

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-19/0670 of 29 October 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Wedge anchor SMART S-BZ and SMART S-BZ IG

Mechanical fastener for use in concrete

pgb - Polska Sp. z o.o. ul. Fryderyka Wilhelma Redena 3 41-807 ZABRZE POLEN

pgb-Polska plant 4

36 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601

European Technical Assessment ETA-19/0670

Page 2 of 36 | 29 October 2019

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-19/0670 English translation prepared by DIBt

Page 3 of 36 | 29 October 2019

Specific Part

1 Technical description of the product

The Wedge Anchor SMART S-BZ and SMART S-BZ IG is an fastener made of zinc plated steel, stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following fastener types are covered:

- Fastener type Wedge Anchor SMART S-BZ with external thread, washer and hexagon nut, sizes M8 to M27.
- Fastener type Wedge Anchor SMART S-BZ IG S with internal thread, hexagon head nut and washer S-IG, sizes M6 to M12,
- Fastener type Wedge Anchor SMART S-BZ IG SK with internal thread, countersunk head screw and countersunk washer SK-IG, sizes M6 to M12,
- Fastener type Wedge Anchor SMART S-BZ IG B with internal thread, hexagon nut and washer MU-IG, sizes M6 to M12.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	SMART S-BZ see Annex C1 to C4 SMART S-BZ IG see Annex C11 to C12
Characteristic resistance to shear load (static and quasi-static loading)	SMART S-BZ see Annex C5 SMART S-BZ IG see Annex C13
Displacements (static and quasi-static loading)	SMART S-BZ see Annex C9 to C10 SMART S-BZ IG see Annex C15
Characteristic resistance and displacements for seismic performance categories C1 and C2	SMART S-BZ see Annex C6, C9 and C10
Durability	See Annex B1

European Technical Assessment ETA-19/0670

Page 4 of 36 | 29 October 2019

English translation prepared by DIBt

3.2 Safety in case of fire (BWR 2)

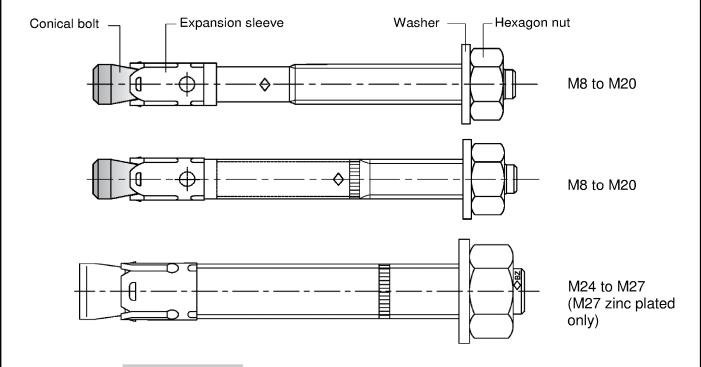
Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	SMART S-BZ see Annex C7 to C8 SMART S-BZ IG see Annex C14

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

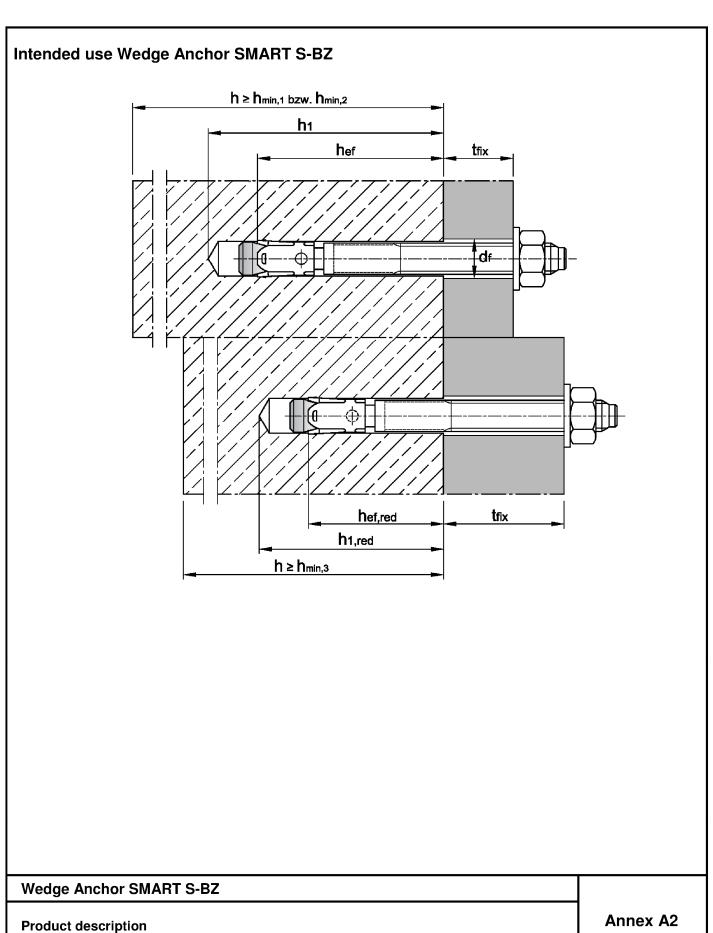
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

