

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-19/0513 of 13 September 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Sympafix X150+Plus for concrete

Bonded fastener for use in concrete

Sympafix B.V. Fluorietweg 25E 1812RR ALKMAAR NIEDERLANDE

Plant 1, Germany

32 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601

European Technical Assessment ETA-19/0513

Page 2 of 32 | 13 September 2019

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-19/0513

Page 3 of 32 | 13 September 2019

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Sympafix X150+Plus for concrete is a bonded anchor consisting of a cartridge with injection mortar Injection mortar X150+Plus and a steel element. The steel element consist of a threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter \emptyset 8 to \emptyset 32 mm or internal threaded rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex
(static and quasi-static loading)	C 1, C 2, C 3, C 4, C 5, C 7
Characteristic resistance to shear load	See Annex
(static and quasi-static loading)	C 1, C 2, C 4, C 6, C 8
Displacements	See Annex
(static and quasi-static loading)	C 9 to C 11
Characteristic resistance for seismic performance category	See Annex
C1 and C2 and displacements	C 12 to C 17
Durability	See Annex B 1

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous	s substances No performance assessed

European Technical Assessment ETA-19/0513

Page 4 of 32 | 13 September 2019

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

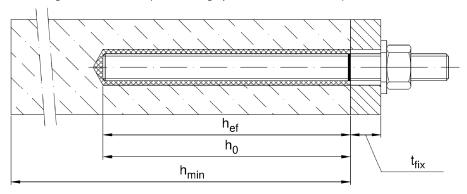
The system to be applied is: 1

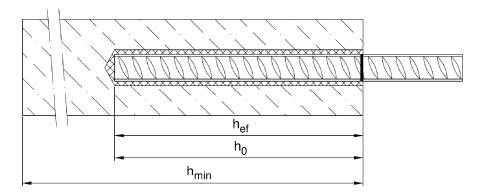
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

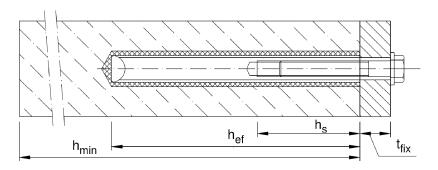
Issued in Berlin on 13 September 2019 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department


beglaubigt: Baderschneider


Installation threaded rod M8 up to M30

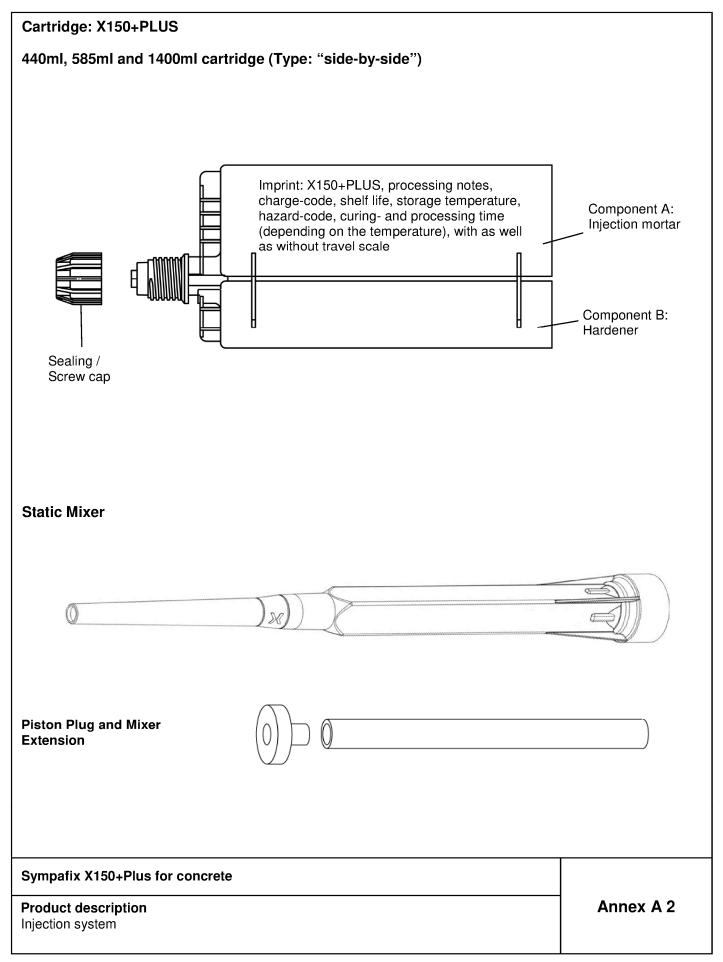
prepositioned installation or


push through installation (annular gap filled with mortar)

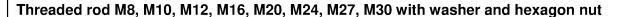
Installation reinforcing bar Ø8 up to Ø32

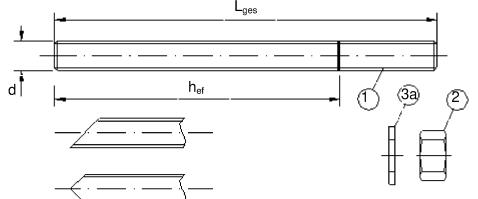
Installation internal threaded anchor rod IG-M6 up to IG-M20

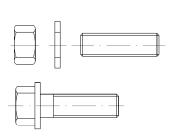
 t_{fix} = thickness of fixture

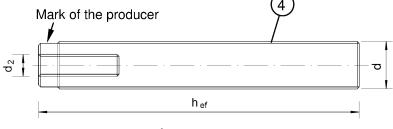

h_{ef} = effective anchorage depth

 $h_0 = depth of drill hole$


 h_{min} = minimum thickness of member


Sympafix X150+Plus for concrete	
Product description Installed condition	Annex A 1



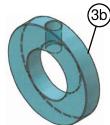

Commercial standard threaded rod with:

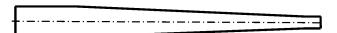
- Materials, dimensions and mechanical properties acc.
 Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

Internal threaded anchor rod IG-M6, IG-M8, IG-M10, IG-M12, IG-M16, IG-M20

Threaded rod or screw

Marking: e.g.


