße			М8	M10	IG-M6	M12	IG-M8	M16	IG-M10
Bohrernenndurchmesser	d ₀	[mm]	10	1	2	1	4		18
Bohrlochtiefe	h ₀	[mm]	80	9	0	10	00	1	100
Effektive Verankerungstiefe	h _{ef}	[mm]	80 90 100 100				00		
Minimale Wanddicke	h _{min}	[mm]	h _{ef} + 30						
Durchgangsloch im anzuschließenden Bauteil	d _f ≤	[mm]	9	12	7	14	9	18	12
Bürstendurchmesser d _b [mm]		RBT10	RBT12		RBT14		RBT18		
		[mm]	12	14		1	6		20
Min. Bürstendurchmesser	d _{b,min}	[mm]	10,5	10,5 12,5		12,5 14,5		1	8,5
Max. Installationsdrehmoment	T _{inst,max}	[Nm]			2 (1	4 für Mz l	DF)		

Tabelle B3: Montagekennwerte im Vollstein und Lochstein (mit Siebhülse)

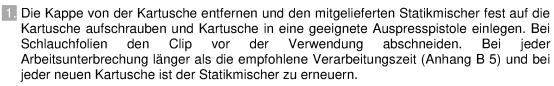
Ankergröße			М8	M8 / M1	0 / IG-M6	M12 / M16 / IG-M8 / IG-M10		
	;	Siebhülse	12x80	16x85	16x130	20x85	20x130	20x200
Bohrernenndurchmesser	d ₀	[mm]	12	16	16	20	20	20
Bohrlochtiefe	h ₀	[mm]	85	90	135	90	135	205
Effektive Verankerungstiefe	h _{ef}	[mm]	80	85	130	85	130	200
Minimale Wanddicke	h _{min}	[mm]	115	115	175	115	175	240
Durchgangsloch im anzuschließenden Bauteil	d _f ≤ [mm]		9		-M6) / 12 (M10)	,	/18) / 12 (IG //12) / 18 (I	,
Bürstendurchmesser	·		RBT12	RBT16		RBT20		
Burstendurchmesser	d _b [mm]		14	1	8		22	
Min. Bürstendurchmesser	d _{b,min} [mm]		12,5	16,5		20,5		
Max. Installationsdrehmoment	T _{inst,max}	[Nm]		2				

allchem Verbundmörtel für Mauerwerk	
Verwendungszweck Montagekennwerte und Reinigungsbürste	Anhang B 4

Tabelle B4: Maximale Verarbeitungszeiten und minimale Aushärtezeiten allchem

Temperatur im Verankerungsgrund T	Kartuschentemperatur	Gelierungs- / Verarbeitungszeit	Min. Aushärtezeit in trockenem Untergrund ¹⁾
0°C bis + 4 °C		45 min	7 h
+ 5 °C bis + 9 °C		25 min	2 h
+ 10 °C bis + 19 °C		15 min	80 min
+ 20 °C bis + 29 °C	+5°C bis +40°C	6 min	45 min
+ 30 °C bis + 34 °C		4 min	25 min
+ 35 °C bis + 39 °C		2 min	20 min
+ 40°C		1,5 min	15 min

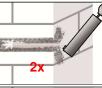
¹⁾ In feuchtem Untergrund <u>muss</u> die Aushärtezeit verdoppelt werden

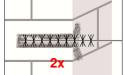

allchem Verbundmörtel für Mauerwerk	
Verwendungszweck Verarbeitungs- und Aushärtezeit	Anhang B 5



Montageanweisung

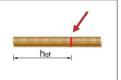
Vorbereitung der Kartusche




Der Mörtelvorlauf ist nicht zur Befestigung der Ankerstange geeignet. Vor dem Injizieren ins Bohrloch, unvermischten Mörtel solange verwerfen, bis sich eine gleichmäßige graue Mischfarbe eingestellt hat, jedoch mindesten 3 volle Hübe, bei Schlauchfolien 6 volle Hübe.

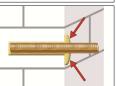
Installation in Vollstein (ohne Siebhülse)

3. Das Bohrloch, senkrecht zur Oberfläche des Verankerungsgrundes, unter Verwendung eines Hartmetallbohres mit Bohrverfahren nach Anhang C4-C45, mit vorgeschriebenem Bohrernenndurchmesser und Bohrlochtiefe entsprechend der Ankergröße und Einbindetiefe des gewählten Dübels, im Verankerungsgrund erstellen. Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

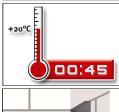




4. Bohrloch vom Bohrlochgrund her zweimal ausblasen. Die Stahlbürste mit passender Größe (> d_{b,min} Tabelle B2 oder B3) an einer Bohrmaschine oder einen Akkuschrauber einstecken, das Bohrloch zweimal bürsten und abschließend erneut zweimal ausblasen.



5. Das Bohrloch vom Grund her zu mindestens 2/3 mit Mörtel füllen. Langsames Zurückziehen des Statikmischers aus dem Bohrloch verhindert die Bildung von Lufteinschlüssen. Die temperaturrelevanten Verarbeitungszeiten (Anhang B 5) sind zu beachten.



6. Vor dem Einsetzen der Ankerstange ist die Verankerungstiefe auf der Ankerstange zu markieren. Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Setztiefe eindrücken. Die Ankerstange muss schmutz-, fett-, und ölfrei sein.

Nach der Installation des Ankers sollte der Ringspalt komplett mit Mörtel ausgefüllt sein. Tritt keine Masse nach Erreichen der Verankerungstiefe heraus, ist diese Voraussetzung nicht erfüllt und die Anwendung muss vor Beendigung der Verarbeitungszeit wiederholt werden.

8. Die angegebene Aushärtezeit muss eingehalten werden. Anker während der Aushärtezeit nicht bewegen oder belasten (Anhang B 5).

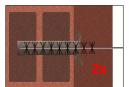
9. Nach vollständiger Aushärtung kann das Anbauteil mit bis zu dem maximalen Installationsdrehmoment (siehe Anhang B 4) montiert werden. Die Mutter muss mit einem kalibrierten Drehmomentschlüssel angezogen werden.

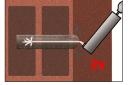
allchem Verbundmörtel für Mauerwerk

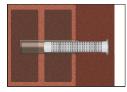
Verwendungszweck

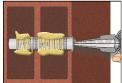
Montageanweisung Vollstein und Porenbeton

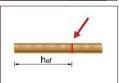

Anhang B 6



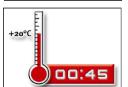

Montageanleitung für Voll- und Lochstein (mit Siebhülse)


3. Das Bohrloch, senkrecht zur Oberfläche des Verankerungsgrundes, mit Bohrverfahren nach Anhang C4-C45, mit vorgeschriebenem Bohrernenndurchmesser und Bohrlochtiefe entsprechend der Ankergröße und Einbindetiefe des gewählten Dübels, im Verankerungsgrund erstellen.

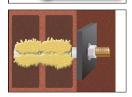



Bohrloch vom Bohrlochgrund her zweimal ausblasen. Die Stahlbürste mit passender Größe (> d_{b,min} Tabelle B3) an einer Bohrmaschine oder einen Akkuschrauber einstecken, das Bohrloch zweimal bürsten und abschließend erneut zweimal ausblasen.

5. Die Siebhülse bündig mit der Oberfläche des Verankerungsgrundes in das Bohrloch einstecken. Sicherstellen, dass die Siebhülse optimal ins Bohrloch passt. Siebhülse niemals kürzen.



6. Die Siebhülse vom Grund her mit Mörtel füllen. Die exakte Mörtelmenge ist dem Kartuschenetikett oder der Montageanleitung zu entnehmen. Die temperaturrelevanten Verarbeitungszeiten (Anhang B 5) sind zu beachten



7. Vor dem Einsetzen der Ankerstange ist die Verankerungstiefe auf der Ankerstange zu markieren. Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Setztiefe eindrücken. Die Ankerstange muss schmutz-, fett-, und ölfrei sein.

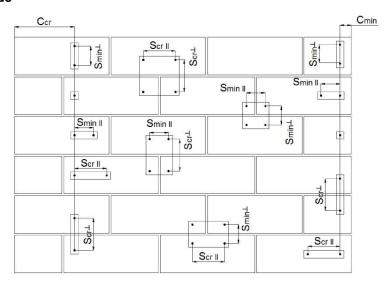
8. Die angegebene Aushärtezeit muss eingehalten werden. Anker während der Aushärtezeit nicht bewegen oder belasten (Anhang B 5).

9. Nach vollständiger Aushärtung kann das Anbauteil mit bis zu dem maximalen Installationsdrehmoment (siehe Anhang B 4) montiert werden. Die Mutter muss mit einem kalibrierten Drehmomentschlüssel angezogen werden.

Anhang B 7 Verwendungszweck Montageanleitung für Voll- und Lochstein

		β-Faktor						
Stein-Nr.	Ankergröße	T _a : 40°(C / 24°C	T _b : 80°C / 50°C		T _c : 120°C / 72°C		
		d/d	w/d w/w	d/d	w/d w/w	d/d	w/d w/w	
1 AAC6	alle Größen	0,95	0,86	0,81	0,73	0,81	0,73	
2	d ₀ ≤ 14 mm	0,93	0,80	0,87	0,74	0,65	0,56	
KS-NF	d ₀ ≥ 16 mm	0,93	0,93	0,87	0,87	0,65	0,65	
3	d ₀ ≤ 12 mm	0,93	0,80	0,87	0,74	0,65	0,56	
KSL-3DF	d ₀ ≥ 16 mm	0,93	0,93	0,87	0,87	0,65	0,65	
4	d₀ ≤ 12 mm	0,93	0,80	0,87	0,74	0,65	0,56	
KSL-12DF	d ₀ ≥ 16 mm	0,93	0,93	0,87	0,87	0,65	0,65	
5 MZ-DF 6 HIz-16DF 7 Porotherm Homebric 8 BGV-Thermo 9 Calibric R+ 10 Urbanbric	alle Größen	0,86	0,86	0,86	0,86	0,73	0,73	
11 Brique creuse C40 12 Blocchi Leggeri 13								
Doppio Uni	٠ - ١٥	0.00	0.00	0.07	0.74	0.05	0.50	
14 Bloc creux B40	d ₀ ≤ 12 mm	0,93	0,80	0,87	0,74	0,65	0,56	
	$d_0 \ge 16 \text{ mm}$ $d_0 \le 12 \text{ mm}$	0,93	0,93	0,87	0,87 0,74	0,65	0,65	
15 Solid light weight concrete	$d_0 \le 12 \text{ fill}$ $d_0 \ge 16 \text{ mm}$	0,93	0,80 0,93	0,87 0,87	0,74	0,65 0,65	0,56 0,65	

allchem Verbundmörtel für Mauerwerk	
Leistungen	Anhang C 1
β-Factoren für Baustellenversuche unter Zugbelastung	


Ankergröße			IG-M6	IG-M8	IG-M10	М8	M10	M12	M16
Charakteristische Zugtragfähigkeit		FI N 13			I			0.4	
Stahl – Festigkeitsklasse 4.6	$N_{Rk,s}$	[kN]	-	-	-	15	23	34	63
	γMs	[-]		-			1	2,0	
Stahl – Festigkeitsklasse 4.8	$N_{Rk,s}$	[kN]	-	-	-	15	23	34	63
	γMs	[-]		-			1	,5	
Stahl – Festigkeitsklasse 5.6	$N_{Rk,s}$	[kN]	10	18	29	18	29	42	79
- Congressiones and Congression	γMs	[-]		2,0			1	.,0	
Stahl – Festigkeitsklasse 5.8	$N_{Rk,s}$	[kN]	10	17	29	18	29	42	79
- Congressiado C.C	γ _{Ms}	[-]		1,5			1	,5	
Stahl – Festigkeitsklasse 8.8	$N_{Rk,s}$	[kN]	16	27	46	29	46	67	126
Starii — Festigheitshlasse 0.0	γMs	[-]		1,5			1	,5	
Nichtrostender Stahl A4 / HCR,	$N_{Rk,s}$	[kN]	14	26	41	26	41	59	110
Festigkeitsklasse 70	γ _{Ms}	[-]		1,87			1,	87	
Nichtrostender Stahl A4 / HCR,	$N_{Rk,s}$	[kN]	16	29	46	29	46	67	126
Festigkeitsklasse 80	γ _{Ms}	[-]		1,6			1	,6	
Charakteristische Querzugtragfähi	gkeit				<u> </u>			·	
Ctable Fastialsaitalslages 4.6	$V_{Rk,s}$	[kN]	-	-	-	7	12	17	31
Stahl – Festigkeitsklasse 4.6	γ _{Ms}	[-]		-			1,	67	
0.11 5 2.1 2.11 4.0	$V_{Rk,s}$	[kN]	-	-	-	7	12	17	31
Stahl – Festigkeitsklasse 4.8	γMs	[-]		-			1,	25	
Stahl – Festigkeitsklasse 5.6	$V_{Rk,s}$	[kN]	5	9	15	9	15	21	39
	γMs	[-]		1,67			1,	67	
Stahl – Festigkeitsklasse 5.8	V _{Rk,s}	[kN]	5	9	15	9	15	21	39
	γ _{Ms}	[-]	_	1,25				25	
	V _{Rk,s}	[kN]	8	14	23	15	23	34	63
Stahl – Festigkeitsklasse 8.8	YMs	[-]		1,25				25	
Nichtrostender Stahl A4 / HCR,	V _{Rk,s}	[kN]	7	13	20	13	20	30	55
Festigkeitsklasse 70	γ _{Ms}	[-]		1,56				56	
Nichtrostender Stahl A4 / HCR,	V _{Rk,s}	[kN]	8	15	23	15	23	34	63
Festigkeitsklasse 80		[-]	J	1,33	20	- 10		33	- 00
Charakteristisches Biegemoment	γMs	L J		1,00				.00	
•	$M_{Rk,s}$	[Nm]	-	-	-	15	30	52	133
Stahl – Festigkeitsklasse 4.6	γMs	[-]		-			1	67	
	M _{Rk,s}	[Nm]	-	_	-	15	30	52	133
Stahl – Festigkeitsklasse 4.8	γ _{Ms}	[-]		_				25	
	M _{Rk,s}	[Nm]	8	19	37	19	37	66	167
Stahl – Festigkeitsklasse 5.6		[-]	J	1,67	0,	10		67	10,
	γ _{Ms}	[Nm]	8	19	37	19	37	66	167
Stahl – Festigkeitsklasse 5.8	$M_{Rk,s}$		U	1,25	- 37	13		.25	107
	γ _{Ms}	[-] [Nm]	12	30	60	30	60	105	266
Stahl – Festigkeitsklasse 8.8	$M_{Rk,s}$		12		- 00	30		.25	200
Nichter de ada constituto D	γ _{Ms}	[-]	4.4	1,25	FO	20	52	25 92	000
Nichtrostender Stahl A4 / HCR, Festigkeitsklasse 70	$M_{Rk,s}$	[Nm]	11	26	52	26			233
<u> </u>	ΥMs	[-]	10	1,56				56	000
Nichtrostender Stahl A4 / HCR,	$M_{Rk,s}$	[Nm]	12	30	60	30	60	105	266
Festigkeitsklasse 80	Ϋ́Ms	[-]		1,33			1,	33	