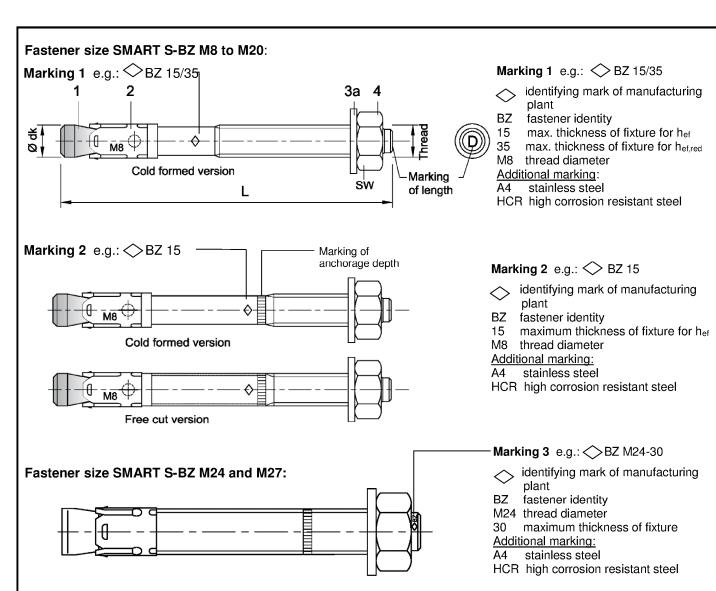

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 29 October 2019 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow beglaubigt:
Head of Department G. Lange

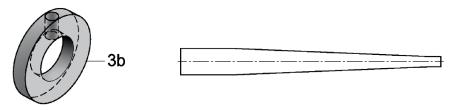
Fastener version	Product description	Intended use	Performance
SMART S-BZ	Annex A1 - Annex A4	Annex B1 – Annex B7	Annex C1 – Annex C10
SMART S-BZ IG	Annex A1 Annex A5 – Annex A7	Anhang B1 – Anhang B2 Anhang B8 – Anhang B10	Anhang C11 – Anhang C15


Wedge anchor SMART S-BZ IG M6 to M12



Wedge Anchor SMART S-BZ and SMART S-BZ IG Product description Fastener types Annex A1

Installation situation SMART S-BZ



Marking of length	C (c)	D (d)	E (e)	F (f)	G (g)	H (h)	I (i)	J (j)	K (k)	L (I)	M (m)	N (n)
Length of fastener min ≥	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5	203,2
Length of fastener max <	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5	203,2	215,9
	Ι α ζ	5()	2 ()	5 ()	2()	T (1))//)	11. ()	Y()	W ()	7 ()
Marking of length	O (o)	P (p)	Q (q)	R (r)	S (s)	T (t)	U (u)	V (v)	W (w)	X (x)	Y (y)	Z (z)
Length of fastener min ≥	215.9	228.6	241,3	254.0	279,4	304.8	330,2	355.6	381.0	406.4	431.8	457,2
	, .	,-	, •		, .	,-		,-	, .	, .	, .	,_

Filling washer and reducing adapter for filling the annular gap between fastener and fixture

Wedge Anchor SMART S-BZ

Product description

Fastener sizes and marking

Annex A3

Table A1: Fastener dimensions SMART S-BZ

Fastener size	•		М8	M10	M12	M16	M20	M24	M27
Conical bolt		Thread	M8	M10	M12	M16	M20	M24	M27
		Ø d _k =	7,9	9,8	12,0	15,7	19,7	24	28
	Steel, zinc plated	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	161+t _{fix}	178+t _{fix}
Length of	A4, HCR	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	168+t _{fix}	-
fastener ¹⁾	reduced anchorage depth	$L_{hef,red}$	54 + t _{fix}	60 + t _{fix}	76,5+t _{fix}	98+t _{fix}	-	-	-
Hexagon nut		SW	13	17	19	24	30	36	41

¹⁾ With additional use of filling washer 3b the usable thickness of fixture will reduce 5mm

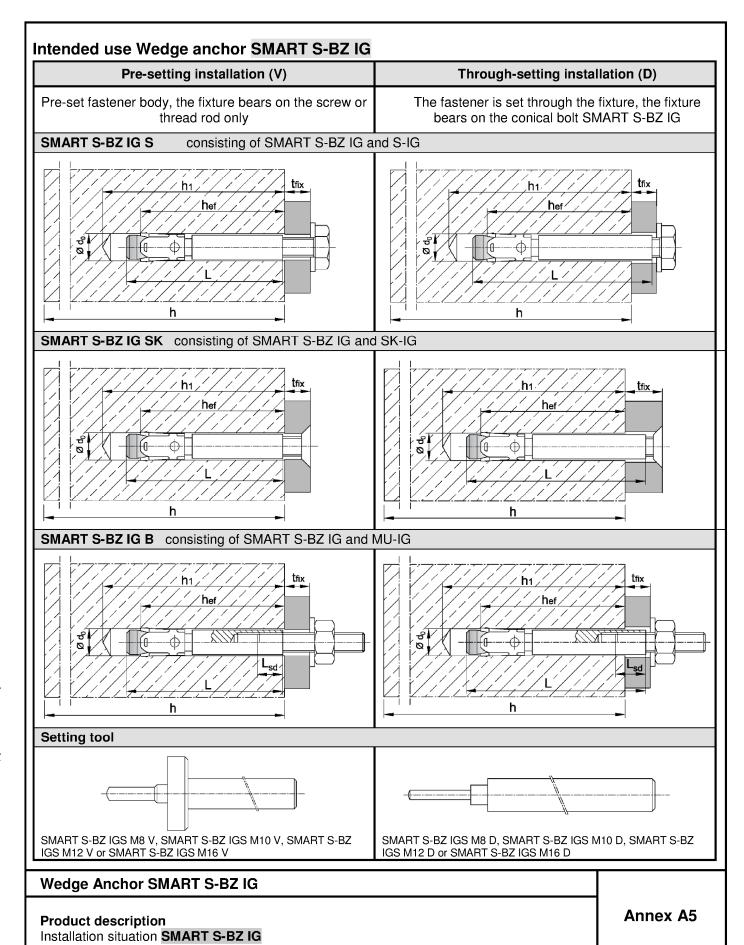
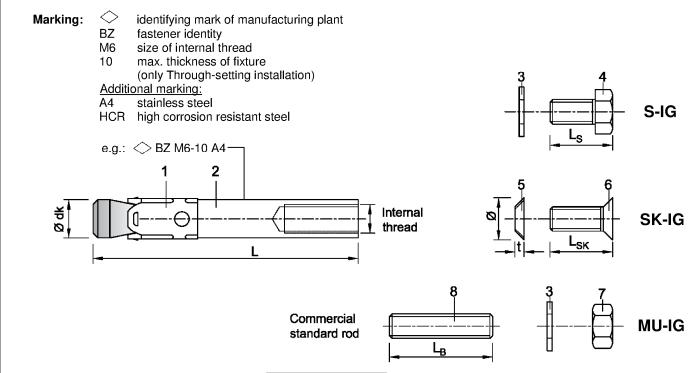