Marking Internal thread


Mark

M8 Thread size (Internal thread)
A4 additional mark for stainless steel

HCR additional mark for high-corrosion resistance steel

Filling washer and mixer reduction nozzle for filling the annular gap between anchor rod and fixture

Sympafix X150+Plus for concrete

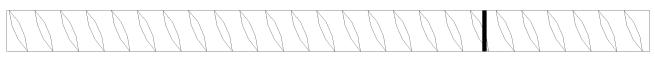
Product description

Threaded rod, internal threaded rod and filling washer

Annex A 3

Table A1: Materials									
Part	Designation	Material							
- ziı - hc	nc plated ≥ 5 ot-dip galvanised ≥ 4	acc. to EN 10087:1998 5 μm acc. to EN ISC 40 μm acc. to EN ISC 45 μm acc. to EN ISC	4042 146	2:1999 or 1:2009 and EN ISO 10684	:2004+AC:2009 or				
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture			
				f _{uk} = 400 N/mm ²	$f_{yk} = 240 \text{ N/mm}^2$	A ₅ > 8%			
1	Threaded rod	acc. to		$f_{uk} = 400 \text{ N/mm}^2$ $f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 320 \text{ N/mm}^2$ $f_{yk} = 300 \text{ N/mm}^2$	A ₅ > 8% A ₅ > 8%			
		EN ISO 898-1:2013		$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 400 \text{ N/mm}^2$	$A_5 > 8\%$			
				f _{uk} = 800 N/mm ²	$f_{vk} = 640 \text{ N/mm}^2$	$A_5 \ge 12\%^{3}$			
2 Hexagon nut									
3a	Washer			galvanised or sherardized EN ISO 7089:2000, EN ISC		7094:2000)			
3b	Filling washer	Steel, zinc plated, ho	t-dip	galvanised or sherardized					
	Internal threaded anchor rod	Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture			
4		acc. to		f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm ²	A ₅ > 8%			
		EN ISO 898-1:2013	8.8	$f_{uk} = 800 \text{ N/mm}^2$	$f_{yk} = 640 \text{ N/mm}^2$	A ₅ > 8%			
Staiı	nless steel A4 (Mate	rial 1.4401 / 1.4404 / 1	.457	1 / 1.4567 or 1.4541, acc. t 1 / 1.4362 or 1.4578, acc. t r 1.4565, acc. to EN 10088	to EN 10088-1:2014)				
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture			
1	Threaded rod ¹⁾⁴⁾	acc. to	50	f _{uk} = 500 N/mm ²	f _{yk} = 210 N/mm ²	A ₅ ≥ 8%			
·	Timedada rea	EN ISO 3506-	70	f _{uk} = 700 N/mm ²	f _{yk} = 450 N/mm ²	A ₅ ≥ 12% ³⁾			
		1:2009		$f_{uk} = 800 \text{ N/mm}^2$	$f_{yk} = 600 \text{ N/mm}^2$	$A_5 \ge 12\%^{3}$			
2	Hexagon nut 1)4)	acc. to EN ISO 3506- 1:2009	50 70 80	for anchor rod class 50 for anchor rod class 70 for anchor rod class 80					
A2: Material 1.4301 / 1.4307 / 1.4311 / 1.4567 or 1.4541, acc. to EN 10088-1:2014 A4: Material 1.4401 / 1.4404 / 1.4571 / 1.4362 or 1.4578, acc. to EN 10088-1:2014 HCR: Material 1.4529 or 1.4565, acc. to EN 10088-1: 2014 (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000)									
3b	Filling washer			orrosion resistance steel		_			
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture			
4	Internal threaded	acc. to	50	$f_{uk} = 500 \text{ N/mm}^2$	f _{yk} = 210 N/mm ²	A ₅ > 8%			
4	anchor rod ¹⁾²⁾	EN ISO 3506- 1:2009	70	$f_{uk} = 700 \text{ N/mm}^2$	f _{vk} = 450 N/mm ²	A ₅ > 8%			

¹⁾ Property class 70 or 80 for anchor rods up to M24 and Internal threaded anchor rods up to IG-M16,


Sympafix X150+Plus for concrete	
Product description	Annex A 4
Materials threaded rod and internal threaded rod	

²⁾ for IG-M20 only property class 50

 $^{^{3)}}$ A₅ > 8% fracture elongation if <u>no</u> requirement for performance category C2 exists $^{4)}$ Property class 80 only for stainless steel A4 and HCR

Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 24, \varnothing 25, \varnothing 28, \varnothing 32

- Minimum value of related rip area f_{R.min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range $0.05d \le h \le 0.07d$ (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: **Materials**

Part	Designation	Material
Reinf	orcing bars	
1	ENLIQUY_1_1 "2007 NC" "2017 Nanov C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Electronic copy of the ETA by DIBt: ETA-19/0513

Sympafix X150+Plus for concrete	
Product description Materials reinforcing bar	Annex A 5

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.
- Seismic action for Performance Category C2: M12 to M24 (except hot-dip galvanised rods).

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: -40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +72 °C (max long term temperature +50 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position
 of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to
 supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- · Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Sympafix X150+Plus for concrete	
Intended Use	Annex B 1
Specifications	

Table B1: Installation parameters for threaded rod											
Anchor size M8 M10 M12 M16 M20 M24 M27 M30											
Diameter of element	İ	$d = d_{nom}$	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole dia	ameter	d ₀	[mm]	10	12	14	18	22	28	30	35
Effective embedmer	at donth	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Effective embedmer	п аерті	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of	Prepositioned i	nstallation d _f	[mm]	9	12	14	18	22	26	30	33
clearance hole in the fixture	Push through i	Push through installation d _f		12	14	16	20	24	30	33	40
Maximum torque mo	ment	T _{inst} ≤	[Nm]	10	20	40 ¹⁾	60	100	170	250	300
Minimum thickness of member		h _{min}	[mm]		h_{ef} + 30 mm ≥ 100 mm h_{ef} + 2d ₀			ı			
Minimum spacing		s _{min}	[mm]	40	50	60	75	95	115	125	140
Minimum edge dista	nce	c _{min}	[mm]	35	40	45	50	60	65	75	80

¹⁾ Maximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

Table B2: Installation parameters for rebar

Anchor size	Ø 8 ¹⁾	Ø 10 ¹⁾	Ø 12 ¹⁾	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Diameter of element	d = d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Nominal drill hole diameter	d_0	[mm]	10 12	12 14	14 16	18	20	25	32	32	35	40
Effective embedment depth	h _{ef,min}	[mm]	60	60	70	75	80	90	96	100	112	128
Enective embedment depth	h _{ef,max}	[mm]	160	200	240	280	320	400	480	500	560	640
Minimum thickness of member	h _{min}	[mm]		h _{ef} + 30 mm ≥ 100 mm				h _e	+ 2d ₀			
Minimum spacing	s _{min}	[mm]	40	50	60	70	75	95	120	120	130	150
Minimum edge distance	c _{min}	[mm]	35	40	45	50	50	60	70	70	75	85