Anhang C 2

Leistungen
Charakteristische Stahltragfähigkeit unter Zuglast und Querzuglast

Rand- und Achsabstände

Charakteristischer Randabstand C_{cr}

Minimaler Randabstand Cmin

Charakteristischer Achsabstand S_{cr} =

Smin Minimaler Achsabstand

S_{cr,II}; (S_{min,II}) Charakteristischer (minimaler) Achsabstand für Anker parallel zur Lagerfuge angeordnet Charakteristischer (minimaler) Achsabstand für Anker senkrecht zur Lagerfuge angeordnet $S_{cr,\perp}$; $(S_{min,\perp})$

Lastrichtung Ankeran- ordnung	Zuglast	Querzuglast parallel zum freien Rand	Querzuglast senkrecht zum freien Rand
Ankeranordnung parallel zur Lagerfuge s _{cr,ll} ; (s _{min,ll})		V	V
Ankeranordnung senkrecht zur Lagerfuge $s_{cr,\perp}$ ($s_{min,\perp}$)		V	V-

Gruppenfaktor bei Zugbelastung für Anker parallel zur Lagerfuge angeordnet $\alpha_{g,N,II} =$ Gruppenfaktor bei Querzugbelastung für Anker parallel zur Lagerfuge angeordnet $\alpha_{g,V,II} =$ Gruppenfaktor bei Zugbelastung für Anker senkrecht zur Lagerfuge angeordnet $\alpha_{g,N,\perp} =$ Gruppenfaktor bei Querzugbelastung für Anker senkrecht zur Lagerfuge angeordnet $\alpha_{\text{q.V.}} \perp =$

Gruppe aus 2 Anker: $N^{g}_{RK} = \alpha_{a,N} * N_{RK}$ und

 $\begin{aligned} &V^g_{Rk} = \alpha_{g,V} * V_{Rk} \\ &V^g_{Rk} = \alpha_{g,V,II} * \alpha_{g,V,\bot} * V_{Rk} \end{aligned}$ $N^g_{Rk} = \alpha_{q,N,II}^* \alpha_{q,N,\perp}^* N_{RK}$ Gruppe aus 4 Anker: und

 $(N_{Rk:} N_{Rk,b} oder N_{Rk,b,j} f \ddot{u} r c_{cr})$

 $(V_{Rk:}\,V_{Rk,c};\,V_{Rk,c,j};\,V_{Rk,b}\,oder\,V_{Rk,b,j}\,f\ddot{u}r\;c_{cr})$

(mit zugehörigem α_{q})

allchem Verbundmörtel für Mauerwerk	
Leistungen Rand- und Achsabstände	Anhang C 3

Steintyp: Porenbeton – AAC6

Tabelle C3: Beschreibung des Steins

Steintyp		Porenbeton AAC6
Dichte	ρ [kg/dm³]	0,6
Druckfestigkeit	$f_b \ge [N/mm^2]$	6
Code		EN 771-4
Hersteller (Ländercode)		z.B. Porit (DE)
Steinabmessungen	[mm]	499 x 240 x 249
Bohrverfahren		Drehend

Tabelle C4: Installationsparameter

Ankergröße		M8	M10/IG-M6	M12/IG-M8	M16/IG-M10		
Effektive Verankerungstiefe		80	90	100	100		
Randabstand c _{cr}		1,5*h _{ef}					
C _{min,N}	[mm]	75					
C _{min,V,II} (C _{min,v,} ⊥) ¹⁾	[mm]	75 (1,5*h _{ef})					
S _{cr}	[mm]	3*h _{ef}					
S _{min}	[mm]	100					
Effektive Verankerungstiefe Randabstand Ccr Minimaler Randabstand Cmin, N Cmin, V,II (Cmin, v, ⊥) 1) Scr			[mm] 80 C _{cr} [mm] C _{min,N} [mm] C _{min,V,II} (C _{min,V} , ⊥) ¹⁾ [mm] S _{cr} [mm]	[mm] 80 90 C _{cr}	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

 $c_{\text{min,V,II}}$ für Querzugbelastung parallel zum freien Rand; $c_{\text{min,v,}}$ für Querzugbelastung senkrecht zum freien Rand

Tabelle C5: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung		125 (M8:120)	100			1,8
parallel zur Lagerfuge		1,5*hef	3*hef	$\alpha_{g,N,II}$	r 1	2,0
⊥: Ankeranordnung		75	100		[-]	1,4
senkrecht zur Lagerfuge		1,5*hef	3*hef	$\alpha_{g,N,\perp}$		2,0

Tabelle C6: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung		75	100			1,2
parallel zur Lagerfuge	V	1,5*hef	3*hef	$\alpha_{g,V,II}$	r 1	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	1,5*hef	3*hef	$\alpha_{g,V,\perp}$	[-]	2,0

allchem Verbundmörtel für Mauerwerk	
Leistungen Porenbeton - AAC6	Anhang C 4
Beschreibung des Steins	
Installationsparameter	

Steintyp: Porenbeton - AAC6

Tabelle C7: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V-••	1,5*hef	3,0*hef	$\alpha_{g,V,II}$	r 1	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	1,5*hef	3,0*hef	$\alpha_{g,V,\perp}$] [-]	2,0

Tabelle C8: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

		Charakteristischer Widerstand								
Ankergröße	Effektive ankerungs- tiefe	Nutzungskategorie								
			d/d			d/d w/d w/w				
	Effektive Verankerungs tiefe	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche		
	h _{ef}		$N_{Rk,b} = N_{Rk,p}^{1}$)		$V_{Rk,b}^{2)3)}$				
	[mm]				[kN]					
			Druckfe	stigkeit f _b ≥ (3 N/mm ²					
M8	80	2,5 (2,0)	2,5 (1,5)	2,0 (1,2)	2,5 (1,5)	2,0 (1,5)	1,5 (1,2)	6,0		
M10/IG-M6	90	4,0 (2,5)	3,0 (2,0)	2,5 (1,5)	3,5 (2,5)	3,0 (2,0)	2,5 (1,5)	10,0		
M12/IG-M8	100	5,0 (3,5)	4,0 (3,0)	3,0 (2,5)	4,5 (3,0)	3,5 (2,5)	3,0 (2,5)	10,0		
M16/IG-M10	100	6,5 (4,5)	5,5 (3,5)	4,0 (3,0)	5,5 (4,0)	5,0 (3,5)	4,0 (3,0)	10,0		

Tabelle C9: Verschiebungen

A pleasas a	h _{ef}	N	δ _N / N	δ_{N0}	δ _{N∞}	V	$\delta_{ m V0}$	δγ∞
Ankergröße	[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	80	0,9	0.10	0,16	0,32	1,3	0,8	1,20
M10/IG-M6	90	1,4	0,18	0,26	0,51	1,8	1,2	1,80
M12/IG-M8	100	1,8	0.00	0,14	0,29	2,1	1,4	2,10
M16/IG-M10	100	2,3	0,08	0,19	0,37	2,3	1,5	2,25

allchem Verbundmörtel für Mauerwerk	
Leistungen Porenbeton – AAC6	Anhang C 5
Installationsparameter	
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast / Verschiebungen	

8.06.04-189/19 Z54664.19

Werte gültig für c_{cr} , Werte in Klammern gültig für Einzelanker mit c_{min} Für die Bemessung von $V_{Rk,c}$ siehe ETAG029, Anhang C; Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist $V_{Rk,b}$ mit 0,8 zu multiplizieren.

Steintyp: Kalksandvollstein KS-NF

Tabelle C10: Beschreibung des Steins

Steintyp		Kalksandvollstein KS-NF
Dichte	ρ [kg/dm³]	2,0
Druckfestigkeit	$f_b \ge [N/mm^2]$	10, 20 oder 27
Code		EN 771-2
Hersteller (Ländercode)		z.B. Wemding (DE)
Steinabmessungen	[mm]	240 x 115 x 71
Bohrverfahren		Hammer

Tabelle C11: Installationsparameter

Ankergröße [-] Alle Größen		Alle Größen	
Randabstand	Ccr	[mm]	1,5*h _{ef}
Minimaler Randabstand	stand c _{min}		60
Achsabstand	Scr	[mm]	3*h _{ef}
Minimaler Achsabstand	Smin	[mm]	120

Tabelle C12: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge		60 120				1,0
		140	120	$\alpha_{g,N,II}$		1,5
		1,5*hef	1,5*hef 3*h _{ef}		F 1	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge		60	120] [-]	0,5
		1,5*hef	120	$\alpha_{g,N,\perp}$		1,0
		1,5*hef	3*h _{ef}			2,0

Tabelle C13: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

Anordnu	ing	mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge		60	120			1,0
	V	115	120	$\alpha_{g,V,II}$		1,7
		1,5*hef 3*h _{ef}			r 1	2,0
⊥: Ankeranordnung senkrecht zur		60	120		[-]	1,0
	V	1,5*hef	120	$\alpha_{g,V,\perp}$		1,0
Lagerfuge		1,5*hef	3*h _{ef}			2,0

Tabelle C14: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnı	ıng	mit c ≥	mit s ≥			
II: Ankeranordnung		60	120			1,0
parallel zur Lagerfuge	V	1,5*hef	3*h _{ef}	$\alpha_{g,V,II}$	F 1	2,0
⊥: Ankeranordnung		60	120] [-J	1,0
senkrecht zur Lagerfuge	V	1,5*hef	3*h _{ef}	$\alpha_{g,V,\perp}$		2,0

allchem Verbundmörtel für Mauerwerk	
Leistungen Kalksandvollstein KS-NF	Anhang C 6
Beschreibung des Steins	
Installationsparameter	

Steintyp: Kalksandvollstein KS-NF

Tabelle C15: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

		Recording W		-99							
			Charakteristischer Widerstand								
			Nutzungskategorie								
		Effektive					w/d		d/d		
		Verankerungs-		d/d			w/w		w/d		
Ankergröße	Siebhülse								w/w		
			4000/0400	00°C/E0°C	12000/7200	40°C/24°C	00°C/E0°C	120°C/72°C	Alle Temperatur-		
			40 G/24 G	80 C/30 C	120 0/12 0	40 0/24 0	80 C/30 C	120 0/12 0	bereiche		
		h _{ef}	ı	$N_{Rk,b} = N_{Rk,b}$	1)	<u> </u>	$N_{Rk,b} = N_{Rk,b}$	1)	V _{Rk,b} ²⁾³⁾		
		[mm]		THK,D TINK,	U	[kN]	THE THE	U	• nk,b		
		<u>[]</u>	Druc	kfestiakeit	f _b ≥ 10 N/n	nm²					
M8	-	80	4,5 (2,0)	4,5 (2,0)	3,0 (1,5)	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	2,5 (1,5)		
M10 /					, ,			, ,			
IG-M6	-	90	4,5 (2,0)	4,5 (2,0)	3,0 (1,5)	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	3,0 (2,0)		
M12 /		100	4,5 (2,0)	4,5 (2,0)	3,0 (1,5)	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	2,5 (1,5)		
IG-M8	-	100	4,5 (2,0)	4,5 (2,0)	3,0 (1,3)	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	2,5 (1,5)		
M16 /	_	100	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	3,0 (1,5)	3,5 (1,5)	2,0 (0,9)	2,5 (1,5)		
IG-M10											
M8	12x80	80	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	3,5 (1,5)	3,0 (1,5)	2,5 (1,2)	2,5 (1,5)		
M8 / M10/	16x85	85	3,5 (1,5)	3,0 (1,5)	2,0 (0,9)	3,5 (1,5)	3,0 (1,5)	2,5 (1,2)	2,5 (1,5)		
IG-M6	16x130	130	3,5 (1,5)	3,0 (1,5)	2,0 (0,9)	3,5 (1,5)	3,0 (1,5)	2,5 (1,2)	2,5 (1,5)		
M12 / M16	20x85	85	3,0 (1,5)	2,5 (1,2)	2,0 (0,9)	3,0 (1,5)	2,5 (1,2)	2,0 (0,9)	2,5 (1,5)		
/ IG-M8 /	20x130	130	3,0 (1,5)	2,5 (1,2)	2,0 (0,9)	3,0 (1,5)	2,5 (1,2)	2,0 (0,9)	2,5 (1,5)		
IG-M10	20x200	200	3,0 (1,5)	2,5 (1,2)	2,0 (0,9)	3,0 (1,5)	2,5 (1,2)	2,0 (0,9)	2,5 (1,5)		
			Druc	kfestigkeit	f _b ≥ 20 N/n	nm²	I	l	l		
M8	-	80	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	5,0 (2,5)	5,0 (2,5)	3,5 (1,5)	4,0 (2,5)		
M10 / IG-M6	-	90	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	5,0 (2,5)	5,0 (2,5)	3,5 (1,5)	4,5 (2,5)		
M12/											
IG-M8	-	100	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	5,0 (2,5)	5,0 (2,5)	3,5 (1,5)	4,0 (2,5)		
M16/		100	F 0 (0 F)	5.0 (0.5)	0.5 (4.5)	5.0.(0.5)	F 0 (0 F)	0.5 (4.5)	4.0.(0.5)		
IG-M10	-	100	5,0 (2,5)	5,0 (2,5)	3,5 (1,5)	5,0 (2,5)	5,0 (2,5)	3,5 (1,5)	4,0 (2,5)		
M8	12x80	80	5,5 (2,5)	5,0 (2,5)	3,5 (1,5)	4,5 (2,0)	4,5 (2,0)	3,0 (1,5)	4,0 (2,5)		
M8 / M10/	16x85	85	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	4,0 (2,5)		
IG-M6	16x130	130	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	4,0 (2,5)		
M12 / M16 /	20x85	85	4,0 (2,0)	4,0 (2,0)	3,0 (1,5)	4,0 (2,0)	4,0 (2,0)	3,0 (1,5)	4,0 (2,5)		
IG-M8 /	20x130	130	4,0 (2,0)	4,0 (2,0)	3,0 (1,5)	4,0 (2,0)	4,0 (2,0)	3,0 (1,5)	4,0 (2,5)		
IG-M10	20x200	200	4,0 (2,0)	4,0 (2,0)	3,0 (1,5)	4,0 (2,0)	4,0 (2,0)	3,0 (1,5)	4,0 (2,5)		

allchem Verbundmörtel für Mauerwerk	
Leistungen Kalksandvollstein KS-NF	Anhang C 7
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast	

Werte gültig für c_{cr} , Werte in Klammern gültig für Einzelanker mit c_{min} Für c_{cr} Bemessung von $V_{Rk,c}$ siehe Technical Report TR 054; Werte in Klammern $V_{Rk,b} = V_{Rk,c}$ gültig für Einzelanker mit c_{min}

 $^{^{3)}}$ Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist $V_{Rk,b}$ mit 0,8 zu multiplizieren.