Dimensions in mm

Table A2: Materials SMART S-BZ


		SMAF	RT S-BZ	SMART S-BZ A4	SMART S-BZ HCR	
No.	Part	Steel, z	inc plated	Stainless steel	High corrosion resistant steel	
		galvanized ≥ 5µm	sherardized ≥ 40µm	A 4	(HCR)	
1	Conical bolt	M8 to M20: Cold formed or machined steel, galvanized, cone plastic coated	M8 to M20: Cold formed or machined steel, sherardized, cone plastic coated	M8 to M20: Stainless steel (e.g. 1.4401, 1.4404, 1.4578, 1.4571) EN 10088:2014, cone plastic coated	M8 to M20: High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2014, cone plastic coated	
	Threaded bolt	M24 and M27:	M24 and M27: steel, sherardized	M24: Stainless steel (e.g. 1.4401,	M24: High corrosion resistant steel 1.4529	
	Threaded cone Steel, galvanized M24 and M27: Steel, galvanized		1.4404) EN 10088:2014	or 1.4565, EN 10088:2014		
2	Expansion sleeve	M8 to M20: Steel (e.g. 1.4301 or 1.4401) EN 10088:2014, M24 and M27: Steel acc. to EN 10139:1997	M8 to M20: Steel (e.g. 1.4301 or 1.4401) EN 10088:2014, M24 and M27: Steel acc. to EN 10139:1997	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014	
За	Washer	Steel, galvanized	Steel, zinc plated	Stainless steel (e.g. 1.4401,	High corrosion resistant steel 1.4529	
3b	Filling washer			1.4571) EN 10088:2014	or 1.4565, EN 10088:2014	
4	Hexagon nut	Steel, galvanized, coated	Steel, zinc plated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2014, coated	

Wedge Anchor SMART S-BZ	
Product description Dimensions and materials	Annex A4

Table A3: Fastener dimensions SMART S-BZ IG

No.	Fastener size			М6	M8	M10	M12
	Conical bolt with internal thread		∅ d _k	7,9	9,8	11,8	15,7
1	Pre-setting installatio	n .	L	50	62	70	86
	Through-setting installation		L	50 + t _{fix}	62 + t _{fix}	70 + t _{fix}	86 + t _{fix}
2	Expansion sleeve				see ta	ıble A4	
3	Washer				see ta	ıble A4	
	Hexagon head screw	, wic	lth across flats	10	13	17	19
4	Pre-setting installation Ls		Ls	t _{fix} + (13 to 21)	t _{fix} + (17 to 23)	t _{fix} + (21 to 25)	t _{fix} + (24 to 29)
	Through-setting installation Ls		14 to 20	18 to 22	20 to 22	25 to 28	
5	Countersunk Ø countersunk		17,3	21,5	25,9	30,9	
,	washer		t	3,9	5,0	5,7	6,7
6	Countersunk head screw		bit size	Torx T30	Torx T45 (Steel, zinc plated) T40 (Stainless steel A4, HCR)	Hexagon socket 6 mm	Hexagon socket 8 mm
	Pre-setting installatio	n	Lsk	t _{fix} + (11 to 19)	t _{fix} + (15 to 21)	t _{fix} + (19 to 23)	t _{fix} + (21 to 27)
	Through-setting insta	llation	Lsĸ	16 to 20	20 to 25	25	30
7	Hexagon nut v	vidth ac	ross flats	10	13	17	19
8	Commercial	type V	L _B ≥	t _{fix} + 21	t _{fix} + 28	t _{fix} + 34	t _{fix} + 41
°	standard rod1)	type D	L _B ≥	21	28	34	41

¹⁾ acc. to specifications (Table A4)

Dimensions in mm

Wedge Anchor SMART S-BZ IG

Product description

Fastener parts, marking and dimensions SMART S-BZ IG

Annex A6

Table A4: Materials SMART S-BZ IG

		SMART S-BZ IG	SMART S-BZ IG A4	SMART S-BZ IG HCR
No.	Part	Steel, galvanized ≥ 5 µm acc. to EN ISO 4042:1999	Stainless steel A4	High corrosion resistant steel HCR
1	Conical bolt SMART S-BZ IG with internal thread	Machined steel, Cone plastic coated	Stainless steel (e.g. 1.4401, 1.4404, 1.4571, 1.4362) EN 10088:2014, Cone plastic coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, Cone plastic coated
2	Expansion sleeve SMART S-BZ IG	Stainless steel (e.g. 1.4301, 1.4401) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014
3	Washer S-IG / MU-IG	Steel, galvanized	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014
4	Hexagon head screw S-IG	Steel, galvanized, coated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated
5	Countersunk washer SK-IG	Steel, galvanized	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014, zinc plated, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, zinc plated, coated
6	Countersunk head screw SK-IG	Steel, galvanized coated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated
7	Hexagon nut MU-IG	Steel, galvanized coated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated
8	Commercial standard rod	Property class 8.8, EN ISO 898-1:2013 A ₅ > 8 % ductile	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, property class 70, EN ISO 3506:2009	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, property class 70, EN ISO 3506:2009

Wedge Anchor SMART SMART S-BZ IG	
Product description Materials SMART S-BZ IG	Annex A7