¹⁾ both nominal drill hole diameter can be used

Table B3: Installation parameters for Internal threaded anchor rod

Anchor size			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Internal diameter of anchor rod	d ₂	[mm]	6	8	10	12	16	20
Outer diameter of anchor rod1)	$d = d_{nom}$	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d ₀	[mm]	12	14	18	22	28	35
Effective embedment depth	h _{ef,min}	[mm]	60	70	80	90	96	120
Effective embedment depth	h _{ef,max}	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f	[mm]	7	9	12	14	18	22
Maximum torque moment	T _{inst} ≤	[Nm]	10	10	20	40	60	100
Thread engagement length min/max	l _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} +	- 2d ₀	
Minimum spacing	s _{min}	[mm]	50	60	75	95	115	140
Minimum edge distance	c _{min}	[mm]	40	45	50	60	65	80

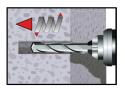
¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Sympafix X150+Plus for concrete	
Intended Use Installation parameters	Annex B 2

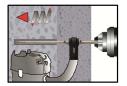
Table B4	: Paran	neter clea	ning and s	etting	g tool	s						
	COLOCOLOGICA											
Threaded Rod	Rebar	Internal threaded anchor rod	d ₀ Drill bit - Ø HD, HDB, CD	l	b h - Ø	min		Installatio of	n directio piston plu			
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1		1		
M8	8		10	RB10	11,5	10,5						
M10	8 / 10	IG-M6	12	RB12	13,5	12,5		No plua	No plug required			
M12	10 / 12	IG-M8	14	RB14	15,5	14,5		ivo piug				
	12		16	RB16	17,5	16,5						
M16	14	IG-M10	18	RB18	20,0	18,5	VS18					
	16		20	RB20	22,0	20,5	VS20					
M20		IG-M12	22	RB22	24,0	22,5	VS22					
	20		25	RB25	27,0	25,5	VS25	h _{ef} >	h _{ef} >			
M24		IG-M16	28	RB28	30,0	28,5	VS28	250 mm	250 mm	all		
M27			30	RB30	31,8	30,5	VS30	230 IIIM	250 mm			
	24 / 25		32	RB32	34,0	32,5	VS32]			
M30	28	IG-M20	35	RB35	37,0	35,5	VS35					
	32		40	RB40	43,5	40,5	VS40					

CAC - Rec. compressed air tool (min 6 bar)

Drill bit diameter (d₀): all diameters


Drill bit diameter (d₀): all diameters

The hollow drill bit system contains the Heller Duster Expert hollow drill bit and a class M vacuum with minimum negative pressure of 253 hPa \underline{and} flow rate of minimum 150 m³/h (42 l/s).

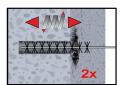

Installation instructions

Drilling of the bore hole

1a. Hammer (HD) or compressed air drilling (CD)

Drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3). Proceed with Step 2. In case of aborted drill hole, the drill hole shall be filled with mortar.

1b. Hollow drill bit system (HDB) (see Annex B 3)


Drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3). This drilling system removes the dust and cleans the bore hole during drilling (all conditions). Proceed with Step 3. In case of aborted drill hole, the drill hole shall be filled with mortar.

Attention! Standing water in the bore hole must be removed before cleaning.

CAC: Cleaning for dry, wet and water-filled bore holes with all diameter in uncracked and cracked concrete

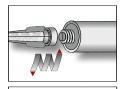
2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

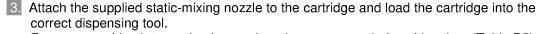
2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of two times in a twisting motion.

If the bore hole ground is not reached with the brush, a brush extension must be used.

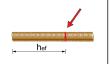
Electronic copy of the ETA by DIBt: ETA-19/0513

2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

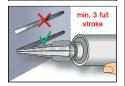

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

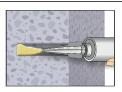

Sympafix X150+Plus for concrete

Intended Use Installation instructions Annex B 4



Installation instructions (continuation)

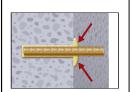



For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.

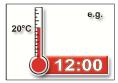
4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.

5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey or red colour.

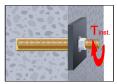
6. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Table B5.



- 7. Piston plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications:
 - Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 250mm
 - Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm



8. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.


The anchor shall be free of dirt, grease, oil or other foreign material.

9. After inserting the anchor, the annular gab between anchor rod and concrete, in case of a push through installation additionally also the fixture, must be complete filled with mortar. If excess mortar is not visible at the top of the hole, the requirement is not fulfilled and the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).

10. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5).

11. After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. In case of prepositioned installation the annular gab between anchor and fixture can be optional filled with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

Sympafix X150+Plus for concrete

Installation instructions (continuation)

Intended Use

Annex B 5

Table B5: Maximum w			orking time and minimum curing time							
Concrete	Concrete temperature		Gelling working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete					
+ 5 °C	to	+ 9 °C	80 min	48 h	96 h					
+ 10 °C	to	+ 14 °C	60 min	28 h	56 h					
+ 15 °C	to	+ 19 °C	40 min	18 h	36 h					
+ 20 °C	to	+ 24 °C	30 min	12 h	24 h					
+ 25 °C	to	+ 34 °C	12 min	9 h	18 h					
+ 35 °C	to	+ 39 °C	8 min	6 h	12 h					
+4	0°C		8 min	4 h	8 h					
Cartridge	temp	erature		+5°C to +40°C						