Steintyp: Kalksandvollstein KS-NF

Tabelle C16: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)

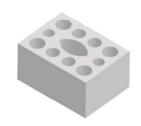
			Charakteristischer Widerstand								
		Effektive Verankerungs- tiefe	Nutzungskategorie								
	Ciobbüloo		d/d				d/d w/d w/w				
Ankergröße	Siebriuise	tiere	40°C/24°C	80°C/50°C	120°C/72°C				Alle Temperatur- bereiche		
		h _{ef}		$N_{Rk,b} = N_{Rk,b}$	1)	<u> </u>	$N_{Rk,b} = N_{Rk,t}$	1)	$V_{Rk,b}^{2)3)}$		
		[mm]				[kN]					
			Druc	kfestigkeit	f _b ≥ 27 N/n	nm²					
M8	-	80	7,0 (3,5)	6,5 (3,0)	5,0 (2,5)	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	4,5 (2,5)		
M10 / IG-M6	-	90	7,0 (3,5)	6,5 (3,0)	5,0 (2,5)	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	5,5 (3,0)		
M12 / IG-M8	_	100	7,0 (3,5)	6,5 (3,0)	5,0 (2,5)	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	4,5 (2,5)		
M16 / IG-M10	-	100	6,0 (3,0)	5,5 (2,5)	4,5 (2,0)	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	4,5 (2,5)		
M8	12x80	80	6,5 (3,0)	6,0 (3,0)	4,5 (2,0)	5,5 (2,5)	5,0 (2,5)	3,5 (1,5)	4,5 (2,5)		
M8 / M10/	16x85	85	5,5 (2,5)	5,0 (2,5)	4,0 (2,0)	5,5 (2,5)	5,0 (2,5)	4,0 (2,0)	4,5 (2,5)		
IG-M6	16x130	130	5,5 (2,5)	5,0 (2,5)	4,0 (2,0)	5,5 (2,5)	5,0 (2,5)	4,0 (2,0)	4,5 (2,5)		
M12 / M16	20x85	85	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	4,5 (2,5)		
/ IG-M8 /	20x130	130	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	4,5 (2,5)		
IG-M10	20x200	200	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	4,5 (2,5)		

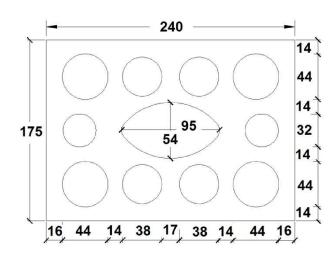
Tabelle C17: Verschiebungen

Ankergröße	Siebhülse	Effektive Verankerungs- tiefe h _{ef}	N	δ _N / N	δ_{N0}	δ _{N∞}	V	δ_{V0}	δ _{V∞}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	-	80					1,7	0,90	1,35
M10 / IG-M6	-	90	2,0		0,30	0,60	2,0	1,10	1,65
M12 / IG-M8	-	100							
M16 / IG-M10	-	100	1,7	0,15	0,26	0,51			
M8	12x80	80		0,10	·				
M8 / M10/	16x85	85	1.4		0.01	0.42	1,7	0,90	1,35
IG-M6	16x130	130	1,4		0,21	0,43			
M12 / M16 /	20x85	85							
IG-M8 /	20x130	130	1,3		0,19	0,39			
IG-M10	20x200	200							

allchem Verbundmörtel für Mauerwerk	
Leistungen Kalksandvollstein KS-NF	Anhang C 8
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)	
Verschiebungen	

Werte gültig für c_{cr} , Werte in Klammern gültig für Einzelanker mit c_{min} Für c_{cr} Bemessung von $V_{Rk,c}$ siehe Technical Report TR 054; Werte in Klammern $V_{Rk,b} = V_{Rk,c}$ für Einzelanker mit


Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rk,b} mit 0,8 zu multiplizieren.



Steintyp: Kalksandlochstein KS L-3DF

Tabelle C18: Beschreibung des Steins

Steintyp		Kalksandlochstein KSL-3DF
Dichte	ρ [kg/dm³]	1,4
Druckfestigkeit	$f_b \ge [N/mm^2]$	8, 12 oder 14
Code		EN 771-2
Hersteller (Ländercode)		z.B. Wemding (DE)
Steinabmessungen	[mm]	240 x 175 x 113
Bohrverfahren		Drehend

Tabelle C19: Installationsparameter

Ankergröße		[-]	Alle Größen
Randabstand	C _{cr}	[mm]	100 (120) ¹⁾
Minimaler Randabstand	C _{min}	[mm]	60
Achsabstand	S _{cr,II}	[mm]	240
Achsabstand	S _{cr,⊥}	[mm]	120
Minimaler Achsabstand	S _{min}	[mm]	120

Werte in Klammern für SH20x85; SH20x130 und SH20x200

Tabelle C20: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge		60 120				1,5
		C _{Cr}	240	$\boxed{\alpha_{\text{g,N,II}}}$		2,0
		160	120		[-]	2,0
⊥: Ankeranordnung		60	120			1,0
senkrecht zur Lagerfuge		C _{cr}	120	$\bigcap \alpha_{g,N,\perp}$		2,0

allchem Verbundmörtel für Mauerwerk Leistungen Kalksandlochstein KS L-3DF Beschreibung des Steins Installationsparameter Anhang C 9

Steintyp: Kalksandlochstein KS L-3DF

Tabelle C21: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

Anordnung		mit c ≥	mit s ≥			
		60	120			1,0
II: Ankeranordnung parallel zur Lagerfuge	V	160	120	$\alpha_{g,V,II}$		1,6
		C _{cr}	240			2,0
⊥: Ankeranordnung		60	120		[[-]	1,0
senkrecht zur Lagerfuge	V •	C _{Cr}	120	$ \alpha_{g,V,\perp}$		2,0

Tabelle C22: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung	\\\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	60	120			1,0
parallel zur Lagerfuge		C _{cr}	240	$\alpha_{g,V,II}$	r 1	2,0
⊥: Ankeranordnung	11/	60	120		[-]	1,0
senkrecht zur Lagerfuge		C _{cr}	120	$lpha_{g,V,\perp}$		2,0

Tabelle C23: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

			Charakteristischer Widerstand						
		gs			Nι	utzungskate	gorie		
Ankar	Sieb-	Effektive Verankerungs- tiefe		d/d			d/d; w/d; w/w		
Anker- größe	hülse	Eff Veran t	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur -bereiche
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$	1)		$V_{Rk,b}^{4)}$		
		[mm]				[kN]			
			Dı	uckfestigk	eit f _b ≥ 8 N/ı	mm ²			
M8	12x80	80	1,5	1,5	1,2	1,5	1,2	0,9	$2.5^{2)} (0.9)^{3)}$
M8 / M10	16x85	85	1,5	1,5	1,2	1,5	1,5	1,2	4,0 ²⁾ (1,5) ³⁾
/ IG-M6	16x130	130	1,5	1,5	1,2	1,5	1,5	1,2	$4,0^{2)}(1,5)^{3)}$
M12 /	20x85	85	4,5	4,0	3,0	4,5	4,0	3,0	$4,0^{2)}(1,5)^{3)}$
M16 / IG-M8 /	20x130	130	4,5	4,0	3,0	4,5	4,0	3,0	$4,0^{2)}(1,5)^{3)}$
IG-M10	20x200	200	4,5	4,0	3,0	4,5	4,0	3,0	$4,0^{2)}(1,5)^{3)}$
			Dr	uckfestigke	eit f _b ≥ 12 N	mm²			
M8	12x80	80	2,0	2,0	1,5	2,0	1,5	1,2	$3.0^{2)} (1.2)^{3)}$
M8 / M10	16x85	85	2,0	2,0	1,5	2,0	2,0	1,5	$ 4,5^{2)}(1,5)^{3)} $
/ IG-M6	16x130	130	2,5	2,5	1,5	2,5	2,5	1,5	$4.5^{2)} (1.5)^{3)}$
M12 /	20x85	85	6,0	5,5	4,0	6,0	5,5	4,0	4,5 ²⁾ (1,5) ³⁾
M16 / IG-M8 /	20x130	130	6,0	5,5	4,0	6,0	5,5	4,0	4,5 ²⁾ (1,5) ³⁾
IG-M10	20x200	200	6,0	5,5	4,0	6,0	5,5	4,0	$4,5^{2)}(1,5)^{3)}$

- Werte gültig für c_{cr} und c_{min}
- $V_{Rk,c,ll} = V_{Rk,b}$ gültiğ für Querzuglasten parallel zum freien Rand
- $V_{Rk,c,\perp} = V_{Rk,b}$ (Klammerwert) gültig für Querzuglasten in Richtung zum freien Rand
- Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rk,b} mit 0,8 zu multiplizieren.

Anhang C 10 Leistungen Kalksandlochstein KS L-3DF Installationsparameter (Fortsetzung) Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

Steintyp: Kalksandlochstein KS L-3DF

Tabelle C24: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)

					Charakt	eristischer Widerstand						
		gs-		Nutzungskategorie								
Ankor	Ciab	Effektive Verankerungs- tiefe	d/d				d/d; w/d; w/w					
Anker- größe	Sieb- hülse	Eff Veran t	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur -bereiche			
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$	1)		$N_{Rk,b} = N_{Rk,p}$	1)	$V_{Rk,b}^{4)}$			
		[mm]				[kN]						
			Dr	uckfestigke	eit f _b ≥ 14 N/	/mm²						
M8	12x80	80	2,5	2,5	1,5	2,0	2,0	1,5	$3.5^{2)} (1.5)^{3)}$			
M8 / M10	16x85	85	2,5	2,5	1,5	2,5	2,5	1,5	$6,0^{2)}(2,0)^{3)}$			
/ IG-M6	16x130	130	2,5	2,5	2,0	2,5	2,5	2,0	$6.0^{2)} (2.0)^{3)}$			
M12 /	20x85	85	6,5	6,0	4,5	6,5	6,0	4,5	$6.0^{2)} (2.0)^{3)}$			
M16 / IG-M8 /	20x130	130	6,5	6,0	4,5	6,5	6,0	4,5	$6.0^{2)} (2.0)^{3)}$			
IG-M10	20x200	200	6,5	6,0	4,5	6,5	6,0	4,5	$6.0^{2)}(2.0)^{3)}$			

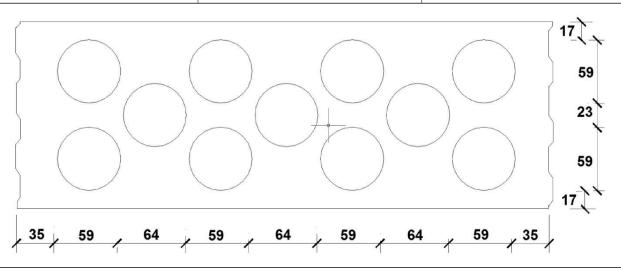
Werte gültig für c_{cr} und c_{min}

Tabelle C25: Verschiebungen

Ankergröße	Siebhülse	Effektive Verankerungs- tiefe h _{ef}	N	δ _N / N	δ_{N0}	$\delta_{N^{\boldsymbol{\infty}}}$	٧	δ_{V0}	$\delta_{V^{\infty}}$
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80					1,0	1,0	1,50
M8 / M10 /	16x85	85	0,71		0,64	1,29			
IG-M6	16x130	130		0,90					
M12 / M16 /	20x85	85		0,90			1,7	1,9	2,85
IG-M8 /	20x130	130	1,86		1,67	3,34			
IG-M10	20x200	200							

allchem Verbundmörtel für Mauerwerk	
Leistungen Kalksandlochstein KS L-3DF	Anhang C 11
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung) Verschiebungen	

 $V_{Rk,c,II} = V_{Rk,b}$ gültig für Querzuglasten parallel zum freien Rand $V_{Rk,c,\perp} = V_{Rk,b}$ (Klammerwert) gültig für Querzuglasten in Richtung zum freien Rand Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist $V_{Rk,b}$ mit 0,8 zu multiplizieren.