Deutsches
Institut
für
Bautechnik

English translation prepared by DIBt

Specifications of intended use

Wedge Anchor SMART S-BZ							
Standard anchorage depth	М8	M10	M12	M16	M20	M24	M27
Steel, galvanized				✓			
Steel, sherardized				✓			
Stainless steel A4 and high corrosion resistant steel HCR	-					-	
Static or quasi-static action				✓			
Fire exposure				✓			
Seismic action (C1 and C2) 1)		F	✓	_		-	-

Reduced anchorage depth 1)	M8	M10	M12	M16	
Steel, galvanized		,	✓		
Steel, sherardized	✓				
Stainless steel A4 and high corrosion resistant steel HCR	√				
Static or quasi-static action	✓				
Fire exposure	✓				
Seismic action (C1 and C2)	-				

¹⁾ only cold formed anchors acc. to Annex A3

Wedge Anchor SMART S-BZ IG	М6	М8	M10	M12	
Steel, galvanized	✓				
Stainless steel A4 and high corrosion resistant steel HCR	1				
Static or quasi-static action	✓				
Fire exposure	√				
Seismic action (C1 and C2)			_		

Base materials:

Electronic copy of the ETA by DIBt: ETA-19/0670

- Compacted, reinforced or unreinforced normal weight concrete (without fibers) according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013
- · Cracked or uncracked concrete

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (steel zinc plated, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used.)

Wedge Anchor SMART S-BZ and SMART S-BZ IG	
Intended use Specifications	Annex B1

Specifications of intended use

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Dimensioning of fasteners under static or quasi-static action, seismic action or fire exposure according to EN 1992-4: 2018 in conjunction with TR 055

Installation:

- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Hole drilling by hammer drill bit or vacuum drill bit
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener
- Optionally, the annular gap between fixture and stud of the SMART S-BZ can be filled to reduce the hole. For this purpose, the filling washer (3b) must be used in addition to the supplied washer (3a). For filling use high-strength mortar with compressive strength ≥ 50N/mm².
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application

Wedge Anchor SMART S-BZ and SMART S-BZ IG

Intended use
Specifications

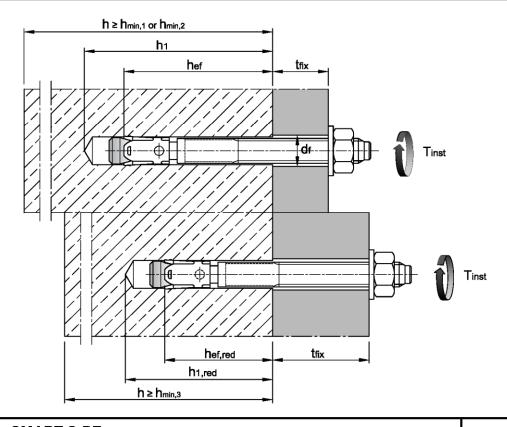

Annex B2

Table B1: Installation parameters, SMART S-BZ

Fastener siz	e			M8	M10	M12	M16	M20	M24	M27
Nominal drill I	nole diameter	d ₀	[mm]	8	10	12	16	20	24	28
Cutting diame	eter of drill bit	$d_{\text{cut}} \leq$	[mm]	8,45	10,45	12,5	16,5	20,55	24,55	28,55
	Steel, galvanized	T_{inst}	[Nm]	20	25	45	90	160	200	300
Installation torque	Steel, sherardized	T _{inst}	[Nm]	16	22	40	90	160	260	300
101400	Stainless steel A4, HCR	T _{inst}	[Nm]	20	35	50	110	200	290	-
Diameter of clearance		[mm]	9	12	14	18	22	26	30	
Standard and	chorage depth	-			-			-	-	
Depth of	Steel, zinc plated	$h_1 \geq$	[mm]	60	75	90	110	125	145	160
drill hole	Stainless steel A4, HCR	$h_1 \geq$	[mm]	60	75	90	110	125	155	-
Effective	Steel, zinc plated	h _{ef}	[mm]	46	60	70	85	100	115	125
anchorage depth	Stainless steel A4, HCR	h _{ef}	[mm]	46	60	70	85	100	125	-
Reduced and	chorage depth				-	-	-	-	-	
Depth of drill hole $h_{1,red} \ge [mm]$		[mm]	49	55	70	90				
Reduced effe depth	ctive anchorage	h _{ef,red}	[mm]	35	40	50	65	-	-	-

Intended use Installation parameters **Annex B3**

Table B2: Minimum spacings and edge distances, standard anchorage depth, SMART S-BZ

Fastener size			М8	M10	M12	M16	M20	M24	M27
Standard thickness of concrete	e member								
Steel zinc plated									
Standard thickness of member	h _{min,1}	[mm]	100	120	140	170	200	230	250
Cracked concrete									
Minimum spacing	Smin	[mm]	40	45	60	60	95	100	125
willimani spacing	für c ≥	[mm]	70	70	100	100	150	180	300
Minimum edge distance	Cmin	[mm]	40	45	60	60	95	100	180
	für s ≥	[mm]	80	90	140	180	200	220	540
Uncracked concrete								-	•
Minimum spacing	Smin	[mm]	40	45	60	65	90	100	125
	für c ≥	[mm]	80	70	120	120	180	180	300
Minimum edge distance	Cmin	[mm]	50	50	75	80	130	100	180
	für s ≥	[mm]	100	100	150	150	240	220	540
Stainless steel A4, HCR									
Standard thickness of member	h _{min,1}	[mm]	100	120	140	160	200	250	-
Cracked concrete						1		ı	ı
Minimum spacing	Smin	[mm]	40	50	60	60	95	125	
	für c ≥	[mm]	70	75	100	100	150	125	_
Minimum edge distance	Cmin	[mm]	40	55	60	60	95	125	
	für s ≥	[mm]	80	90	140	180	200	125	
Uncracked concrete					1			ı	ı
Minimum spacing	Smin	[mm]	40	50	60	65	90	125	
типпатт эрастід	für c ≥	[mm]	80	75	120	120	180	125	
Minimum edge distance	Cmin	[mm]	50	60	75	80	130	125	
Millimum edge distance	für s ≥	[mm]	100	120	150	150	240	125	
Minimum thickness of concret	e membei	r		-	_			_	
Steel zinc plated, stainless ste	el A4, HC	R							
Minimum thickness of member	h _{min,2}	[mm]	80	100	120	140	-	-	-
Cracked concrete				•	•			•	•
Minimum	Smin	[mm]	40	45	60	70			
Minimum spacing	für c ≥	[mm]	70	90	100	160			
Minimum adaa diatanaa	Cmin	[mm]	40	50	60	80	-	-	_
Minimum edge distance	für s ≥	[mm]	80	115	140	180			
Uncracked concrete									
Minimum angaing	Smin	[mm]	40	60	60	80			
Minimum spacing	für c ≥	[mm]	80	140	120	180			
	Cmin	[mm]	50	90	75	90	-	-	-
Minimum edge distance	für s ≥	[mm]	100	140	150	200			