Sympafix X150+Plus for concrete	
ntended Use Curing time	Annex B 6
	Affiles

Т	able C1: Characteristic values resistance of threaded		el ter	sion r	esistar	nce ai	nd ste	el sh	ear		
Si	ze			M8	M10	M12	M16	M20	M24	M27	M30
Cr	oss section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
Cl	naracteristic tension resistance, Steel failu	re 1)		•							
	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
St	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
St	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	-	-
	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	-	-
CI	naracteristic tension resistance, Partial fac	tor ²⁾									
St	eel, Property class 4.6 and 5.6	γ _{Ms,N}	[-]				2,0)			
St	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,N}	[-]				1,5	5			
St	ainless steel A2, A4 and HCR, class 50	γ _{Ms,N}	[-]	2,86							
St	ainless steel A2, A4 and HCR, class 70	γ _{Ms,N}	[-]				1,8	7			
St	ainless steel A4 and HCR, class 80	γ _{Ms,N}	[-]				1,6	3			
CI	naracteristic shear resistance, Steel failure										
_	Steel, Property class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
arm	Steel, Property class 5.6 and 5.8	$V^0_{Rk,s}$	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
lever	Steel, Property class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
	Stainless steel A2, A4 and HCR, class 50	V ⁰ _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Without	Stainless steel A2, A4 and HCR, class 70	V ⁰ _{Rk,s}	[kN]	13	20	30	55	86	124	-	-
>	Stainless steel A4 and HCR, class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	-	-
	Steel, Property class 4.6 and 4.8	M ⁰ _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
	Steel, Property class 8.8	M ⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
Vith lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ _{Rk.s}	[Nm]	19	37	66	167	325	561	832	1125
₹	Stainless steel A2, A4 and HCR, class 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	-	-
	Stainless steel A4 and HCR, class 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	-	-
CI	naracteristic shear resistance, Partial facto	r ²⁾									
	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]				1,6	7			
St	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,V}	[-]				1,2	5			
St	ainless steel A2, A4 and HCR, class 50	γ _{Ms,V}	[-]				2,3	8			
St	ainless steel A2, A4 and HCR, class 70	γ _{Ms,V}	[-]				1,5	6			
St	ainless steel A4 and HCR, class 80	γ _{Ms,V}	[-]				1,3	3			
1)	V 1 P 16 d 2 1		·	•							

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.
²⁾ in absence of national regulation

Sympafix X150+Plus for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

Deutsches
Institut
für
Bautechnik

English translation	prepared	by DIBt
---------------------	----------	---------

	Characteristic valuetion	ues for Co	ncrete con	e failure and Splitting with all kind of
Anchor				All Anchor type and sizes
Concrete cone fa	ailure			
Non-cracked cond	crete	k _{ucr,N}	[-]	11,0
Cracked concrete	;	k _{cr,N}	[-]	7,7
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}
Splitting		·	•	
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Edge distance	$2.0 > h/h_{ef} > 1.3$	C _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Axial distance		s _{cr,sp}	[mm]	2 c _{cr,sp}

Sympafix X150+Plus for concrete	
Performances Characteristic values for Concrete cone failure and Splitting with all kind of action	Annex C 2

Steel failure		M27	124 M27	NA24									
Characteristic tension resistance				IVIZ4	M20	M16	M12	M10	M8			d	
Partial factor Y _{MS,N} [-] see Table C1													el failure
Characteristic bond resistance in non-cracked concrete C20/25 in hammer drilled holes (HD) and compressed a holes (CD) 1: 40°C/24°C Dry, wet concrete and flooded bore hole TRIK, ucr IN/mm² 15 15 15 14 13 13 13 13 13 15 15 15			C1)	ble C1)	ee Tab	_{uk} (or s	Α _s •f _ι			[kN]	N _{Rk,s}	stance	racteristic tension resi
Characteristic bond resistance in non-cracked concrete C20/25 in hammer drilled holes (HD) and compressed at holes (CD)				1	able C1	see Ta				[-]	γ _{Ms,N}		ial factor
Notes (CD) Note N											•	concrete failure	nbined pull-out and c
Characteristic bond resistance in non-cracked concrete C20/25 in hammer drilled holes with hollow drill bit (HDB) Table Fig. Fi		air drill	sed air dri	ressed	l compi	ID) and	oles (H	illed h	nmer d	20/25 in han	ked concrete C2	ance in non-crack	
Characteristic bond resistance in non-cracked concrete C20/25 in hammer drilled holes with hollow drill bit (HDB) The parameter The parameter	16 1	16	17 16	17	18	19	19	20	20	[N/mm²] -	T _{Rk ucr}	concrete and	a I: 40°C/24°C
Total Concrete Tota	12 1											hole	II: 72°C/50°C
Table Tabl	B)	B)	(HDB)	bit (HE	ow drill	ith hollo	oles wi	illed h	nmer d	20/25 in han	ced concrete C2	ance in non-crack	racteristic bond resista
Characteristic bond resistance in cracked concrete C20/25 in hammer drilled holes (HD), compressed air drilled and with hollow drill bit (HDB) Part	14 1	14	14 14	14	15	16	16	16	17			Drv. wet	I: 40°C/24°C
Characteristic bond resistance in cracked concrete C20/25 in hammer drilled holes (HD), compressed air drilled and with hollow drill bit (HDB) Part of the property of t	12 1	12	12 12	12	13	13	14	14	14				 ყ II: 72°C/50°C
Characteristic bond resistance in cracked concrete C20/25 in hammer drilled holes (HD), compressed air drilled and with hollow drill bit (HDB) Part of the property of t	14 1	14	14 14	14	15	15	16	16	16	[N/mm²]	^τ Rk,ucr	flooded bare	ਲ <u>1· 40°C/24°C</u>
Characteristic bond resistance in cracked concrete C20/25 in hammer drilled holes (HD), compressed air drilled and with hollow drill bit (HDB) Part	12 1			+		_						7	
And with hollow drill bit (HDB) Telephone Telep										in hommor	operate C20/25		
Reduktion factor ψ^0_{sus} in cracked and non-cracked concrete C20/25 in hammer drilled holes (HD), compressed holes (CD) and with hollow drill bit (HDB) $\frac{1}{2} \left[\begin{array}{c cccc} & & & & & & & & & & & & & & & & & $		и поте		all utille	esseu a	Compre	(пи) ,	noies	annea	ın nammer	Toncrete G20/25		
Reduktion factor ψ^0_{sus} in cracked and non-cracked concrete C20/25 in hammer drilled holes (HD), compressed holes (CD) and with hollow drill bit (HDB) $\frac{1}{2} \left[\begin{array}{c cccc} & & & & & & & & & & & & & & & & & $	8,5 8	8,5	8,5 8,5	8,5	8,5	8,5	8,5	7,0	7,0	[N/mm²] -	τ _{Rk or}	concrete and	I: 40°C/24°C Dry, wet concrete and flooded bore
holes (CD) and with hollow drill bit (HDB) Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ	7,0 7	7,0	7,0 7,0	7,0	7,0	7,0	7,0	6,0	6,0	[,,,,,,,,,,]	Tik,oi		
See Table C2 Page 1	I air drilled	d air dr	ssed air d	presse), com	les (HD	led hol	ner dril	n hamn	te C20/25 ir	cracked concre	cracked and non-	uktion factor ψ ⁰ sus in α
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												v drill bit (HDB)	s (CD) and with hollov
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,75									Ψ^0_{sus} [-]			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,68												ੁੱਚ II: 72°C/50°C
$\begin{array}{c c} \text{Increasing factors for concrete} & \hline C35/45 & 1,07 \\ \hline \Psi_{\text{C}} & \hline C40/50 & 1,08 \\ \hline C45/55 & 1,09 \\ \hline C50/60 & 1,10 \\ \hline \\ \hline \textbf{Concrete cone failure} \\ \hline \\ \text{Relevant parameter} & \text{see Table C2} \\ \hline \end{array}$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
C45/55 1,09 C50/60 1,10 Concrete cone failure Relevant parameter see Table C2												crete	easing factors for conc
C50/60 1,10 Concrete cone failure Relevant parameter see Table C2													
Concrete cone failure Relevant parameter see Table C2													
Relevant parameter see Table C2					IU	Ι,					100/00		crete cone failure
				2	able C2	See Ta							
				_	02	300 16							· · · · · · · · · · · · · · · · · · ·
Relevant parameter see Table C2				2	able C2	see Ta							
Installation factor													•
for dry and wet concrete					0	4							
(all drilling methods)					,0	ı				_[-]	γ _{inst}		
for flooded bore hole (all drilling methods) (all drilling methods)					,2	1				LJ	111121		
Sympafix X150+Plus for concrete												or concrete	mnafix X150±Plus f
	x C 3	х С 3	nnex C	Anne	_				า	-static action	static and quasi		formances

Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm		'		•	•		•	•		
Characteristic shear resistance Steel, strength class 4.6, 4.8 and 5.6, 5.8	V ⁰ _{Rk,s}	[kN]	0,6 ⋅ A _s ⋅ f _{uk} (or see Table C1)							
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all strength classes	V ⁰ Rk,s	[kN]	0,5 ⋅ A _s ⋅ f _{uk} (or see Table C1)							
Partial factor	γ _{Ms,V}	[-]	see Table C1							
Ductility factor	k ₇	[-]	1,0							
Steel failure with lever arm	•									
Characteristic bending moment	M ⁰ Rk,s	[Nm]	1,2 • W _{el} • f _{uk} (or see Table C1)							
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γ _{Ms,V}	[-]				see	Table C	1		
Concrete pry-out failure										
Factor	k ₈	[-]	2,0							
Installation factor	γinst	[-]					1,0			
Concrete edge failure										
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mm							300mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γ _{inst}	[-]					1,0			

Sympafix X150+Plus for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 4

Page 20 of European Technical Assessment ETA-19/0513 of 13 September 2019

English translation prepared by DIBt

Anchor size internal threade	d anchor rods			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Steel failure ¹⁾			<u> </u>		•			'	
Characteristic tension resistan	ce, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123
Steel, strength class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196
Partial factor, strength class 5.	8 and 8.8	γ _{Ms,N}	[-]			1	,5		
Characteristic tension resistan				1.4	26	41	E0.	110	104
Steel A4 and HCR, Strength c	ass 70 ²⁾	N _{Rk,s}	[kN]	14	26	41	59	110	124
Partial factor		γMs,N	[-]			1,87			2,86
Combined pull-out and cond									
Characteristic bond resistance holes (CD)	in non-cracked	concrete	C20/25 in	hammer	drilled hol	es (HD) a	nd compre	essed air d	drilled
_ I: 40°C/24°C	Dry, wet			20	19	19	18	17	16
Temperature II: 72°C/50°C	concrete and flooded bore hole	^τ Rk,ucr	[N/mm ²]	15	15	14	13	13	12
Characteristic bond resistance	in non-cracked	concrete	C20/25 in	hammer	drilled hol	es with ho	llow drill b	it (HDB)	
I: 40°C/24°C	Dry, wet			16	16	16	15	14	13
Temperature II: 72°C/50°C	concrete	T	[N/mm²]	14	14	13	13	12	11
range I: 40°C/24°C	flooded bore	^τ Rk,ucr	[[N/111111-]	16	16	15	15	14	13
II: 72°C/50°C	hole			14	14	13	13	12	11
Characteristic bond resistance and with hollow drill bit (HDB)	in cracked cond	crete C20	/25 in ham	nmer drille	ed holes (l	HD), comp	ressed aiı	drilled ha	les (CD
Temperature I: 40°C/24°C	Dry, wet concrete and	τ _{Rk,cr}	[N/mm²]	7,0	8,5	8,5	8,5	8,5	8,5
range II: 72°C/50°C flooded bore hole			[13/11111]	6,0	7,0	7,0	7,0	7,0	7,0
Reduktion factor ψ^0_{sus} in cracl	ked and non-cra	cked con	crete C20/	/25 in han	nmer drille	ed holes (H	ID), comp	ressed air	drilled
holes (CD) and with hollow dr	ill bit (HDB)								
Temperature I: 40°C/24°C	Dry, wet concrete and	$\Psi^0_{ m sus}$	[-]	0,75					
range II: 72°C/50°C	flooded bore hole			0,68					
			5/30	1,02					
Increasing factors for concrete		-	0/37				04		
•			5/45 0/50				07 08		
Ψ_{C}			5/55	1,08 1,09					
			0/60				10		
Concrete cone failure		1		1					
Relevant parameter						see Ta	ble C2		
Splitting failure									
Relevant parameter						see Ta	ıble C2		
Installation factor									
for dry and wet concrete (all drilling methods)		24	r 1			1	,0		
for flooded bore hole		γinst	[-]	1,2					

The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

2) For IG-M20 strength class 50 is valid

Sympafix X150+Plus for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 5

Table C6: Characteris	tic val	ues of s	hear I	oads u	nder s	tatic an	d quas	i-static	action
Anchor size for internal threade	ed anch	or rods		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Steel failure without lever arm1)	1								
Characteristic shear resistance,	5.8	V ⁰ _{Rk,s}	[kN]	5	9	15	21	38	61
Steel, strength class	8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98
Partial factor, strength class 5.8 a	ınd 8.8	γ _{Ms,V}	[-]				1,25		
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40
Partial factor		γ _{Ms,V} [-] 1,56					2,38		
Ductility factor k ₇ [-]							1,0		
Steel failure with lever arm ¹⁾									
Characteristic bending moment,	5.8	М ⁰ Rk,s	[Nm]	8	19	37	66	167	325
Steel, strength class	8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519
Partial factor, strength class 5.8 a	ınd 8.8	γ _{Ms,V}	[-]				1,25		
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		M ⁰ Rk,s	[Nm]	11	26	52	92	233	456
Partial factor		γ _{Ms,V}	[-]			1,56			2,38
Concrete pry-out failure									
Factor		k ₈	[-]				2,0		
Installation factor		γ _{inst}	[-]				1,0		
Concrete edge failure		•							
Effective length of fastener		If	[mm]	[h] min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300m					min(h _{ef} ; 300mm)
Outside diameter of fastener d _{nom} [mm]			[mm]	10	12	16	20	24	30
Installation factor		γ _{inst}	[-]	1,0					