Steintyp: Kalksandlochstein KS L-12DF

Tabelle C26: Beschreibung des Steins

Steintyp		Kalksandlochstein KSL-12DF
Dichte	ρ [kg/dm³]	1,4
Druckfestigkeit	$f_b \ge [N/mm^2]$	10, 12 oder 16
Code		EN 771-2
Hersteller (Ländercode)		z.B. Wemding (DE)
Steinabmessungen	[mm]	498 x 175 x 238
Bohrverfahren		Drehend

Tabelle C27: Installationsparameter

Ankergröße		[-]	Alle Größen
Randabstand	C _{cr}	[mm]	100 (120) ¹⁾
Minimaler Randabstand	C _{min} ²⁾	[mm]	100 (120) ¹⁾
Aslassiasiasia	S _{cr,II}	[mm]	498
Achsabstand	S _{cr,⊥}	[mm]	238
Minimaler Achsabstand	S _{min}	[mm]	120

Werte in Klammern für SH20x85 und SH20x130

Tabelle C28: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung		100	120			1,0
parallel zur Lagerfuge		C _{Cr}	498	$lpha_{g,N,II}$	F 3	2,0
⊥: Ankeranordnung		100	120		[-]	1,0
senkrecht zur Lagerfuge		C _{cr}	238	$\alpha_{g,N,\perp}$		2,0

allchem Verbundmörtel für Mauerwerk	
Leistungen Kalksandlochstein KS L-12DF	Anhang C 12
Beschreibung des Steins	
Installationsparameter	

²⁾ Für V_{Rk,c}: c_{min} gemäß Technical Report TR 054

Steintyp: Kalksandlochstein KS L-12DF

Tabelle C29: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

Anordnu	ıng	mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V	C _{Cr}	498	$\alpha_{g,V,II}$	r.1	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{cr}	238	$\alpha_{g,V,\perp}$	[-]	2,0

Tabelle C30: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnu	ing	mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V-•••	C _{Cr}	498	$\alpha_{g,V,II}$	F 1	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{Cr}	238	$\alpha_{g,V,\perp}$	[-]	2,0

Tabelle C31: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

				Charakteristischer Widerstand						
	ν _α Nutzungskategorie									
	Effektive Verankerungs- tiefe		d/d			w/d w/w				
Ankergröße	Siebhülse	E	40°C/24°C	80°C/50°C	120°C/72°C			120°C/72°C	Alle Temperatur- bereiche	
		h _{ef}	1	$N_{Rk,b} = N_{Rk,J}$	1) p	1	$N_{Rk,b} = N_{Rk,b}$	1) p	$V_{Rk,b}^{2)3)}$	
		[mm]				[kN]				
	Druckfestigkeit f _b ≥ 10 N/mm ²									
M8	12x80	80	0,6	0,6	0,4	0,5	0,5	0,4	2,5	
M8 / M10 /	16x85	85	0,6	0,6	0,4	0,6	0,6	0,4	5,5	
IG-M6	16x130	130	2,5	2,5	2,0	2,5	2,5	2,0	5,5	
M12 / M16 /	20x85	85	1,5	1,5	0,9	1,5	1,5	0,9	5,5	
IG-M8 / IG-M10	20x130	130	2,5	2,5	2,0	2,5	2,5	2,0	5,5	
			Druck	festigkeit	f _b ≥ 12 N/m	nm²				
M8	12x80	80	0,75	0,6	0,5	0,6	0,6	0,4	3,0	
M8 / M10 /	16x85	85	0,75	0,6	0,5	0,75	0,6	0,5	6,5	
IG-M6	16x130	130	3,0	3,0	2,0	3,0	3,0	2,0	6,5	
M12 / M16 /	20x85	85	1,5	1,5	1,2	1,5	1,5	1,2	6,5	
IG-M8 / IG-M10	20x130	130	3,0	3,0	2,0	3,0	3,0	2,0	6,5	

Werte gültig für c_{cr} und c_{min}

Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rk,b} mit 0,8 zu multiplizieren.

allchem Verbundmörtel für Mauerwerk	
Leistungen Kalksandlochstein KS L-12DF	Anhang C 13
Installationsparameter (Fortsetzung)	
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast	

Bemessung von V_{Rk,c} siehe Technical Report TR 054, außer für Querzugbelastung parallel zum freien Rand mit c ≥ 120 mm: V_{Rk,c,ll} = V_{Rk,b}

Steintyp: Kalksandlochstein KS L-12DF

Tabelle C32: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)

					Charak	teristischer	· Widerstar	nd			
		<u>'</u>		Nutzungskategorie							
	Effektive Verankerungs tiefe	d/d			w/d w/w			d/d w/d w/w			
Ankergröße	Siebhülse	E	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche		
		h _{ef}	1	$N_{Rk,b} = N_{Rk,b}$	1) p	<u> </u>	$N_{Rk,b} = N_{Rk,b}$	1) p	$V_{Rk,b}^{(2)3)}$		
		[mm]				[kN]					
			Druck	destigkeit	f _b ≥ 16 N/n	nm²					
M8	12x80	80	0,9	0,9	0,6	0,75	0,75	0,5	3,5		
M8 / M10 /	16x85	85	0,9	0,9	0,6	0,9	0,9	0,6	8,0		
IG-M6	16x130	130	4,0	3,5	2,5	4,0	3,5	2,5	8,0		
M12 / M16 /	20x85	85	2,0	2,0	1,5	2,0	2,0	1,5	8,0		
IG-M8 / IG-M10	20x130	130	4,0	3,5	2,5	4,0	3,5	2,5	8,0		

Tabelle C33: Verschiebungen

Ankergröße	Siebhülse	Effektive Verankerungs- tiefe h _{ef}	N	δ _N / N	δ_{N0}	$\delta_{N^{\boldsymbol{\infty}}}$	V	δ_{V0}	δ _{V∞}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	0,26		0,23	0,46	1,0	1,3	1,95
M8 / M10 /	16x85	85	0,26		0,23	0,46			
IG-M6	16x130	130	1,14	0,90	1,03	2,06			
M12 / M16	20x85	85	0,57		0,51	1,03	2,3	2,5	3,75
/ IG-M8 / IG-M10	1 200/120 1 120 1111 1 1		1,03	2,06					

allchem Verbundmörtel für Mauerwerk	
Leistungen Kalksandlochstein KS L-12DF	Anhang C 14
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung) Verschiebungen	

Werte gültig für c_{cr} und c_{min} Bemessung von $V_{Rk,c}$ siehe Technical Report TR 054, außer für Querzugbelastung parallel zum freien Rand mit c \geq 120 mm: $V_{Rk,c,ll} = V_{Rk,b}$ Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist $V_{Rk,b}$ mit 0,8 zu multiplizieren.

Steintyp: Mauerziegel Mz-DF

Tabelle C34: Beschreibung des Steins

Steintyp		Mauerziegel Mz-DF
Dichte	ρ [kg/dm³]	1,6
Druckfestigkeit	$f_b \ge [N/mm^2]$	10, 20 oder 28
Code		EN 771-1
Hersteller (Ländercode)		z.B. Unipor (DE)
Steinabmessungen	[mm]	240 x 115 x 55
Bohrverfahren		Hammer

Tabelle C35: Installationsparameter

Ankergröße			Alle Größen
Randabstand	Ccr	[mm]	1,5*h _{ef}
Minimaler Randabstand	C _{min}	[mm]	60
Achsabstand	Scr	[mm]	3*h _{ef}
Minimaler Achsabstand	S _{min}	[mm]	120

Tabelle C36: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung		60	120			0,7
parallel zur Lagerfuge		1,5*hef	3*h _{ef}	$\alpha_{g,N,II}$.,	2,0
⊥: Ankeranordnung		60	120] [-]	0,5
senkrecht zur		1,5*hef	120	$\alpha_{g,N,\perp}$		1,0
Lagerfuge		1,5*hef	3*h _{ef}			2,0

Tabelle C37: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

Anordnu	ing	mit c ≥	mit s ≥			
II. Al		60	120			0,5
II: Ankeranordnung parallel zur Lagerfuge		90	120	$\alpha_{g,V,II}$		1,1
parallel zur Lagerluge		1,5*hef	3*h _{ef}		[2,0
⊥: Ankeranordnung	60	120		[-]	0,5	
senkrecht zur	<mark> </mark>	1,5*hef	120	$\alpha_{g,V,\perp}$		1,0
Lagerfuge		1,5*hef	3*h _{ef}			2,0

Tabelle C38: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnu	ıng	mit c ≥	mit s ≥			
	60	120			0,5	
II: Ankeranordnung parallel zur Lagerfuge		1,5*hef	120	$\alpha_{g,V,II}$		1,0
paraller zur Lagerruge		1,5*hef	3*h _{ef}		[-]	2,0
⊥: Ankeranordnung	⊥: Ankeranordnung	60	120			0,5
senkrecht zur	V	1,5*hef	120	$\alpha_{g,V,\perp}$		1,0
Lagerfuge		1,5*hef	3*h _{ef}			2,0

allchem Verbundmörtel für Mauerwerk	
Leistungen Mauerziegel Mz-DF	Anhang C 15
Beschreibung des Steins	
Installationsparameter	

IG-M10

5,0 (2,5)

5,5 (2,0)

Steintyp: Maue	erziegel Mz-DF					
Tabelle C39: Ch	narakteristische \	Werte der Tragfähig	gkeit unter Zu	ıg- und Querz	uglast	
				Charakterist	ischer Widersta	and
				Nutzur	ngskategorie	
		Effektive		d/d		d/d
		Verankerungs-		w/d		w/d
Ankergröße	Siebhülse	tiefe		w/w		w/w
			40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur bereiche
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{-1}$)	$V_{Rk,b}^{(2)3)}$
		[mm]			[kN]	
		Druckfestigk	eit f _b ≥ 10 N/ı	mm²		
M8	-	80	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	3,5 (1,2)
M10 / IG-M6	-	90	3,5 (1,5)	3,5 (1,5)	3,0 (1,5)	3,5 (1,2)
M12 / IG-M8	-	100	4,0 (2,0)	4,0 (2,0)	3,5 (1,5)	3,5 (1,2)
M16 / IG-M10	-	100	4,0 (2,0)	4,0 (2,0)	3,5 (1,5)	5,5 (1,5)
M8	12x80	80	3,5 (1,5)	3,5 (1,5)	3,0 (1,2)	3,5 (1,2)
M8 / M10 /	16x85	85	3,5 (1,5)	3,5 (1,5)	3,0 (1,5)	3,5 (1,2)
IG-M6	16x130	130	3,5 (1,5)	3,5 (1,5)	3,0 (1,5)	3,5 (1,2)
M12 / M16 /	20x85	85	3,5 (1,5)	3,5 (1,5)	3,0 (1,5)	3,5 (1,2)
IG-M8 /	20x130	130	3,5 (1,5)	3,5 (1,5)	3,0 (1,5)	3,5 (1,2)
IG-M10	20x200	200	3,5 (1,5)	3,5 (1,5)	3,0 (1,5)	3,5 (1,2)
•		Druckfestigk	ceit f _b ≥ 20 N/ı			
M8	-	80	4,5 (2,5)	4,5 (2,5)	4,0 (2,0)	5,0 (1,5)
M10 / IG-M6	-	90	5,5 (2,5)	5,5 (2,5)	4,5 (2,0)	5,0 (1,5)
M12 / IG-M8	-	100	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,0 (1,5)
M16 / IG-M10	-	100	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	8,0 (2,5)
M8	12x80	80	4,5 (2,5)	4,5 (2,5)	4,0 (2,0)	5,0 (1,5)
M8 / M10 /	16x85	85	5,0 (2,5)	5,0 (2,5)	4,0 (2,0)	5,0 (1,5)
IG-M6	16x130	130	5,0 (2,5)	5,0 (2,5)	4,0 (2,0)	5,0 (1,5)
M12 / M16 /	20x85	85	5,0 (2,5)	5,0 (2,5)	4,0 (2,0)	5,0 (1,5)
IG-M8 /	20x130	130	5,0 (2,5)	5,0 (2,5)	4,0 (2,0)	5,0 (1,5)
IG-M10	20x200	200	5,0 (2,5)	5,0 (2,5)	4,0 (2,0)	5,0 (1,5)
·		Druckfestigk	ceit f _b ≥ 28 N/ı	mm²		
M8	_	80	5,5 (2,5)	5,5 (2,5)	4,5 (2,5)	5,5 (2,0)
M10 / IG-M6	_	90	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,5 (2,0)
M12 / IG-M8	-	100	7,0 (3,5)	7,0 (3,5)	6,0 (3,0)	5,5 (2,0)
M16 / IG-M10	-	100	7,0 (3,5)	7,0 (3,5)	6,0 (3,0)	9,0 (3,0)
M8	12x80	80	5,5 (2,5)	5,5 (2,5)	4,5 (2,5)	5,5 (2,0)
M8 / M10 /	16x85	85	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,5 (2,0)
IG-M6	16x130	130	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,5 (2,0)
M12 / M16 /	20x85	85	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,5 (2,0)
IG-M8 /	20x130	130	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,5 (2,0)

20x200

6,0 (3,0)

6,0 (3,0)

200

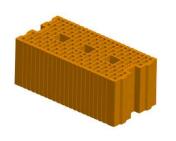
allchem Verbundmörtel für Mauerwerk	
Leistungen Mauerziegel Mz-DF Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast	Anhang C 16

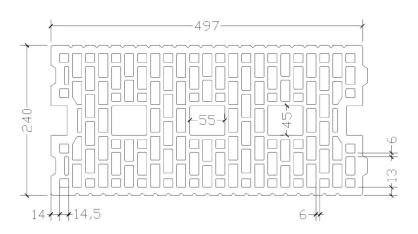
Werte gültig für c_{cr} , Werte in Klammern gültig für Einzelanker mit c_{min} Für c_{cr} Bemessung von $V_{Rk,c}$ siehe Technical Report TR 054; Werte in Klammern $V_{Rk,b} = V_{Rk,c}$ für Einzelanker

Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rk,b} mit 0,8 zu multiplizieren.

Steintyp: Mauerziegel Mz-DF Tabelle C40: Verschiebungen

Tabelle 040. V		_	1											
Ankergröße	Siebhülse	Effektive Verankerungs- tiefe h _{ef}	N	δ _N / N	δ_{N0}	δ _{N∞}	V	$\delta_{ m V0}$	δ _{V∞}					
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]					
M8	-	80	1,3		0,19	0,39								
M10 / IG-M6	-	90	1,6		0,24	0,47	1,9							
M12 / IG-M8	-	100	17		0,26	0,51								
M16 / IG-M10	-	100	1,7			0,51	2,9							
M8	12x80	80							0.15				1.00	1 50
M8 / M10 /	16x85	85		0,15			0,39 1,9	1,00	1,50					
IG-M6	16x130	130	10		0.10	0.20								
M12 / M16 /	20x85	85	1,3		0,19	0,39								
IG-M8 /	20x130	130												
IG-M10	IG-M10 20x200 200	200												


Anhang C 17
Verschiebungen



Steintyp: Hochlochziegel HLz-16-DF

Tabelle C41: Beschreibung des Steins

Steintyp		Hochlochziegel HLz-16-DF
Dichte	ρ [kg/dm³]	0,8
Druckfestigkeit	$f_b \ge [N/mm^2]$	6, 8, 12 oder 14
Code		EN 771-1
Hersteller (Ländercode)		z.B. Unipor DE)
Steinabmessungen	[mm]	497 x 240 x 238
Bohrverfahren		Drehend

Tabelle C42: Installationsparameter

Ankergröße		[-]	Alle Größen
Randabstand	C _{cr}	[mm]	100 (120) ¹⁾
Minimaler Randabstand	C _{min} ²⁾	[mm]	100 (120) ¹⁾
Achsabstand	S _{cr,II}	[mm]	497
	S _{cr,⊥}	[mm]	238
Minimaler Achsabstand	S _{min}	[mm]	100

Werte in Klammern für SH20x85; SH20x130 und SH20x200

Tabelle C43: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung		C _{cr}	100		- [-] ·	1,3
parallel zur Lagerfuge		C _{cr}	497	$\alpha_{g,N,II}$		2,0
⊥: Ankeranordnung		C _{cr}	100	$\alpha_{g,N,\perp}$		1,1
senkrecht zur Lagerfuge		C _{cr}	238			2,0

allchem Verbundmörtel für Mauerwerk	
Leistungen Hochlochziegel HLz-16DF	Anhang C 18
Beschreibung des Steins	
Installationsparameter	

²⁾ Für V_{Rk,c}: c_{min} gemäß Technical Report TR 054

Steintyp: Hochlochziegel HLz-16-DF

Tabelle C44: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V	C _{Cr}	497	$\alpha_{g,V,II}$	r.1	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{cr}	238	$\alpha_{g,V,\perp}$] [-]	2,0