Fire exposure from one side									
Minimum spacing	Smin,fi	[mm]	See normal ambient temperature						
Minimum edge distance	C _{min,fi}	see normal ambient temperature							
Fire exposure from more than	one side								
Minimum spacing	Smin,fi	[mm]	See normal ambient temperature						
Minimum edge distance	C _{min,fi}	[mm]	≥ 300 mm						

Intermediate values by linear interpolation.

Wedge Anchor SMART S-BZ

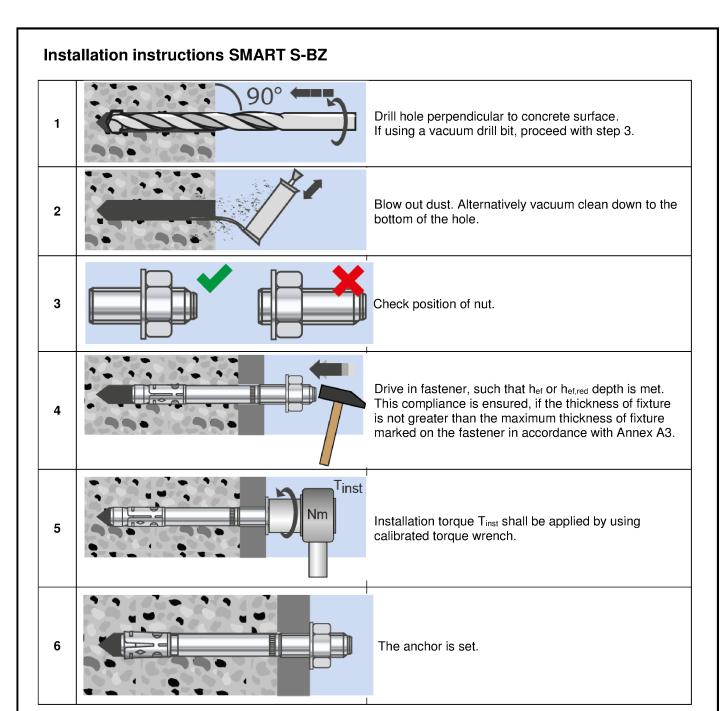
Intended use

Minimum spacings and edge distances for standard anchorage depth

Annex B4

Table B3: Minimum spacings and edge distances, reduced anchorage depth, SMART S-BZ

Fastener size			М8	M10	M12	M16
Minimum thickness of concrete member	h _{min,3}	[mm]	80	80	100	140
Cracked concrete						
Minimum spacing	Smin	[mm]	50	50	50	65
Millimum spacing	für c ≥	[mm]	60	100	160	170
Minimum edge distance	Cmin	[mm]	40	65	65	100
Millimum eage distance	für s ≥	[mm]	185	180	250	250
Uncracked concrete						
Minimum spacing	Smin	[mm]	50	50	50	65
Millimum spacing	für c ≥	[mm]	60	100	160	170
Minimum edge distance	Cmin	[mm]	40	65	100	170
Millimum eage distance	für s ≥	[mm]	185	180	185	65
Fire exposure from one side	-			-		
Minimum spacing	S _{min,fi}	[mm]	5	See normal amb	ient temperatu	re
Minimum edge distance	C _{min,fi}	[mm]	5	See normal amb	ient temperatu	re
Fire exposure from more than one side						
Minimum spacing	S _{min,fi}	[mm]		See normal amb	ient temperatu	re
Minimum edge distance	C _{min,fi}	[mm]		≥ 300) mm	