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.
2) For IG-M20 strength class 50 is valid

Sympafix X150+Plus for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 6

	size reinforci	ng bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 3
Steel fa	ilure									4)				
Charact	eristic tension i	resistance	N _{Rk,s}	[kN]					A _s ·	f _{uk} ¹⁾				
Cross s	ection area		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial fa	actor		γ _{Ms,N}	[-]					1,	4 ²⁾			•	
Combir	ned pull-out an	nd concrete failu		1										
Charact holes (C		sistance in non-c	racked conc	rete C20/2	?5 in h	ammei	r drilled	d holes	(HD)	and co	ompre	ssed a	ir drille	ed
<u>a</u>	I: 40°C/24°C	Dry, wet concrete and flooded bore	[₹] Rk,ucr	[N/mm²]	16	16	16	16	16	16	15	15	15	15
	II: 72°C/50°C	hole			12	12	12	12	12	12	12	12	11	11
	eristic bond res	sistance in non-c	racked conc	rete C20/2	25 in h	ammeı						t (HDE	-	
atur.	I: 40°C/24°C	4 * *			14	14	13	13	13	13	13	13	13	13
¥ = .	II: 72°C/50°C	concrete	τ _{Rk,ucr}	[N/mm²]	12	12	12	11	11	11	11	11	11	11
emp e ra	I: 40°C/24°C	flooded bore	nk,uci	[]	13	13	13	13	13	13	13	13	13	13
<u> </u>	II: 72°C/50°C			000/05 :	11	11	11	11	11	11	11	11	11	(00
and with	eristic bond res n hollow drill bit	sistance in cracke (HDB)	ed concrete	C20/25 in	namm	er drill	ed hol	es (HL)), con	npress	ed air	drilled	noles	(CD
Temperature range	I: 40°C/24°C	concrete and	Tok	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,8
Tempe	II: 72°C/50°C	flooded bore hole	^τ Rk,cr	[[14/111111-]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0
Redukti	on factor ψ ⁰ sus	in cracked and r	on-cracked	concrete (C20/25	in ha	mmer	drilled	holes	(HD),	compr	essed	air dri	led
		ollow drill bit (HD												
<u>e</u>	I: 40°C/24°C	Dry, wet concrete and	$\psi^0_{ m sus}$	s [-]		0,75								
Temp	II: 72°C/50°C	flooded bore hole	- 505		0,68									
			C25	1,02										
			C30,	/37	1,04									
	ng factors for c	concrete	C35,		1,07									
Ψ_{C}			C40,		1,08									
			C45		1,09									
Concre	te cone failure	1	C50.	00					1,	10				
	it parameter	•							SPP Ta	able C				
Splitting								•	366 16	ADIC O	-			
_	g nt parameter								see Ta	able C	>			
	tion factor							•	300 10	1010 01	_			
	and wet concret	 te												
	ng methods)			,					1	,0				
for flood	led bore hole ng methods)		γinst	[-]	1,2									
1) fuk sh		n the specification al regulation	s of reinforci	ng bars	I									
		s for concrete												
Performances Characteristic values of tension loads under static and quasi-static action							Annex C 7							

Table C8: Characteristic	values of	shear l	oads	und	er st	atic	and	quas	si-sta	atic ac	tion	
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm				•								
Characteristic shear resistance	V ⁰ Rk,s	[kN]					0,5	· A _s ·	f _{uk} 1)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms,V}	[-]	1,5 ²⁾									
Ductility factor	k ₇	[-]	1,0									
Steel failure with lever arm												
Characteristic bending moment	M ⁰ Rk,s	[Nm]	1.2 • W _{el} • f _{uk} ¹⁾									
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	896	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]						1,5 ²⁾				
Concrete pry-out failure												
Factor	k ₈	[-]						2,0				
Installation factor	γ _{inst}	[-]						1,0				
Concrete edge failure		•										
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 • d _{nom}) min(h _{ef} ; 300mm)					mm)				
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	γ _{inst}	[-]	1,0									

 $[\]stackrel{1)}{\text{s}}\,f_{uk}$ shall be taken from the specifications of reinforcing bars $\stackrel{2)}{\text{in}}$ in absence of national regulation

Sympafix X150+Plus for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 8

Table C9: Displacements under tension load ¹⁾ (threaded rod)											
Anchor size threaded re		М8	M10	M12	M16	M20	M24	M27	M30		
Non-cracked concrete C20/25 under static and quasi-static action											
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041	
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041	
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,038	0,039	0,040	0,044	0,047	0,051	0,052	0,055	
72°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,047	0,049	0,051	0,055	0,059	0,064	0,067	0,070	
Cracked concrete C20/2	25 under stat	ic and quasi-stat	ic action								
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,069	0,071	0,072	0,074	0,076	0,079	0,081	0,082	
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,193	0,115	0,122	0,128	0,135	0,142	0,155	0,171	
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,092	0,095	0,096	0,099	0,102	0,106	0,109	0,110	
72°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,259	0,154	0,163	0,172	0,181	0,189	0,207	0,229	

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \ \cdot \tau;$

τ: action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}\text{-factor} \quad \tau;$

Table C10: Displacements under shear load²⁾ (threaded rod)

Anchor size threaded rod				M10	M12	M16	M20	M24	M27	M30
Non-cracked and cracked concrete C20/25 under static and quasi-static action										
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

²⁾ Calculation of the displacement

$$\begin{split} &\delta_{V0} = \delta_{V0}\text{-factor} &\cdot V; \\ &\delta_{V\infty} = \delta_{V\infty}\text{-factor} &\cdot V; \end{split}$$

V: action shear load

Sympafix X150+Plus for concrete	
Performances Displacements under static and quasi-static action (threaded rods)	Annex C 9

8.06.01-230/19 Z63506.19

Table C11: Displa	Table C11: Displacements under tension load ¹⁾ (Internal threaded rod)									
Anchor size Internal thre	eaded anchor r	od	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Non-cracked concrete C	Non-cracked concrete C20/25 under static and quasi-static action									
Temperature range I:	δ _{N0} -factor	[mm/(N/mm²)]	0,029	0,030	0,033	0,035	0,038	0,041		
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,029	0,030	0,033	0,035	0,038	0,041		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,039	0,040	0,044	0,047	0,051	0,055		
72°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,049	0,051	0,055	0,059	0,064	0,070		
Cracked concrete C20/2	5 under static	and quasi-static	action							
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,071	0,072	0,074	0,076	0,079	0,082		
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,115	0,122	0,128	0,135	0,142	0,171		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,095	0,096	0,099	0,102	0,106	0,110		
72°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,154	0,163	0,172	0,181	0,189	0,229		