Tabelle C45: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V	C _{Cr}	497	$\alpha_{g,V,II}$	F 1	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{Cr}	238	$\alpha_{g,V,\perp}$	[-]	2,0

Tabelle C46: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

				Charakterist	ischer Widersta	ınd		
		Effektive	Nutzungskategorie					
				d/d				
		Verankerungs-		w/d		w/d		
Ankergröße	Siebhülse	tiefe		w/w				
			40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche		
		h _{ef}		V _{Rk,b} ²⁾³⁾				
		[mm]		[kN]				
Druckfestigkeit f _b ≥ 6 N/mm ²								
M8	12x80	80	2,5	2,5	2,0	2,5		
M8 / M10/ IG-M6	16x85	85	2,5	2,5	2,0	4,5		
	16x130	130	3,5	3,5	3,0	4,5		
M12 / M16 /	20x85	85	2,5	2,5	2,0	5,0		
IG-M8 /	20x130	130	3,5	3,5	3,0	6,0		
IG-M10	20x200	200	3,5	3,5	3,0	6,0		
Druckfestigkeit f _b ≥ 8 N/mm ²								
M8	12x80	80	3,0	3,0	2,5	3,0		
M8 / M10/	16x85	85	3,0	3,0	2,5	5,5		
IG-M6	16x130	130	4,5	4,5	3,5	5,5		
M12 / M16 /	20x85	85	3,0	3,0	2,5	6,0		
IG-M8 /	20x130	130	4,5	4,5	3,5	7,0		
IG-M10	20x200	200	4,5	4,5	3,5	7,0		

Werte gültig für c_{cr} und c_{min}

Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rk,b} mit 0,8 zu multiplizieren.

allchem Verbundmörtel für Mauerwerk	
Leistungen Hochlochziegel HLz-16DF	Anhang C 19
Installationsparameter (Fortsetzung)	
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast	

Bemessung von V_{Rk,c} siehe Technical Report TR 054, außer für Querzugbelastung parallel zum freien Rand mit c ≥ 125 mm: V_{Rk,c,II} = V_{Rk,b}

Steintyp: Hochlochziegel HLz-16-DF

Tabelle C47: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)

				Charakterist	ischer Widersta	ınd		
		Effektive Verankerungs- tiefe	Nutzungskategorie					
				d/d				
				w/d		w/d		
Ankergröße	Siebhülse			w/w				
-			40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche		
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{-1}$)	$V_{Rk,b}^{(2)3)}$		
		[mm]		[kN]				
Druckfestigkeit f _b ≥ 12 N/mm ²								
M8	12x80	80	3,5	3,5	3,0	4,0		
M8 / M10/	16x85	85	3,5	3,5	3,0	6,5		
IG-M6	16x130	130	5,0	5,0	4,5	6,5		
M12 / M16 /	20x85	85	3,5	3,5	3,0	7,0		
IG-M8 /	20x130	130	5,0	5,0	4,5	9,0		
IG-M10	20x200	200	5,0	5,0	4,5	9,0		
	Druckfestigkeit f _b ≥ 14 N/mm ²							
M8	12x80	80	4,0	4,0	3,0	4,0		
M8 / M10/	16x85	85	4,0	4,0	3,0	6,5		
IG-M6	16x130	130	5,5	5,5	4,5	6,5		
M12 / M16 /	20x85	85	4,0	4,0	3,0	7,0		
IG-M8 /	20x130	130	5,5	5,5	4,5	9,0		
IG-M10	20x200	200	5,5	5,5	4,5	9,0		

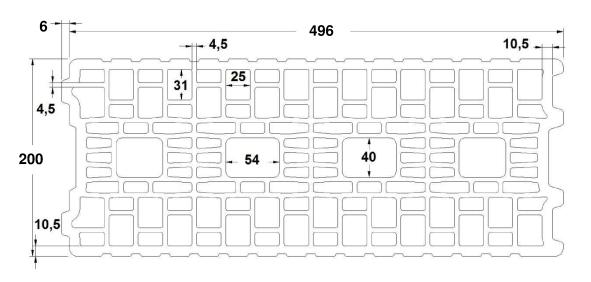
Werte gültig für c_{cr} und c_{min}

Tabelle C48: Verschiebungen

Ankergröße	Siebhülse	Effektive Verankerungs- tiefe h _{ef}	N	δ _N / N	δ_{N0}	$\delta_{N^{\boldsymbol{\infty}}}$	V	$\delta_{ m V0}$	δ _{V∞}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	1 1 1		0,11	0.00	1,10	1,20	1,80
M8 / M10/	16x85	85	1,14		0,11	0,23	1,86	1,50	2,25
IG-M6	16x130	130	1,57	0,10	0,16	0,31			
M12 / M16 /	20x85	85	1,14	0,10	0,11	0,23	1,86	1,50	2,25
IG-M8 /	20x130	130	1,57		0,16	0,31	2,57	2,10	3,15
IG-M10	20x200	200							ا ا

allchem Verbundmörtel für Mauerwerk	
Leistungen Hochlochziegel HLz-16DF	Anhang C 20
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung) Verschiebungen	

Bemessung von $V_{\text{Rk,c}}$ siehe Technical Report TR 054, außer für Querzugbelastung parallel zum freien Rand mit c \geq 125 mm: $V_{Rk,c,ll} = V_{Rk,b}$ Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist $V_{Rk,b}$ mit 0,8 zu multiplizieren.



Steintyp: Lochziegel Porotherm Homebric

Tabelle C49: Beschreibung des Steins

Steintyp		Lochziegel Porotherm Homebric
Dichte	ρ [kg/dm³]	0,7
Druckfestigkeit	$f_b \ge [N/mm^2]$	4, 6 oder 10
Code		EN 771-1
Hersteller (Ländercode)		z.B. Wienerberger (FR)
Steinabmessungen	[mm]	500 x 200 x 299
Bohrverfahren		Drehend

Tabelle C50: Installationsparameter

Ankergröße		[-]	Alle Größen
Randabstand	C _{cr}	[mm]	100 (120) ¹⁾
Minimaler Randabstand	C _{min} ²⁾	[mm]	100 (120) ¹⁾
Achsabstand	S _{cr,II}	[mm]	500
Acrisabstand	S _{cr,⊥}	[mm]	299
Minimaler Achsabstand	S _{min}	[mm]	100

Werte in Klammern für SH20x85 und SH20x130

Tabelle C51: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnu	Anordnung		mit s ≥			
II: Ankeranordnung	II: Ankeranordnung	200	100			2,0
parallel zur Lagerfuge	C _{cr}	500	$\alpha_{g,N,II}$	[2,0	
⊥: Ankeranordnung		200	100		[-]	1,2
senkrecht zur Lagerfuge		C _{cr}	299	$\alpha_{g,N,\perp}$		2,0

allchem Verbundmörtel für Mauerwerk	
Leistungen Lochziegel Porotherm Homebric	Anhang C 21
Beschreibung des Steins	
Installationsparameter	

Für V_{Rk,c}: c_{min} gemäß Technical Report TR 054

Steintyp: Lochziegel Porotherm Homebric

Tabelle C52: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

Anordnu	Anordnung		mit c ≥ mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V	C _{Cr}	500	$\alpha_{g,V,II}$	r 1	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{Cr}	299	$\alpha_{g,V,\perp}$] [-]	2,0

Tabelle C53: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnu	Anordnung mit		mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V-••	C _{Cr}	500	$\alpha_{g,V,II}$	F 1	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{Cr}	299	$\alpha_{g,V,\perp}$	[-]	2,0

Tabelle C54: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

			Charakteristischer Widerstand			
			Nutzungskategorie			
		Effektive		d/d		d/d
		Verankerungs-		w/d		w/d
Ankergröße	Siebhülse	tiefe		w/w		w/w
_			40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{-1}$)	V _{Rk,b} ²⁾³⁾
		[mm]			[kN]	
Druckfestigkeit f _b ≥ 4 N/mm²						
M8	12x80	80	0,9	0,9	0,75	2,0
MO / M4 O/ IC MC	16x85	85	0,9	0,9	0,75	2,0
M8 / M10/ IG-M6	16x130	130	1,2	1,2	0,9	2,0
M12 / M16 /	20x85	85	0,9	0,9	0,75	2,5
IG-M8 / IG-M10	20x130	130	1,2	1,2	0,9	2,5
		Druckfesti	gkeit f _b ≥ 6 I	N/mm²		
M8	12x80	80	0,9	0,9	0,9	2,5
MO / M10/ IC MG	16x85	85	0,9	0,9	0,9	2,5
M8 / M10/ IG-M6	16x130	130	1,2	1,2	1,2	2,5
M12 / M16 /	20x85	85	0,9	0,9	0,9	3,0
IG-M8 / IG-M10	20x130	130	1,2	1,2	1,2	3,0

Werte gültig für c_{cr} und c_{min}

allchem Verbundmörtel für Mauerwerk	
Leistungen Lochziegel Porotherm Homebric	Anhang C 22
Installationsparameter (Fortsetzung)	
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast	

8.06.04-189/19 Z54666.19

Bemessung von V_{Rk,c} siehe Technical Report TR 054, außer für Querzugbelastung parallel zum freien Rand mit c \geq 200 mm: $V_{Rk,c,ll} = V_{Rk,b}$ Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist $V_{Rk,b}$ mit 0,8 zu multiplizieren.

Steintyp: Lochziegel Porotherm Homebric

Tabelle C55: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)

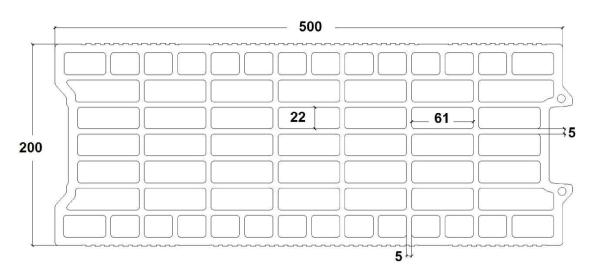
			Charakteristischer Widerstand					
				Nu	tzungskatego	rie		
		Effektive		d/d		d/d		
		Verankerungs-		w/d		w/d		
Ankergröße	Siebhülse	tiefe		w/w		w/w		
3			40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche		
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{1}$	$V_{Rk,b}^{(2)3)}$			
		[mm]			[kN]			
		Druckfesti	gkeit f _b ≥ 10	N/mm ²				
M8	12x80	80	1,2	1,2	1,2	3,0		
MO / MIO/ IC MG	16x85	85	1,2	1,2	1,2	3,0		
M8 / M10/ IG-M6	16x130	130	1,5	1,5	1,5	3,5		
M12 / M16 /	20x85	85	1,2	1,2	1,2	4,0		
IG-M8 / IG-M10	20x130	130	1,5	1,5	1,5	4,0		

Tabelle C56: Verschiebungen

Ankergröße	Siebhülse	Effektive Verankerungs- tiefe h _{ef}	N	δ _N / N	δ_{N0}	$\delta_{N^{\boldsymbol{\infty}}}$	V	$\delta_{ m V0}$	δ _{V∞}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	0,34		0,27	0,55	0,9		
M8 / M10/	16x85	85	0,34		0,27	0,55	0,9		
IG-M6	16x130	130	0,43	0,80	0,34	0,69	1,0	1,20	1,80
M12 / M16 /	20x85	85	0,34	,	0,27	0,55		,	,
IG-M8 / IG-M10	20x130	130	0,43		0,34	0,69	1,14		

allchem Verbundmörtel für Mauerwerk	
Leistungen Lochziegel Porotherm Homebric	Anhang C 23
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung) Verschiebungen	

Werte gültig für c_{cr} und c_{min} Bemessung von $V_{Rk,c}$ siehe Technical Report TR 054, außer für Querzugbelastung parallel zum freien Rand mit c \geq 200 mm: $V_{Rk,c,II} = V_{Rk,b}$ Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist $V_{Rk,b}$ mit 0,8 zu multiplizieren.



Steintyp: Lochziegel BGV Thermo

Tabelle C57: Beschreibung des Steins

Steintyp		Lochziegel BGV Thermo
Dichte	ρ [kg/dm³]	0,6
Druckfestigkeit	$f_b \ge [N/mm^2]$	4, 6 oder 10
Code		EN 771-1
Hersteller (Ländercode)		z.B. Leroux (FR)
Steinabmessungen	[mm]	500 x 200 x 314
Bohrverfahren		Drehend

Tabelle C58: Installationsparameter

Ankergröße		[-]	Alle Größen
Randabstand	C _{cr}	[mm]	100 (120) ¹⁾
Minimaler Randabstand	C _{min} ²⁾	[mm]	100 (120) ¹⁾
Aslandadada	S _{cr,II}	[mm]	500
Achsabstand	S _{cr,⊥}	[mm]	314
Minimaler Achsabstand	S _{min}	[mm]	100

Werte in Klammern für SH20x85 und SH20x130

Tabelle C59: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnu	ıng	mit c ≥	mit s ≥			
II: Ankeranordnung	200	100			1,7	
parallel zur Lagerfuge		C _{Cr}	500	$\alpha_{g,N,II}$	[-]	2,0
⊥: Ankeranordnung		200	100			1,1
senkrecht zur Lagerfuge		C _{cr}	314	$\alpha_{g,N,\perp}$		2,0

allchem Verbundmörtel für Mauerwerk	
Leistungen Lochziegel BGV Thermo	Anhang C 24
Beschreibung des Steins	
Installationsparameter	

Für $V_{Rk,c}$: c_{min} gemäß Technical Report TR 054

Steintyp: Lochziegel BGV Thermo

Tabelle C60: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

1		•				
Anordnu	ıng	mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V	C _{Cr}	500	$\alpha_{g,V,II}$	r 1	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{cr}	314	$\alpha_{g,V,\perp}$	[-]	2,0

Tabelle C61: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnu	ing	mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V-••	C _{cr}	500	$\alpha_{g,V,II}$	F 1	2,0
上: Ankeranordnung senkrecht zur Lagerfuge	V	C _{Cr}	314	$\alpha_{g,V,\perp}$	[-]	2,0

allchem Verbundmörtel für Mauerwerk

Leistungen Lochziegel BGV Thermo
Installationsparameter (Fortsetzung)