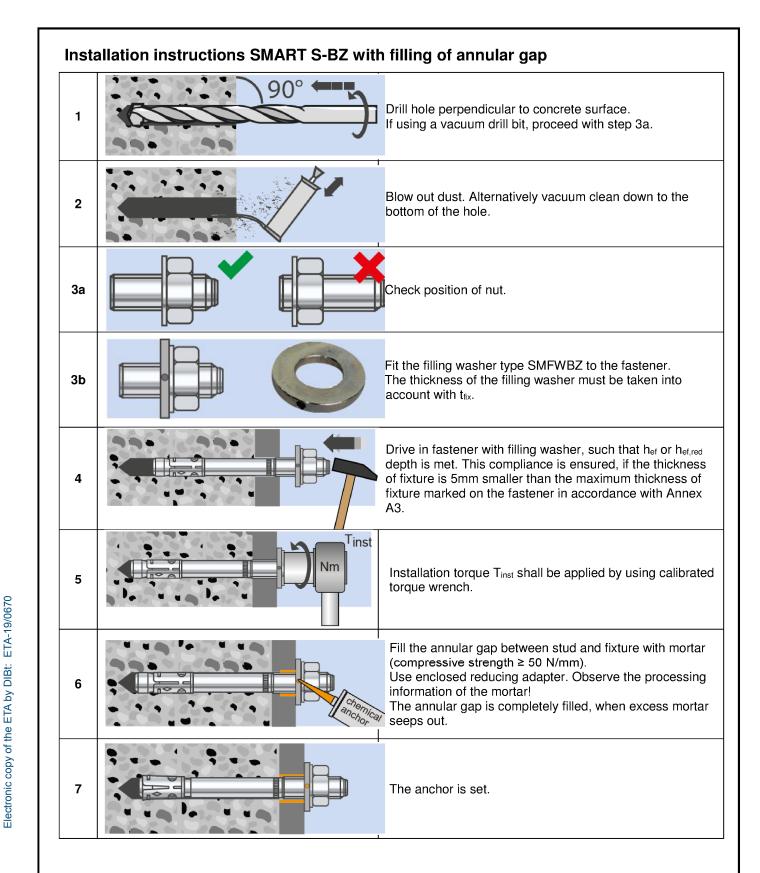

Intermediate values by linear interpolation.

Wedge Anchor SMART S-BZ

Intended use

Minimum spacings and edge distances for reduced anchorage depth

Annex B5



Intended Use

Installation instructions

Annex B6

Electronic copy of the ETA by DIBt: ETA-19/0670

Intended Use

Installation instructions with filling washer

Annex B7

Table B4: Installation parameters SMART S-BZ IG

Fastener size				М6	М8	M10	M12
Effective anchorage depth		h _{ef}	[mm]	45	58	65	80
Drill hole diameter		d ₀	[mm]	8	10	12	16
Cutting diameter of drill bit		$d_{cut} \leq$	[mm]	8,45	10,45	12,5	16,5
Depth of drill hole		$h_1 \geq$	[mm]	60	75	90	105
Screwing depth of threaded rod		$L_{\text{sd}}^{2)} \geq$	[mm]	9	12	15	18
L A - II - A' A		S	[Nm]	10	30	30	55
Installation torque, steel zinc plated	T _{inst}	SK	[Nm]	10	25	40	50
steel zille plated	_	В	[Nm]	8	25	30	45
Landa Halfara Assessa		S	[Nm]	15	40	50	100
Installation torque, stainless steel A4, HCR	T _{inst}	SK	[Nm]	12	25	45	60
Stairliess steel A4, I TOTT	,	В	[Nm]	8	25	40	80
Pre-setting installation							
Diameter of clearance hole in the fixture		d _f ≤	[mm]	7	9	12	14
		S	[mm]	1	1	1	1
Minimum thickness of fixture	t _{fix} ≥	SK	[mm]	5	7	8	9
		В	[mm]	1	1	1	1
Through-setting installation							
Diameter of clearance hole in the fixture		d _f ≤	[mm]	9	12	14	18
		S	[mm	5	7	8	9
inimum thickness of fixture 1)	$t_{\text{fix}} \geq$	SK	[mm]	9	12	14	16
		В	[mm]	5	7	8	9

¹⁾ The minimum thickness of fixture can be reduced to the value of Pre-setting installation, if the shear load at steel failure is designed with lever arm.

Table B5: Minimum spacings and edge distances SMART S-BZ IG

Fastener size			М6	M8	M10	M12
Minimum thickness of concrete member	h _{min}	[mm]	100	120	130	160
Cracked concrete						
Minimum spacing	Smin	[mm]	50	60	70	80
Willimum spacing	für c ≥	[mm]	60	80	100	120
Minimum edge distance	Cmin	[mm]	50	60	70	80
Millimum edge distance	für s ≥	[mm]	75	100	100	120
Uncracked concrete						
Minimum spacing	Smin	[mm]	50	60	65	80
	für c ≥	[mm]	80	100	120	160
Minimum adaa diatanaa	Cmin	[mm]	50	60	70	100
Minimum edge distance	für s ≥	[mm]	115	155	170	210
Fire exposure from one side						
Minimum spacing	S _{min,fi}	[mm]		See normal	temperature	
Minimum edge distance	Cmin,fi	[mm]		See normal	temperature	
Fire exposure from more than one side						
Minimum spacing	Smin,fi	[mm]		See normal	temperature	
Minimum edge distance	Cmin,fi	[mm]		≥ 300) mm	·
stormodiate values by linear interpolation				•	•	

Intermediate values by linear interpolation.

Wedge Anchor SMART S-BZ IG

Intended use

Installation parameters, minimum spacings and edge distances SMART S-BZ IG

Annex B8

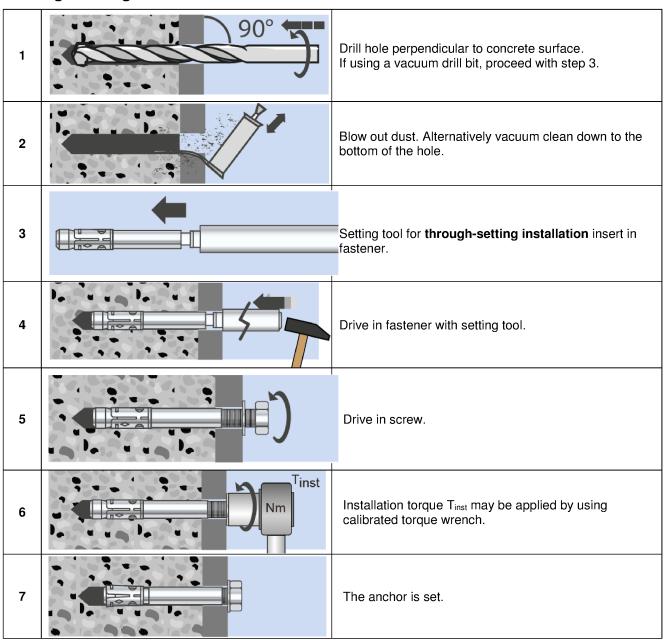
²⁾ see Annex A5

Installation instructions **SMART S-BZ IG Pre-setting installation** Drill hole perpendicular to concrete surface. 1 If using vacuum drill bit, proceed with step 3. Blow out dust. Alternatively vacuum clean down to the 2 bottom of the hole. Setting tool for pre-setting installation insert in the 3 fastener. Drive in the fastener with setting tool. 5 Drive in the srew. Tinst Installation torque Tinst may be applied by using 6 calibrated torque wrench. 7 The anchor is set.