¹⁾ Calculation of the displacement

$$\begin{split} &\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} & \cdot \tau; \\ &\delta_{\text{N}_{\infty}} = \delta_{\text{N}_{\infty}}\text{-factor} & \cdot \tau; \end{split}$$

 $\tau\textsc{:}$ action bond stress for tension

Table C12: Displacements under shear load²⁾ (Internal threaded rod)

Anchor size Inter	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20				
Non-cracked and cracked concrete C20/25 under static and quasi-static action										
All temperature	δ_{V0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04		
ranges	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06		

²⁾ Calculation of the displacement

$$\begin{split} &\delta_{V0} = \delta_{V0}\text{-factor} & \cdot V; \\ &\delta_{V\infty} = \delta_{V\infty}\text{-factor} & \cdot V; \end{split}$$

V: action shear load

Sympafix X150+Plus for concrete	
Performances Displacements under static and quasi-static action (Internal threaded anchor rod)	Annex C 10

8.06.01-230/19 Z63506.19

Table C13: I	Table C13: Displacements under tension load ¹⁾ (rebar)												
Anchor size reinf	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Non-cracked concrete C20/25 under static and quasi-static action													
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,031	0,033	0,035	0,038	0,038	0,040	0,043	
range I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,015	0,015	0,016	0,017	0,017	0,019	0,020	0,020	0,021	0,023	
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,038	0,039	0,040	0,042	0,044	0,047	0,051	0,051	0,054	0,058	
range II: 72°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,047	0,049	0,051	0,053	0,055	0,059	0,065	0,065	0,068	0,072	
Cracked concrete	C20/25 und	er static and qu	asi-stat	ic actio	n								
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,069	0,071	0,072	0,073	0,074	0,076	0,079	0,079	0,081	0,084	
range I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,115	0,122	0,128	0,135	0,142	0,155	0,171	0,171	0,181	0,194	
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,092	0,095	0,096	0,098	0,099	0,102	0,106	0,106	0,109	0,113	
range II: 72°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,154	0,163	0,172	0,181	0,189	0,207	0,229	0,229	0,242	0,260	

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}\text{-factor} \cdot \tau;$

τ: action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor } \cdot \tau;$

Table C14: Displacements under shear load²⁾ (rebar)

Anchor size reinforcing bar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
For concrete C20/25 under static and quasi-static action												
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
ranges	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

²⁾ Calculation of the displacement

V: action shear load

$$\begin{split} &\delta_{V0} = \delta_{V0}\text{-factor} & \cdot V; \\ &\delta_{V\infty} = \delta_{V\infty}\text{-factor} & \cdot V; \end{split}$$

Electronic copy of the ETA by DIBt: ETA-19/0513

Sympafix X150+Plus for concrete	
Performances Displacements under static and quasi-static action (rebar)	Annex C 11

Table	e C15: Characte (perform	eristic value ance categ			ındeı	seis	mic a	ction					
Ancho	r size threaded rod				M8	M10	M12	M16	M20	M24	M27	M30	
Steel fa	ailure												
(Seismi			N _{Rk,s,eq,C1}	[kN]	1,0 • N _{Rk,s}								
(Seismi Steel, s Stainles	teristic tension resist ic C2) strength class 8.8 ss Steel A4 and HCF h class ≥70	N _{Rk,s,eq,C2}	[kN]	N	PA		1,0 •	N _{Rk,s}		NF	PA		
Partial 1	factor		γ _{Ms,N}	[-]				see Ta	ıble C1				
	ned pull-out and co												
Characteristic bond resistance in cracked and non-cracked concrete C20/25 in hammer drilled holes (HD), compress drilled holes (CD) and with hollow drill bit (HDB)									presse	d air			
<u>e</u>	I. 4000/0400		^τ Rk,eq,C1	[N/mm ²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5	
Temperature range	I: 40°C/24°C Dry, wet concrete an flooded bord	Dry, wet concrete and	^τ Rk,eq,C2	[N/mm²]	NPA		5,8	4,8	5,0	5,1	NF	PA	
mpe	I: 72°C/50°C	flooded bore hole	^τ Rk,eq,C1	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0	
≝	1: 72°C/50°C	Hole	τ _{Rk,eq,C2}	[N/mm²]	N	PA	5,0	4,1	4,3	4,4	NF	PA	
1	ion factor ψ ⁰ sus in c CD) and with hollow		-cracked conci	ete C20/25	25 in hammer drilled holes (HD), compressed air drille								
Temperature range	I: 40°C/24°C	Dry, wet concrete and	Jud.		0,75								
Tempe	II: 72°C/50°C	flooded bore hole	Ψ ⁰ sus	[-]				0,	68				
Increas	ing factors for concr	ete ψ _C	C25/30 to	C50/60				1	,0				
Concre	ete cone failure		•										
Releva	nt parameter							see Ta	ıble C2				
Splittin	ıg												
Relevant parameter								see Ta	ble C2				
	tion factor		I	I									
(all drill	and wet concrete ing methods)		γ _{inst}	[-]	1,0								
1	ded bore hole ing methods)		'IIISt	1 1				1	,2				

Sympafix X150+Plus for concrete	
Performances Characteristic values of tension loads under seismic action (performance category C1+C2)	Annex C 12

Table C16: Characteristic (performance			oads	undei	r seisı	mic ac	tion				
Anchor size threaded rod			М8	M10	M12	M16	M20	M24	M27	M30	
Steel failure without lever arm		•				•	•	•			
Characteristic shear resistance (Seismic C1)	V _{Rk,s,eq,C1}	[kN]				0,70	o·V ⁰ Rk	i,s			
Characteristic shear resistance (Seismic C2), Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70	V _{Rk,s,eq,C2}	[kN]	NPA 0,70 · V ⁰ _{Rk,s} NPA								
Partial factor	γ _{Ms,V}	[-]	see Table C1								
Ductility factor	k ₇	[-]					1,0				
Steel failure with lever arm											
	M ⁰ Rk,s,eq,C1	[Nm]			No Pe	rforman	ce Asse	essed (N	IPA)		
Characteristic bending moment	M ⁰ _{Rk,s,eq,C2}	[Nm]			No Pe	rforman	ce Asse	essed (N	IPA)		
Concrete pry-out failure	·										
Factor	k ₈	[-]					2,0				
Installation factor	γinst	[-]					1,0				
Concrete edge failure	·										
Effective length of fastener	If	[mm]	[mm] $\min(h_{ef}; 12 \cdot d_{nom})$ $\min(h_{ef}; 3$								
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30	
Installation factor	γinst	[-]	1,0								
Factor for annular gap	$\alpha_{\sf gap}$	[-]									