Anhang C 25

Steintyp: Lochziegel BGV Thermo

Tabelle C62: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

				Charakte	ristischer Widers	stand
!					zungskategorie	staria
Ankergröße	Siebhülse	Effektive Verankerungs- tiefe		d/d w/d w/w	d/d w/d w/w	
			40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{1)}$		$V_{Rk,b}^{(2)3)}$
		[mm]			[kN]	
		Dru	ckfestigkeit f	_b ≥ 4 N/mm ²		
M8	12x80	80	0,6	0,6	0,6	2,0
M8 / M10/	16x85	85	0,6	0,6	0,6	2,0
IG-M6	16x130	130	1,2	1,2	0,9	2,5
M12 / M16 / IG-M8 /	20x85	85	0,6	0,6	0,6	2,5
IG-M10	20x130	130	1,2	1,2	0,9	2,5
		Dru	ckfestigkeit f	_b ≥ 6 N/mm²		
M8	12x80	80	0,9	0,9	0,75	2,5
M8 / M10/	16x85	85	0,9	0,9	0,75	2,5
IG-M6	16x130	130	1,5	1,5	1,2	3,0
M12 / M16 / IG-M8 /	20x85	85	0,9	0,9	0,75	3,0
IG-M10	20x130	130	1,5	1,5	1,2	3,0
	T	Druc	ckfestigkeit f _b	, ≥ 10 N/mm ²		
M8	12x80	80	0,9	0,9	0,9	3,5
M8 / M10/	16x85	85	0,9	0,9	0,9	3,5
IG-M6	16x130	130	2,0	2,0	1,5	4,0
M12 / M16 / IG-M8 /	20x85	85	0,9	0,9	0,9	4,0
IG-M10	20x130	130	2,0	2,0	1,5	4,0

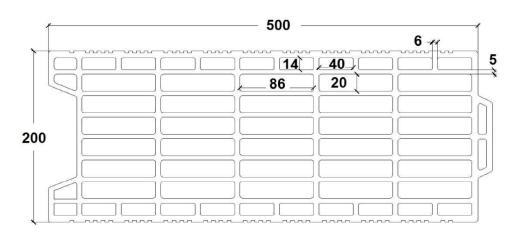
Werte gültig für c_{cr} und c_{min}

Tabelle C63: Verschiebungen

Ankergröße	Siebhülse	Effektive Verankerungs- tiefe h _{ef}	N	δ_N / N	δ_{N0}	δ _{N∞}	V	δ_{V0}	δν∞
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	0.26		0,21	0,41	0,7		
M8 / M10/	16x85	85	0,26		0,21	0,41	0,7		
IG-M6	16x130	130	0,43	0,80	0,34	0,69		1,00	1,50
M12 / M16 /	20x85	85	0,26		0,21	0,41	0,86	,	,
IG-M8 / IG-M10	20x130	130	0,43		0,34	0,69	,		

allchem Verbundmörtel für Mauerwerk	
Leistungen Lochziegel BGV Thermo	Anhang C 26
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast	
Verschiebungen	

Bemessung von V_{Rk,c} siehe Technical Report TR 054, außer für Querzugbelastung parallel zum freien Rand mit c \geq 250 mm: $V_{Rk,c,ll} = V_{Rk,b}$ Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist $V_{Rk,b}$ mit 0,8 zu multiplizieren.



Steintyp: Lochziegel Calibric R+

Tabelle C64: Beschreibung des Steins

Steintyp		Lochziegel Calibric R+
Dichte	ρ [kg/dm³]	0,6
Druckfestigkeit	$f_b \ge [N/mm^2]$	6, 9 oder 12
Code		EN 771-1
Hersteller (Ländercode)		z.B. Terreal (FR)
Steinabmessungen	[mm]	500 x 200 x 314
Bohrverfahren		Drehend

Tabelle C65: Installationsparameter

Ankergröße		[-]	Alle Größen
Randabstand	C _{cr}	[mm]	100 (120) ¹⁾
Minimaler Randabstand	C _{min} ²⁾	[mm]	100 (120) ¹⁾
Ashashatasal	S _{cr,II}	[mm]	500
Achsabstand	S _{cr,⊥}	[mm]	314
Minimaler Achsabstand	S _{min}	[mm]	100

Werte in Klammern für SH20x85 und SH20x130

Tabelle C66: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnu	ıng	mit c ≥	mit s ≥			
II: Ankeranordnung		175	100			1,7
parallel zur Lagerfuge		C _{cr}	500	$\alpha_{g,N,II}$	r 1	2,0
⊥: Ankeranordnung	•	175	100		[-]	1,0
senkrecht zur Lagerfuge		C _{Cr}	314	$\alpha_{g,N,\perp}$		2,0

allchem Verbundmörtel für Mauerwerk	
Leistungen Lochziegel Calibric R+	Anhang C 27
Beschreibung des Steins	
Installationsparameter	

Für V_{Rk,c}: c_{min} gemäß Technical Report TR 054

Steintyp: Lochziegel Calibric R+

Tabelle C67: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

1		•				
Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V	C _{Cr}	500	$\alpha_{g,V,II}$	r 1	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{cr}	314	$\alpha_{g,V,\perp}$	[-]	2,0

Tabelle C68: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnung		mit c ≥	mit s ≥			
711014115		0 =	5 =			
II: Ankeranordnung parallel zur Lagerfuge	V	C _{cr}	500	$\alpha_{g,V,II}$	F 1	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{Cr}	314	$lpha_{g,V,\perp}$] <u>[-]</u>	2,0

Tabelle C69: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

			Charakteristischer Widerstand					
			Nutzungskategorie					
		Effektive		d/d		d/d		
		Verankerungs-		w/d		w/d		
Ankoraräßo	Siebhülse	tiefe		w/w		w/w		
Ankergröße	Siebiluise	tioro				Alle		
			40°C/24°C	80°C/50°C	120°C/72°C	Temperatur-		
						bereiche		
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$		V _{Rk,b} ²⁾³⁾		
		[mm]			[kN]			
		Druckf	estigkeit f _b ≥ 6	N/mm ²				
M8	12x80	80	0,9	0,9	0,75	3,0		
M8 / M10/	16x85	85	0,9	0,9	0,75	4,0		
IG-M6	16x130	130	1,2	1,2	0,9	4,0		
M12 / M16 / IG-	20x85	85	0,9	0,9	0,75	6,0		
M8 / IG-M10	20x130	130	1,2	1,2	0,9	6,0		
		Druckf	estigkeit f _b ≥ 9	N/mm ²				
M8	12x80	80	1,2	1,2	0,9	3,5		
M8 / M10/	16x85	85	1,2	1,2	0,9	5,0		
IG-M6	16x130	130	1,5	1,5	1,2	5,0		
M12 / M16 / IG-	20x85	85	1,2	1,2	0,9	7,5		
M8 / IG-M10	20x130	130	1,5	1,5	1,2	7,5		

¹⁾ Werte gültig für c_{cr} und c_{min}

Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rk,b} mit 0,8 zu multiplizieren.

allchem Verbundmörtel für Mauerwerk	
Leistungen Lochziegel Calibric R+	Anhang C 28
Installationsparameter (Fortsetzung)	
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast	

Bemessung von V_{Rk,c} siehe Technical Report TR 054, außer für Querzugbelastung parallel zum freien Rand mit c ≥ 250 mm: V_{Rk,c,II} = V_{Rk,b}

Steintyp: Lochziegel Calibric R+

Tabelle C70: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)

			Charakteristischer Widerstand					
			Nutzungskategorie					
		Effektive Verankerungs-		d/d w/d				
Ankorarößo	Siebhülse	tiefe		w/w		w/w		
Ankergröße	Siebituise	se lioto	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche		
		h _{ef}		V _{Rk,b} ²⁾³⁾				
		[mm]		[kN]				
		Druckfe	estigkeit f _b ≥ 12	2 N/mm²				
M8	12x80	80	1,2	1,2	0,9	4,0		
M8 / M10/	16x85	85	1,2	1,2	0,9	5,5		
IG-M6	16x130	130	1,5	1,5	1,2	5,5		
M12 / M16 /	20x85	85	1,2	1,2	0,9	8,5		
IG-M8 / IG-M10	20x130	130	1,5	1,5	1,2	8,5		

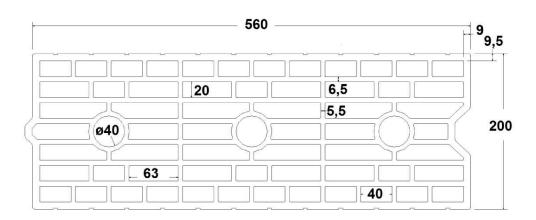
Tabelle C71: Verschiebungen

Ankergröße	Siebhülse	Effektive Verankerungs- tiefe h _{ef}	N	δ _N / N	δ_{N0}	δ _{N∞}	V	δ_{V0}	δ _{V∞}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	0,34		0,27	0.55	1,0	1,10	1,65
M8 / M10/	16x85	85		0,34		0,27	0,55	1 40	
IG-M6	16x130	130	0,43	0,80	0,34	0,69	1,43		
M12 / M16 /	20x85	85	0,34	0,27	0,55		2,00	3,00	
IG-M8 / IG-M10	20x130	130	0,43		0,34	0,69			2,14

allchem Verbundmörtel für Mauerwerk	
Leistungen Lochziegel Calibric R+	Anhang C 29
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung) Verschiebungen	

Werte gültig für c_{cr} und c_{min} Bemessung von $V_{Rk,c}$ siehe Technical Report TR 054, außer für Querzugbelastung parallel zum freien Rand mit c \geq 250 mm: $V_{Rk,c,II} = V_{Rk,b}$

Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rk,b} mit 0,8 zu multiplizieren.



Steintyp: Lochziegel Urbanbric

Tabelle C72: Beschreibung des Steins

Steintyp		Lochziegel Urbanbric
Dichte ρ [kg/dm³]		0,7
	22	
Druckfestigkeit	$f_b \ge [N/mm^2]$	6, 9 oder 12
Code		EN 771-1
Hersteller (Ländercode)		z.B. Imerys (FR)
Steinabmessungen	[mm]	560 x 200 x 274
Bohrverfahren		Drehend

Tabelle C73: Installationsparameter

Ankergröße		[-]	Alle Größen
Randabstand	C _{cr}	[mm]	100 (120) ¹⁾
Minimaler Randabstand	C _{min} ²⁾	[mm]	100 (120) ¹⁾
Achsabstand	S _{cr,II}	[mm]	560
	S _{cr,⊥}	[mm]	274
Minimaler Achsabstand	S _{min}	[mm]	100

Werte in Klammern für SH20x85 und SH20x130

Tabelle C74: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge		185	100		r 1	1,9
		C _{Cr}	560	$\alpha_{g,N,II}$		2,0
⊥: Ankeranordnung		185	100		[-]	1,1
senkrecht zur Lagerfuge		C _{cr}	274	$\alpha_{g,N,\perp}$		2,0

allchem Verbundmörtel für Mauerwerk	
Leistungen Lochziegel Urbanbric	Anhang C 30
Beschreibung des Steins	
Installationsparameter	

²⁾ Für V_{Rk,c}: c_{min} gemäß Technical Report TR 054

Steintyp: Lochziegel Urbanbric

Tabelle C75: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V	C _{Cr}	560	$\alpha_{g,V,II}$	r 1	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{cr}	274	$\alpha_{g,V,\perp}$	[-]	2,0

Tabelle C76: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V-•••	C _{Cr}	560	$\alpha_{g,V,II}$	r 1	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{Cr}	274	$\alpha_{g,V,\perp}$] <u>[-]</u>	2,0

Tabelle C77: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

			Charakteristischer Widerstand Nutzungskategorie				
Ankergröße	Siebhülse	Effektive Verankerungs- tiefe		d/d w/d w/w	igakategone	d/d w/d w/w	
G			40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche	
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{1}$)	V _{Rk,b} ²⁾³⁾	
		[mm]			[kN]		
Druckfestigkeit f _b ≥ 6 N/mm ²							
M8	12x80	80	0,9	0,9	0,75	3,0	
M8 / M10/	16x85	85	0,9	0,9	0,75	3,0	
IG-M6	16x130	130	2,0	2,0	1,5	3,0	
M12 / M16 /	20x85	85	0,9	0,9	0,75	3,5	
IG-M8 / IG-M10	20x130	130	2,0	2,0	1,5	3,5	
		Druckfestigl	keit f _b ≥ 9 N/m	ım²			
M8	12x80	80	0,9	0,9	0,9	4,0	
M8 / M10/	16x85	85	0,9	0,9	0,9	4,0	
IG-M6	16x130	130	2,5	2,5	2,0	4,0	
M12 / M16 /	20x85	85	0,9	0,9	0,9	4,5	
IG-M8 / IG-M10	20x130	130	2,5	2,5	2,0	4,5	

Werte gültig für c_{cr} und c_{min}

Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rk,b} mit 0,8 zu multiplizieren.

allchem Verbundmörtel für Mauerwerk	
Leistungen Lochziegel Urbanbric	Anhang C 31
Installationsparameter (Fortsetzung)	
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast	

Bemessung von V_{Rk,c} siehe Technical Report TR 054, außer für Querzugbelastung parallel zum freien Rand mit c ≥ 190 mm: V_{Rk,c,II} = V_{Rk,b}

Steintyp: Lochziegel Urbanbric

Tabelle C78: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)

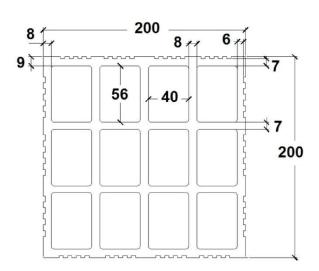
			Charakteristischer Widerstand				
			Nutzungskategorie				
		Effektive		d/d		d/d	
		Verankerungs-		w/d		w/d	
Ankergröße	Siebhülse	tiefe		w/w		w/w	
Ü			40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche	
		h _{ef}		V _{Rk,b} ²⁾³⁾			
		[mm]	$N_{Rk,b} = N_{Rk,p}^{1)}$ [kN]				
		Druckfestigk	eit f _b ≥ 12 N/r	nm²			
M8	12x80	80	1,2	1,2	0,9	4,5	
M8 / M10/	16x85	85	1,2	1,2	0,9	4,5	
IG-M6	16x130	130	3,0	3,0	2,5	4,5	
M12 / M16 /	20x85	85	1,2	1,2	0,9	5,0	
IG-M8 / IG-M10	20x130	130	3,0	3,0	2,5	5,0	

Tabelle C79: Verschiebungen

Ankergröße S	Siebhülse	Effektive Verankerungs- tiefe h _{ef}	N	δ _N / N	δ_{N0}	δ _{N∞}	V	$\delta_{ m V0}$	δ _{V∞}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	0,34	0,80	0,27	0,55	1,30	1,00	1,50
M8 / M10/ IG-M6	16x85	85							
	16x130	130	0,86		0,69	1,37			
M12 / M16 /	20x85	85	0,34	,	0,27	0,55		,	,
IG-M8 / IG-M10	20x130	130	0,86		0,69	1,37	1,43		

allchem Verbundmörtel für Mauerwerk	
Leistungen Lochziegel Urbanbric	Anhang C 32
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung) Verschiebungen	

Werte gültig für c_{cr} und c_{min}
Bemessung von V_{Rk,c} siehe Technical Report TR 054, außer für Querzugbelastung parallel zum freien Rand mit c ≥ 190 mm: V_{Rk,c,II} = V_{Rk,b} Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rk,b} mit 0,8 zu multiplizieren.