Wedge	Anchor	SMART	S-BZ IG
-------	---------------	--------------	---------

Intended Use

Installation instructions for pre-setting installation SMART S-BZ IG


Annex B9

Electronic copy of the ETA by DIBt: ETA-19/0670

Installation instructions SMART S-BZ IG

Through-setting installation

Wedge Anchor SMART S-BZ IG

Intended Use

Installation instructions for through-setting installation SMART S-BZ IG

Annex B10

Table C1: Characteristic values for tension loads, SMART S-BZ zinc plated, cracked concrete, static and quasi-static action

Fastener size			М8	M10	M12	M16	M20	M24	M27
Installation factor	γinst	[-]				1,0			
Steel failure									
Characteristic resistance	$N_{Rk,s}$	[kN]	16	27	40	60	86	126	196
Partial factor	γMs	[-]	1,	53	1	,5	1,6	1,	5
Pull-out				-	_	-	_		
Standard anchorage depth									
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	1)	1)	1)
Reduced anchorage depth									
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	7,5	1)	1)	-	-	-
Increasing factor for N _{Rk,p}	ψс	[-]				$\left(\frac{f_{ck}}{20}\right)^{0.5}$			
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65	-	-	-
Factor for cracked concrete	$k_1 = k_{cr,N}$	[-]				7,7			

¹⁾ Pull-out is not decisive

Wedge Anchor SMART S-BZ

Performance

Characteristic values for tension loads, SMART S-BZ zinc plated, cracked concrete, static and quasi-static action

Annex C1

²⁾ Use restricted to anchoring of structural components which are statically indeterminate and subject to internal exposure conditions only

Table C2: Characteristic values for tension loads, SMART S-BZ A4 / HCR, cracked concrete, static and quasi-static action

Fastener size			М8	M10	M12	M16	M20	M24		
Installation factor	γinst	[-]				1,0				
Steel failure										
Characteristic resistance	$N_{Rk,s}$	[kN]	16	27	40	64	108	110		
Partial factor	γ̃Ms	[-]		1	,5		1,68	1,5		
Pull-out			_		-	-	-	-		
Standard anchorage depth										
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	1)	40		
Reduced anchorage depth										
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	7,5	1)	1)	-	-		
Increasing factor for N _{Rk,p}	ψс	[-]			$\left(\frac{f_{ck}}{20}\right)$	0,5				
Concrete cone failure										
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125		
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65	-	-		
Factor for cracked concrete	$k_1 = k_{cr,N}$	[-]	7,7							

¹⁾ Pull-out is not decisive

Wedge Anchor SMART S-BZ

Performance

Characteristic values for **tension loads**, **SMART S-BZ A4** / **HCR**, **cracked concrete**, static and quasi-static action

Annex C2

²⁾ Use restricted to anchoring of structural components which are statically indeterminate and subject to internal exposure conditions only

Table C3: Characteristic values for tension loads, SMART S-BZ zinc plated, uncracked concrete, static and quasi-static action

Fastener size			М8	M10	M12	M16	M20	M24	M27
Installation factor	γinst	[-]				1,0			
Steel failure									
Characteristic resistance	$N_{Rk,s}$	[kN]	16	27	40	60	86	126	196
Partial factor	γMs	[-]	1,	53	1	,5	1,6	1	,5
Pull-out									
Standard anchorage depth									
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	25	35	1)	1)	1)
Reduced anchorage depth									
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	7,5	9	1)	1)	-	-	-
Splitting									
Standard anchorage depth									
Splitting for standard thickness $c_{cr,sp}$ may be linearly interpolated for the	of concrete e member th	memb ckness	er (The high h _{min,2} < h <	gher resista : h _{min,1} (Cas	ance of cas se 2); ψ _{h,sp} =	e 1 and ca: = 1,0))	se 2 may b	e applied;	
Standard thickness of concrete	h _{min,1} ≥	[mm]	100	120	140	170	200	230	250
Case 1				•	•	•	•		•
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	9	12	20	30	40	62,3	50
Edge distance	C _{cr,sp}	[mm]				1,5 h _{ef}			
Case 2									
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	35	50,5	62,3	70,6
Edge distance	C _{cr,sp}	[mm]		2	h _{ef}		2,2 h _{ef}	1,5 h _{ef}	2,5 he
Splitting for minimum thickness of	of concrete	memb	<u>er</u>						•
Minimum thickness of concrete	h _{min,2} ≥	[mm]	80	100	120	140			
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	35	_	-	-
Edge distance	Ccr,sp	[mm]		2,5	h _{ef}				
Reduced anchorage depth									
Minimum thickness of concrete	h _{min,3} ≥	[mm]	80	80	100	140			
Characteristic resistance in uncracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	7,5	9	17,9	26,5	-	-	-
Edge distance	C _{cr,sp}	[mm]	100	100	125	150			
Increasing factor for N _{Rk,p} and N ⁰ _{Rk,sp}	ψс	[-]				$\left(\frac{f_{ck}}{20}\right)^{0,5}$			
Concrete cone failure						, ,			
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth	h _{ef,red}		35 ²⁾	40	50	65	-	_	-
Factor for uncracked concrete	$k_1 = k_{ucr,N}$	[-]		ı	L	11,0	I	I	·