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Sympafix X150+Plus for concrete	
Performances Characteristic values of shear loads under seismic action (performance category C1+C2)	Annex C 13

	Table C17: Characteristic values of tension loads under seismic action (performance category C1)												
Anchor size reinforcing	bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure													
Characteristic tension re	sistance	N _{Rk,s,eq}	[kN]	1,0 • A _s • f _{uk} ¹⁾									
Cross section area		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor		γ _{Ms,N}	[-]					1,	4 ²⁾				
-	Combined pull-out and concrete failure												
Characteristic bond resistance in cracked and non-cracked concrete C20/25 in hammer drilled holes (HD), compressed air drilled holes (CD) and with hollow drill bit (HDB)									d air				
II: 72°C/50°C	Dry, wet concrete	τ _{Rk,eq}	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5
The second state The second									7,0				
Reduktion factor ψ^0_{sus} in holes (CD) and with holl			concrete (C20/25 in hammer drilled holes (HD), compressed air drilled									led
nperature range 	Dry, wet concrete	7140	r 1	0,75									
Temperature range II: 40°C/24°C	and flooded bore hole	Ψ ⁰ sus	[-]					0,	68				
Increasing factors for co	ncrete ψ _C	C25/30 to	C50/60	1,0									
Concrete cone failure		1											
Relevant parameter								see Ta	able C	2			
Splitting													
Relevant parameter				see Table C2									
Installation factor		_											
for dry and wet concrete (all drilling methods)		Vin at	[-]					1	,0				
for flooded bore hole (all drilling methods)		^γ inst	[[]					1	,2				
1) f. shall be taken from:	the enecification	o of roinford	ina hara										

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Sympafix X150+Plus for concrete	
Performances Characteristic values of tension loads under seismic action (performance category C1)	Annex C 14

Table C18: Characteristic values of shear loads under seismic action (performance category C1)												
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm												
Characteristic shear resistance	V _{Rk,s,eq}	[kN]					0,35	·As	f _{uk} 1)			
Cross section area	A _s	[mm²]	50 79 113 154 201 314 452 491 616 804								804	
Partial factor	γ _{Ms,V}	[-]						1,52)				
Ductility factor	k ₇	[-]	1,0									
Steel failure with lever arm												
Characteristic bending moment	M ⁰ _{Rk,s,eq}	[Nm]			No	o Perf	ormar	nce As	sesse	d (NPA)	İ	
Concrete pry-out failure	•											
Factor	k ₈	[-]						2,0				
Installation factor	γinst	[-]						1,0				
Concrete edge failure	•											
Effective length of fastener	I _f	[mm]		ı	min(h _e	_{ef} ; 12 ·	d _{nom}	,)		min(h _{ef} ; 300	mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	γ _{inst}	[-]						1,0				
Factor for annular gap	$\alpha_{\sf gap}$	[-]					0,	,5 (1,0)3)			

Sympafix X150+Plus for concrete	
Performances Characteristic values of shear loads under seismic action (performance category C1)	Annex C 15

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars
2) in absence of national regulation
3) Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Table C19: Displa	Table C19: Displacements under tension load ¹⁾ (threaded rod)													
Anchor size threaded ro		М8	M10	M12	M16	M20	M24	M27	M30					
Cracked concrete C20/25 under seismic C1 action														
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,069	0,071	0,072	0,074	0,076	0,079	0,081	0,082				
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,193	0,115	0,122	0,128	0,135	0,142	0,155	0,171				
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,092	0,095	0,096	0,099	0,102	0,106	0,109	0,110				
72°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,259	0,154	0,163	0,172	0,181	0,189	0,207	0,229				

Table C20: Displacements under tension load¹⁾ (rebar)

Anchor size reinforcing bar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Cracked concrete C20/25 under seismic C1 action												
Temperature	δ_{N0} -factor	[mm/(N/mm ²)]	0,069	0,071	0,072	0,073	0,074	0,076	0,079	0,079	0,081	0,084
range I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,115	0,122	0,128	0,135	0,142	0,155	0,171	0,171	0,181	0,194
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,092	0,095	0,096	0,098	0,099	0,102	0,106	0,106	0,109	0,113
range II: 72°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,154	0,163	0,172	0,181	0,189	0,207	0,229	0,229	0,242	0,260

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}\text{-factor} \cdot \tau;$

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor} \cdot \tau; \ (\tau \text{: action bond stress for tension})$

Table C21: Displacements under shear load²⁾ (threaded rod)

Anchor size threaded rod				M10	M12	M16	M20	M24	M27	M30
Non-cracked and cracked concrete C20/25 under seismic C1 action										
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

Table C22: Displacement under shear load¹⁾ (rebar)

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
For concrete C20/25 under seismic C1 action												
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

²⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \ \cdot \text{V}; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \ \cdot \text{V}; \ (\text{V: action shear load}) \end{split}$$

Sympafix X150+Plus for concrete	
Performances	Annex C 16
Displacements under seismic C1 action (threaded rods and rebar)	

Table C23: Displacements under tension load ¹⁾ (threaded rod)										
Anchor size threaded rod M8 M10 M12 M16 M20 M24 M27								M30		
Cracked concrete C20/25 under seismic C2 action										
All temperature	δ _{N,eq(DLS)}	[mm]	NPA -		0,21	0,24	0,27	0,36	NIE	٦.۸
ranges	$\delta_{N,eq(ULS)}$	[mm]			0,54	0,51	0,54	0,63	NF	A

Table C24: Displacements under shear load (threaded rod)

Anchor size threaded rod				M10	M12	M16	M20	M24	M27	M30
Cracked concrete C20/25 under seismic C2 action										
All temperature	$\delta_{V,eq(DLS)}$	[mm] NPA		٦,٨	3,1	3,4	3,5	4,2	NE	٦,٨
ranges	$\delta_{V,ep(ULS)}$	[mm]	ואו	-A	6,0	7,6	7,3	10,9	INF	-A

Sympafix X150+Plus for concrete	
Performances Displacements under seismic C2 action (threaded rods)	Annex C 17