Steintyp: Lochziegel Brique creuse C40

Tabelle C80: Beschreibung des Steins

Steintyp		Lochziegel Brique creuse C40
Dichte	ρ [kg/dm³]	0,7
Druckfestigkeit	$f_b \ge [N/mm^2]$	4, 8 oder 12
Code		EN 771-1
Hersteller (Ländercode)		z.B. Terreal (FR)
Steinabmessungen	[mm]	500 x 200 x 200
Bohrverfahren		Drehend

Tabelle C81: Installationsparameter

Ankergröße		[-]	Alle Größen
Randabstand	C _{cr}	[mm]	100 (120) ¹⁾
Minimaler Randabstand	C _{min} ²⁾	[mm]	100 (120) ¹⁾
Ashashatand	S _{cr,II}	[mm]	500
Achsabstand	S _{cr,⊥}	[mm]	200
Minimaler Achsabstand	S _{min}	[mm]	200

Werte in Klammern für SH20x85 und SH20x130

Tabelle C82: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge		C _{Cr}	200	$\alpha_{g,N,II}$	F 1	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge		C _{Cr}	200	$\alpha_{g,N,\perp}$	[-J	2,0

allchem Verbundmörtel für Mauerwerk	
Leistungen Lochziegel Brique creuse C40	Anhang C 33
Beschreibung des Steins	
Installationsparameter	

Für V_{Rk,c}: c_{min} gemäß Technical Report TR 054

Steintyp: Lochziegel Brique creuse C40

Tabelle C83: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

		·				
Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V	C _{Cr}	500	$\alpha_{g,V,II}$	r 1	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{Cr}	200	$\alpha_{g,V,\perp}$] [-]	2,0

Tabelle C84: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V	C _{Cr}	500	$\alpha_{g,V,II}$	F 1	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{Cr}	200	$\alpha_{g,V,\perp}$	[-]	2,0

Tabelle C85: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

				Charakterist	ischer Widersta	and		
			Nutzungskategorie					
		Effektive		d/d		d/d		
		Verankerungs-		w/d		w/d		
Ankergröße	Siebhülse	tiefe		w/w		w/w		
			40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche		
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{1}$)	V _{Rk,b} ²⁾³⁾		
		[mm]			[kN]			
Druckfestigkeit f _b ≥ 4 N/mm ²								
M8	12x80	80	0,6	0,6	0,6	0,9		
M8 / M10/	16x85	85	0,6	0,6	0,6	0,9		
IG-M6	16x130	130	0,6	0,6	0,6	0,9		
M12 / M16 /	20x85	85	0,6	0,6	0,6	0,9		
IG-M8 / IG-M10	20x130	130	0,6	0,6	0,6	0,9		
		Druckfestigl	keit f _b ≥ 8 N/m	ım²				
M8	12x80	80	0,9	0,9	0,75	1,2		
M8 / M10/	16x85	85	0,9	0,9	0,75	1,2		
IG-M6	16x130	130	0,9	0,9	0,75	1,2		
M12 / M16 /	20x85	85	0,9	0,9	0,75	1,2		
IG-M8 / IG-M10	20x130	130	0,9	0,9	0,75	1,2		

¹⁾ Werte gültig für c_{cr} und c_{min}

Bemessung von V_{Rk,c} siehe Technical Report TR 054

allchem Verbundmörtel für Mauerwerk	
Leistungen Lochziegel Brique creuse C40	Anhang C 34
Installationsparameter (Fortsetzung)	
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast	

Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rk,b} mit 0,8 zu multiplizieren.

Steintyp: Lochziegel Brique creuse C40

Tabelle C86: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)

			Charakteristischer Widerstand				
			Nutzungskategorie				
		Effektive		d/d		d/d	
		Verankerungs-		w/d		w/d	
Ankergröße	Siebhülse	tiefe		w/w			
			40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche V _{Rk,b} ²⁾³⁾	
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{1}$			
		[mm]			[kN]		
		Druckfestigk	eit f _b ≥ 12 N/r	mm²			
M8	12x80	80	1,2	1,2	0,9	1,5	
M8 / M10/	16x85	85	1,2	1,2	0,9	1,5	
IG-M6	16x130	130	1,2	1,2	0,9	1,5	
M12 / M16 /	20x85	85	1,2	1,2	0,9	1,5	
IG-M8 / IG-M10	20x130	130	1,2	1,2	0,9	1,5	

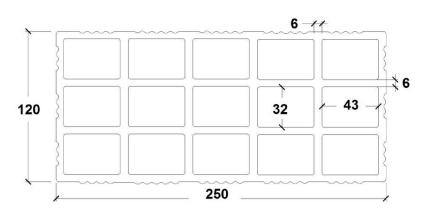
Werte gültig für c_{cr} und c_{min} Bemessung von $V_{Rk,c}$ siehe Technical Report TR 054 2)

Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rk,b} mit 0,8 zu multiplizieren.

Tabelle C87: Verschiebungen

Ankergröße	Siebhülse	Effektive Verankerungs- tiefe h _{ef}	N	δ _N / N	δ_{N0}	δ _{N∞}	V	$\delta_{ m V0}$	δν∞
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	0,17		0,14	0,27			
M8 / M10/	16x85	85	0,17	,17	0,14	0,27			
IG-M6	16x130	130	0,14	0,80	0,11	0,23	0,3	0,9	1,35
M12 / M16 /	20x85	85	0,17	,	0,14	0,27	,	,	,
IG-M8 / IG-M10	20x130	130	0,14		0,11	0,23			

allchem Verbundmörtel für Mauerwerk Anhang C 35 Leistungen Lochziegel Brique creuse C40 Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung) Verschiebungen



Steintyp: Lochziegel Blocchi Leggeri

Tabelle C88: Beschreibung des Steins

Steintyp		Lochziegel Blocchi Leggeri
Dichte	ρ [kg/dm³]	0,6
Druckfestigkeit	$f_b \ge [N/mm^2]$	4, 6, 8 oder 12
Code		EN 771-1
Hersteller (Ländercode)		z.B. Wienerberger (IT)
Steinabmessungen	[mm]	250 x 120 x 250
Bohrverfahren		Drehend

Tabelle C89: Installationsparameter

Ankergröße		[-]	Alle Größen
Randabstand	C _{Cr}	[mm]	100 (120) ¹⁾
Minimaler Randabstand	C _{min}	[mm]	60
Aslasalastavad	S _{cr,II}	[mm]	250
Achsabstand	S _{cr,⊥}	[mm]	120
Minimaler Achsabstand	S _{min}	[mm]	100

Werte in Klammern für SH20x85; SH20x130 und SH20x200

Tabelle C90: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung		60	100			1,0
parallel zur Lagerfuge		C _{Cr}	250	$\alpha_{g,N,II}$		2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge		60	100	$\alpha_{g,N,\perp}$] <u>[-]</u>	2,0

allchem Verbundmörtel für Mauerwerk	
Leistungen Lochziegel Blocchi Leggeri	Anhang C 36
Beschreibung des Steins	
Installationsparameter	

Steintyp: Lochziegel Blocchi Leggeri

Tabelle C91: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

1		5	.			
Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung		60 ¹⁾	100 ¹⁾	0 1/11		1,0
parallel zur Lagerfuge		C _{cr}	250	$\alpha_{g,V,II}$	F 1	2,0
⊥: Ankeranordnung		60 ¹⁾	100 ¹⁾	$\alpha_{g,V,\perp}$	[-]	1,6
senkrecht zur Lagerfuge		C _{cr}	250			2,0

¹⁾ Nur gültig für V_{Rk,b} gemäß Tabelle C93 und C94 Werte in Klammern

Tabelle C92: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung		60 ¹⁾	100 ¹⁾			1,0
parallel zur Lagerfuge		C _{cr}	250	$\alpha_{g,V,II}$	r 1	2,0
⊥: Ankeranordnung	V	60 ¹⁾	100 ¹⁾	$-lpha_{ extsf{g}, extsf{V},ot}$	[-]	1,6
senkrecht zur Lagerfuge		C _{cr}	250			2,0

 $^{^{1)}}$ Nur gültig für $V_{\text{Rk,b}}$ gemäß Tabelle C93 und C94 Werte in Klammern

Tabelle C93: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

		Effektive Verankerungs-	Charakteristischer Widerstand					
			Nutzungskategorie					
			d/d; w/d; w/w					
Ankergröße	Siebhülse	tiefe	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur-		
						bereiche		
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{1}$		$V_{Rk,b}^{4)}$		
		[mm]			[kN]			
	Druckfestigkeit f _b ≥ 4 N/mm ²							
M8	12x80	80			0,3			
M8 / M10/	16x85	85		0.4				
IG-M6	16x130	130	0.4			$2,0^{2)}(0,9)^{3)}$		
N440 / N440 /	20x85	85	0,4	0,4		2,0 * (0,9) *		
M12 / M16 / IG-M8 / IG-M10	20x130	130						
IG-IVIO / IG-IVITO	20x200	200						
		Druckfestigke	eit f _b ≥ 6 N/mn	n^2				
M8	12x80	80						
M8 / M10/	16x85	85						
IG-M6	16x130	130	0.5	0.5	0.4	$2.5^{2)} (1.2)^{3)}$		
NA40 / NA40 /	20x85	85	0,5	0,5	0,4	2,5 ′ (1,2) ′		
M12 / M16 /	20x130	130						
IG-M8 / IG-M10	20x200	200						

Werte gültig für c_{cr} und c_{min}

allchem Verbundmörtel für Mauerwerk	
Leistungen Lochziegel Blocchi Leggeri	Anhang C 37
Installationsparameter (Fortsetzung)	
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast	

Bemessung von V_{Rk,c} siehe Technical Report TR 054, außer für Querzugbelastung parallel zum freien Rand mit $c \ge 125$ mm: $V_{Rk,c,ll} = V_{Rk,b}$ Werte in Klammern $V_{Rk,c} = V_{Rk,b}$ für Einzelanker mit c_{min} Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist $V_{Rk,b}$ mit 0,8 zu multiplizieren.

Steintyp: Lochziegel Blocchi Leggeri

Tabelle C94: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)

				Charakteristischer Widerstand				
			Nutzungskategorie					
		Effektive			d/d			
		Verankerungs-			w/d			
Ankergröße	Siebhülse	tiefe			w/w	I		
7 tilltor große	Ciobilaido					_ Alle		
			40°C/24°C	80°C/50°C	120°C/72°C	Temperatur- bereiche		
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$	l)	V _{Rk,b} ⁴⁾		
		[mm]		· · · · · · · · · · · · · · · · · · ·	[kN]	• nk,b		
		Druckfestigke	eit f _b ≥ 8 N/mn	n²				
M8	12x80	80						
M8 / M10/	16x85	85						
IG-M6	16x130	130	0.0	0,6	0.5	3,0 ²⁾ (1,2) ³⁾		
N40 / N40 /	20x85	85	0,6		0,5	3,0 ^ (1,2) ^		
M12 / M16 / IG-M8 / IG-M10	20x130	130						
IG-IVIO / IG-IVITO	20x200	200						
		Druckfestigke	it f _b ≥ 12 N/m	m^2				
M8	12x80	80						
M8 / M10/	16x85	85						
IG-M6	16x130	130	0.6	0.6	0.6	$3,5^{2)}(1,5)^{3)}$		
N40 / N40 /	20x85	85	0,6	0,6	0,6	3,5 (1,5)		
M12 / M16 / IG-M8 / IG-M10	20x130	130						
IG-IVIO / IG-IVITO	20x200	200						

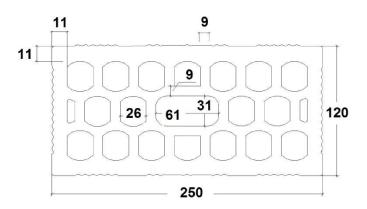
- Werte gültig für c_{cr} und c_{min} Bemessung von $V_{Rk,c}$ siehe Technical Report TR 054, außer für Querzugbelastung parallel zum freien Rand mit c \geq 125 mm: $V_{Rk,c,ll} = V_{Rk,b}$ Werte in Klammern $V_{Rk,c} = V_{Rk,b}$ mit c_{min} Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist $V_{Rk,b}$ mit 0,8 zu multiplizieren.

Tabelle C95: Verschiebungen

Ankergröße	Siebhülse	Effektive Verankerungs- tiefe	N	δ _N / N	δ_{N0}	δ _{N∞}	٧	$\delta_{ m V0}$	δ _{V∞}
		h _{ef} [mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
Alle Größen	Alle Größen	Alle Größen	0,17	1,20	0,21	0,41	0,9	1,20	1,80

allchem Verbundmörtel für Mauerwerk	
Leistungen Lochziegel Blocchi Leggeri	Anhang C 38
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung)	
Verschiebungen	

8.06.04-189/19 Z54667.19



Steintyp: Lochziegel Doppio Uni

Tabelle C96: Beschreibung des Steins

Steintyp		Lochziegel Doppio Uni
Dichte	ρ [kg/dm³]	0,9
Druckfestigkeit	$f_b \ge [N/mm^2]$	10, 16, 20 oder 28
Code		EN 771-1
Hersteller (Ländercode)		z.B. Wienerberger (IT)
Steinabmessungen	[mm]	250 x 120 x 120
Bohrverfahren		Drehend

Tabelle C97: Installationsparameter

Ankergröße		[-]	Alle Größen
Randabstand	C _{Cr}	[mm]	100 (120) ¹⁾
Minimaler Randabstand	C _{min} ²⁾	[mm]	60
Achsabstand	S _{cr,II}	[mm]	250
	S _{cr,⊥}	[mm]	120
Minimaler Achsabstand	S _{min,II}	[mm]	100
	S _{min. I}	[mm]	120

Werte in Klammern für SH20x85; SH20x130 und SH20x200

Tabelle C98: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge		60	100			1,0
		C _{Cr}	250	$\alpha_{g,N,II}$	r 1	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge		60	120	$\alpha_{g,N,\perp}$] <u>[-]</u>	2,0

allchem Verbundmörtel für Mauerwerk	
Leistungen Lochziegel Doppio Uni	Anhang C 39
Beschreibung des Steins	
Installationsparameter	

Für V_{Rk,c}: c_{min} gemäß Technical Report TR 054

Steintyp: Lochziegel Doppio Uni Tabelle C99: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand mit c ≥ mit s ≥ II: Ankeranordnung 250 2,0 \mathbf{C}_{cr} $\alpha_{\text{g},\text{V},\text{II}}$ parallel zur Lagerfuge [-] ⊥: Ankeranordnung senkrecht zur 120 2,0 \textbf{C}_{Cr} $\alpha_{\text{g},\text{V},\perp}$ Lagerfuge

Tabelle C100: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V	C _{Cr}	250	$\alpha_{g,V,II}$	F 1	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{Cr}	120	$\alpha_{g,V,\perp}$	[-]	2,0

Tabelle C101: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

				Charakteristi	scher Widerstar	nd			
			Nutzungskategorie						
A relation with Co.	O'alala iila	Effektive Verankerungs-	d/d w/d w/w						
Ankergröße	Siebhülse	tiefe	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche			
		h _{ef}		V _{Rk,b} ²⁾³⁾					
		[mm]	$N_{Rk,b} = N_{Rk,p}^{1}$ $V_{Rk,b}^{2)3}$ [kN]						
Druckfestigkeit f _b ≥ 10 N/mm ²									
M8	12x80	80							
M8 / M10/	16x85	85							
IG-M6	16x130	130	0,6	0,6	0,5	1,5			
NA10 / NA16 /	20x85	85	0,6	0,0		1,5			
M12 / M16 / IG-M8 / IG-M10	20×130	130							
IM-IVIO / IM-IVITO	20x200	200							
		Druckfestigke	it f _b ≥ 16 N/mı	m ²					
M8	12x80	80							
M8 / M10/	16x85	85							
IG-M6	16x130	130	0,75	0,75	0,6	2,0			
NA10 / NA10 /	20x85	85	0,75	0,75	0,6	۷,0			
M12 / M16 / IG-M8 / IG-M10	20x130	130							
IG-IVI8 / IG-M10	20x200	200							

Werte gültig für c_{cr} und c_{min}

Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rkb} mit 0,8 zu multiplizieren.

allchem Verbundmörtel für Mauerwerk	
Leistungen Lochziegel Doppio Uni	Anhang C 40
Installationsparameter (Fortsetzung)	
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast	

²⁾ Bemessung von V_{Rk,c} siehe Technical Report TR 054

Tabelle C102:	Charakteristis	che Werte der Tra	afähiakeit un	iter Zug- und	Querzuglast (I	Fortsetzung)
		Tono worto doi ma	graingitoit an			
					scher Widerstar	IU
				Nutzun	gskategorie d/d	
		Effektive			w/d	
		Verankerungs-			w/w	
Ankergröße	Siebhülse	tiefe				Alle
			40°C/24°C	80°C/50°C	120°C/72°C	Temperatur bereiche
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{1}$)	V _{Rk,b} ²⁾³⁾
		[mm]			[kN]	
		Druckfestigkei	t f _b ≥ 20 N/mı	m²		
M8	12x80	80				
M8 / M10/	16x85	85		0,9	0,75	
IG-M6	16x130	130	0,9			2,0
M12 / M16 /	20x85	85	0,9	0,9		2,0
IG-M8 / IG-M10	20x130	130				
IG-IVIO / IG-IVITO	20x200	200				
		Druckfestigkei	t f _b ≥ 28 N/mı	m²		
M8	12x80	80				
M8 / M10/	16x85	85				
IG-M6	16x130	130	1,2	1,2	0,9	2,5
M12 / M16 /	20x85	85	ے, ۱	۱,۲	0,9	2,5
IG-M8 / IG-M10	20x130	130				
19-1018 / 19-10110	20~200	200				

20x200

200

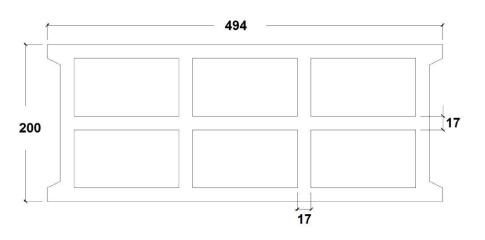
Tabelle C103: Verschiebungen

Ankergröße	Siebhülse	Effektive Verankerungs- tiefe	N	δ_N / N	δ_{N0}	$\delta_{N^{oldsymbol{lpha}}}$	٧	$\delta_{ m V0}$	δ _{V∞}
		h _{ef} [mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
Alle Größen	Alle Größen	Alle Größen	0,26	1,20	0,31	0,62	0,6	0,3	0,45

allchem Verbundmörtel für Mauerwerk	
Leistungen Lochziegel Doppio Uni	Anhang C 41
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast (Fortsetzung) Verschiebungen	

8.06.04-189/19 Z54667.19

Werte gültig für c_{cr} und c_{min} Bemessung von $V_{Rk,c}$ siehe Technical Report TR 054 Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist $V_{Rk,b}$ mit 0,8 zu multiplizieren.



Steintyp: Lochstein aus Leichtbeton Bloc creux B40

Tabelle C104: Beschreibung des Steins

Steintyp		Lochstein aus Leichtbeton Bloc creux B40
Dichte	ρ [kg/dm³]	0,8
Druckfestigkeit	$f_b \ge [N/mm^2]$	4
Code		EN 771-3
Hersteller (Ländercode)		z.B. Sepa (FR)
Steinabmessungen	[mm]	494 x 200 x 190
Bohrverfahren		Drehend

Tabelle C105: In	stallationsparameter		
Ankergröße		[-]	Alle Größen
Randabstand	C _{cr}	[mm]	100 (120) ¹⁾
Minimaler Randabstand	C _{min} ²⁾	[mm]	100 (120) ¹⁾
A - +	S _{cr,II}	[mm]	494
Achsabstand	S _{cr,⊥}	[mm]	190
Minimaler Achsabstand	Smin	[mm]	100

Werte in Klammern für SH20x85 und SH20x130

Tabelle C106: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge		100	100		F.1	1,5
		C _{Cr}	494	$lpha_{g,N,II}$		2,0
⊥: Ankeranordnung		100	100		[-]	1,0
senkrecht zur Lagerfuge		C _{Cr}	190	$\alpha_{g,N,\perp}$		2,0

allchem Verbundmörtel für Mauerwerk	
Leistungen Lochstein aus Leichtbeton Bloc creux B40	Anhang C 42
Beschreibung des Steins	
Installationsparameter	

Für V_{Rk,c}: c_{min} gemäß Technical Report TR 054

Steintyp: Lochstein aus Leichtbeton Bloc creux B40

Tabelle C107: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

	• •	•	0 0.			
Anordnu	ing	mit c ≥	mit s ≥			
II: Ankeranordnung	V	50	100	Q		1,1
parallel zur Lagerfuge	V	C _{cr}	494	$\alpha_{g,V,II}$	F 1	2,0
⊥: Ankeranordnung	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	100	100		[-]	1,1
senkrecht zur Lagerfuge	V •	C _{cr}	190	$\alpha_{g,V,\perp}$		2,0

Tabelle C108: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung parallel zur Lagerfuge	V-•••	C _{Cr}	494	$\alpha_{g,V,II}$	r 1	2,0
⊥: Ankeranordnung senkrecht zur Lagerfuge	V	C _{Cr}	190	$\alpha_{g,V,\perp}$	[-]	2,0

Tabelle C109: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast

					Charakt	eristischer \	Widerstand					
		espinate estimate est	Nutzungskategorie									
Ankergröße	Siebhülse		d/d			w/d w/w			d/d w/d w/w			
			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur-			
			40 0/24 0	80.0/50.0	120 0/72 0	40 0/24 0	80 C/30 C	120 0/72 0	bereiche V _{Rk,b} ²⁾³⁾			
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{-1}$			$N_{Rk,b} = N_{Rk,p}^{(1)}$					
		[mm]				[kN]	[kN]					
			Druc	ckfestigke	it f _b ≥ 4 N/m	ım²						
M8	12x80	80	1,2	0,9	0,75	0,9	0,9	0,75	3,0			
M8 / M10/	16x85	85	1,2	0,9	0,75	1,2	0,9	0,75	3,0			
IG-M6	16x130	130	1,2	0,9	0,75	1,2	0,9	0,75	3,0			
M12 / M16 /	20x85	85	1,2	0,9	0,75	1,2	0,9	0,75	3,0			
IG-M8 / IG-M10	20x130	130	1,2	0,9	0,75	1,2	0,9	0,75	3,0			

- Werte gültig für c_{cr} und c_{min}
- Bemessung von V_{Rk,c} siehe Technical Report TR 054, außer für Querzugbelastung parallel zum freien Rand mit c ≥ 250 mm: V_{Rk,c,II} = V_{Rk,b}
- Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist V_{Rk,b} mit 0,8 zu multiplizieren.

Tabelle C110: Verschiebungen

Ankergröße Siebhülse	Effektive Verankerungs- tiefe	N	δ_N / N	δ_{N0}	$\delta_{N^{oldsymbol{\omega}}}$	V	$\delta_{ m V0}$	$\delta_{V^{oldsymbol{\omega}}}$	
		h _{ef} [mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
Alle Größen	Alle Größen	Alle Größen	0,34	0,90	0,31	0,62	0,86	0,9	1,35

allchem Verbundmörtel für Mauerwerk

Leistungen Lochstein aus Leichtbeton Bloc creux B40

Installationsparameter (Fortsetzung)

Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast / Verschiebungen

Anhang C 43

Steintyp: Vollstein aus Leichtbeton - LAC

Tabelle C111: Beschreibung des Steins

Steintyp		Vollstein aus Leichtbeton LAC
Dichte	ρ [kg/dm³]	0,6
Druckfestigkeit	$f_b \ge [N/mm^2]$	2
Code		EN 771-3
Hersteller (Ländercode)		z.B. Bisotherm (DE)
Steinabmessungen	[mm]	300 x 123 x 248
Bohrverfahren		Drehend

Tabelle C112: Installationsparameter

Ankergröße		ſ-1	Alle Größen
Alikeigiobe		[-]	Alle Globell
Randabstand	C _{Cr}	[mm]	1,5*h _{ef}
Minimaler Randabstand	C _{min}	[mm]	60
Achsabstand	S _{cr}	[mm]	3*h _{ef}
Minimaler Achsabstand	S _{min}	[mm]	120

Tabelle C113: Gruppenfaktor für Ankergruppen unter Zugbelastung

Anordnung		mit c ≥	mit s ≥			
II: Ankoronordnung		90	120			1,1
II: Ankeranordnung parallel zur Lagerfuge		1,5*hef	3*h _{ef}	$\alpha_{g,N,II}$	F 1	2,0
⊥: Ankeranordnung		124	120] [-]	1,1
senkrecht zur Lagerfuge		1,5*hef	3*h _{ef}	$\alpha_{g,N,\perp}$		2,0

Tabelle C114: Gruppenfaktor für Ankergruppen unter Querzugbelastung parallel zum freien Rand

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung		60	120		F 1	0,6
parallel zur Lagerfuge	V	90	120	$\alpha_{g,V,II}$		2,0
⊥: Ankeranordnung		60	120] [-]	0,6
senkrecht zur Lagerfuge	IJ <mark>∨ ↓</mark>	124	120	$\alpha_{g,V,\perp}$		2,0

Tabelle C115: Gruppenfaktor für Ankergruppen unter Querzugbelastung senkrecht zum freien Rand

Anordnung		mit c ≥	mit s ≥			
II: Ankeranordnung		60	120			0,6
parallel zur Lagerfuge	V	90	120	$\alpha_{g,V,II}$	F.1	2,0
⊥: Ankeranordnung		60	120		[-J	0,6
senkrecht zur	V	1,5*hef	120	$] \ \alpha_{g,V,\perp}$		1,0
Lagerfuge		1,5*hef	3*h _{cf}			2,0

allchem Verbundmörtel für Mauerwerk	
Leistungen Vollstein aus Leichtbeton - LAC	Anhang C 44
Beschreibung des Steins	
Installationsparameter	

Steintyp: Vollstein aus Leichtbeton - LAC Tabelle C116: Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast Charakteristischer Widerstand Nutzungskategorie Verankerungsd/d w/d Effektive d/d w/d w/w w/w Anker-Siebhülse größe Alle 40°C/24°C |80°C/50°C |120°C/72°C |40°C/24°C |80°C/50°C |120°C/72°C | Temperaturbereiche V_{Rk,b}²⁾³⁾ $N_{Rk,b} = N_{Rk,p}^{-1)}$ $N_{Rk,b} = N_{Rk,p}^{-1)}$ h_{ef} [mm] [kN] Druckfestigkeit f_b ≥ 2 N/mm² M8 80 3,0 2,5 2,0 2,5 2,0 1,5 3,0 M8 / M10/ 90 3.0 3.0 2.0 2,5 2,5 2.0 3,0 IG-M6 M12/100 3,0 2,5 2,5 2,0 3,0 3,5 3,0 IG-M8 M16 / 100 3,0 3,0 2,0 3,0 3,0 2,0 3,0 IG-M10 80 2,5 M8 12x80 2,5 2,0 2,5 2,0 1,5 3,0 M8 / M10/ 16x85 85 3,0 2,5 2,0 3,0 2,5 2,0 3,0 IG-M6 16x130 130 3,0 2,5 2,0 3,0 2,5 2,0 3,0 20x85 85 2,5 2,5 2,0 2,5 2,5 2,0 3,0 M12 / M16 / IG-M8 / 20x130 130 2,5 2,5 2,0 2,5 2,5 2,0 3,0 IG-M10 20x200 200 2,5 2,0 2,5 2,5 3,0 2,5 2,0

Tabelle C117: Verschiebungen

Ankergröße	Sieb- hülse	Effektive Verankerungs- tiefe	N	δ _N / N	δ_{N0}	δ _{N∞}	V	δ_{V0}	δ _{V∞}	
		h _{ef} [mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]	
M8	-	80	0,86 0,50	0,43	0,86					
M8 / M10/ IG-M6	-	90								
M12 / IG-M8	-	100	1,00	— 0.35 ±	0,35	0,70	0,9	0,25	0,38	
M16 / IG-M10	-	100	0,86		0,30	0,60				
M8	12x80	80			0,36	0,71				
M8 / M10/ IG-M6	16x85	85	0,71							
	16x130	130								
M12 / M16 / IG-M8 / IG-M10	20x85	85		0,35	0,25	0,50				
	20x130	130		1						
	20x200	200								

allchem Verbundmörtel für Mauerwerk	
Leistungen Vollstein aus Leichtbeton - LAC	Anhang C 45
Charakteristische Werte der Tragfähigkeit unter Zug- und Querzuglast	
Verschiebungen	

Werte gültig für c_{cr}, Werte in Klammern gültig für Einzelanker mit c_{min}

Für die Bemessung von $V_{Rk,c}$ siehe ETAG029, Anhang C Die Werte gelten für Stahl 5.6 oder höher. Für Stahl 4.6 und 4.8 ist $V_{Rk,b}$ mit 0,8 zu multiplizieren.