¹⁾ Pull-out is not decisive

Performance

Characteristic values for **tension loads**, **SMART S-BZ zinc plated**, **uncracked concrete**, static and quasi-static action

Annex C3

²⁾ Use restricted to anchoring of structural components which are statically indeterminate and subject to internal exposure conditions only

Table C4: Characteristic values for tension loads, SMART S-BZ A4 / HCR, uncracked concrete, static and quasi-static action

Fastener size			М8	M10	M12	M16	M20	M24
Installation factor	γ̃inst	[-]			1	,0		
Steel failure	•							
Characteristic resistance	N _{Rk,s}	[kN]	16	27	40	64	108	110
Partial factor	γMs	[-]			,5		1,68	1,5
Pull-out	75				, -		,	,-
Standard anchorage depth								
Characteristic resistance in uncracked concrete C20/25	N _{Rk,p}	[kN]	12	16	25	35	1)	1)
Reduced anchorage depth								
Characteristic resistance in uncracked concrete C20/25	N _{Rk,p}	[kN]	7,5	9	1)	1)	-	-
Splitting				•	•	•	•	•
Standard anchorage depth								
Splitting for standard thickness of c _{cr,sp} may be linearly interpolated for the						case 2 may	be applied;	
Standard thickness of concrete	h _{min,1} ≥	[mm]	100	120	140	160	200	250
Case 1					•	•	•	•
Characteristic resistance in uncracked concrete C20/25	N^0 Rk,sp	[kN]	9	12	20	30	40	-
Edge distance	C cr,sp	[mm]			1,5	h _{ef}	•	•
Case 2								
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	35	50,5	70,6
Edge distance	C _{cr,sp}	[mm]	115	125	140	200	220	250
Splitting for minimum thickness of	concrete me	<u>mber</u>						
Minimum thickness of concrete	h _{min,2} ≥	[mm]	80	100	120	140		
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	35	_	-
Edge distance	C _{cr,sp}	[mm]		2,5	h _{ef}			
Reduced anchorage depth								
Minimum thickness of concrete	h _{min,3} ≥	[mm]	80	80	100	140		
Characteristic resistance in uncracked concrete C20/25	N^0 Rk,sp	[kN]	7,5	9	17,9	26,5	-	-
Edge distance	C _{cr,sp}	[mm]	100	100	125	150		
Increasing factor for N _{Rk,p} and N ⁰ _{Rk,sp}	ψс	[-]			$\left(\frac{f_{ck}}{20}\right)$	$(\frac{1}{2})^{0,5}$		
Concrete cone failure								
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
9 1	h _{ef,red}	[mm]	35 ²⁾	40	50	65	_	_
Reduced anchorage depth	l let.red	[[[]]]	00	1 40] 50	05	_	

¹⁾ Pull-out is not decisive

Performance

Characteristic values for **tension loads**, **SMART S-BZ A4** / **HCR**, **uncracked concrete**, static and quasi-static action

Annex C4

²⁾ Use restricted to anchoring of structural components which are statically indeterminate and subject to internal exposure conditions only

Table C5: Characteristic values for shear loads, SMART S-BZ, cracked and uncracked concrete, static or quasi static action

Fastener size				М8	M10	M12	M16	M20	M24	M27
Installation factor		γinst	[-]				1,0			
Steel failure withou	ut lever arm, Steel	zinc pla	ted							
Characteristic resist	ance	$V^0_{Rk,s}$	[kN]	12,2	20,1	30	55	69	114	169,4
Ductility factor		k ₇	[-]				1,0			
Partial factor		γMs	[-]		1,	25		1,33	1,25	1,25
Steel failure withou	ut lever arm, Stainl	ess ste	el A 4, F	ICR						
Characteristic resist	ance	$V^0_{Rk,s}$	[kN]	13	20	30	55	86	123,6	
Ductility factor k ₇		[-]				1,0			-	
Partial factor γ_{Ms}		[-]		1,	25		1,4	1,25		
Steel failure with le	ever arm, Steel zind	plated								
Characteristic bendi	Characteristic bending resistance		[Nm]	23	47	82	216	363	898	1331,5
Partial factor γ _{Ms}		[-]		1,	25		1,33	1,25	1,25	
Steel failure with le	ever arm, Stainless	steel A	4, HCR	ł						
Characteristic bendi	ing resistance	$M^0_{Rk,s}$	[Nm]	26	52	92	200	454	785,4	
Partial factor		γMs	[-]	1,25				1,4 1,25		_
Concrete pry-out fa	ailure									
Pry-out factor		k ₈	[-]		2,	4			2,8	
Concrete edge fail	ure									
Effective length of fastener in shear	Steel zinc plated	l _f	[mm]	46	60	70	85	100	115	125
loading with h ef	Stainless steel A4, HCR	l _f	[mm]	46	60	70	85	100	125	-
Effective length of fastener in shear	Steel zinc plated	$I_{f,red}$	[mm]	35 ¹⁾	40	50	65			
loading with h ef,red	Stainless steel A4, HCR	$I_{f,red}$	[mm]	35 ¹⁾	40	50	65	_	-	-
Outside diameter of	fastener	d_{nom}	[mm]	8	10	12	16	20	24	27

¹⁾ Use restricted to anchoring of structural components which are statically indeterminate and subject to internal exposure conditions only.

Performance

Characteristic values for **shear loads**, **SMART S-BZ**, **cracked** and **uncracked concrete**, static or quasi static action

Annex C5

Table C6: Characteristic resistance for seismic loading, SMART S-BZ, standard anchorage depth, performance category C1 and C2

Fastener siz	œ.			M8	M10	M12	M16	M20
Tension load	ls	-				•		-
Installation fa	ctor	γinst	[-]			1,0		
Steel failure,	Steel zinc plate	ed						
Characteristic	resistance C1	N _{Rk,s,eq,C1}	[kN]	16	27	40	60	86
Characteristic	resistance C2	N _{Rk,s,eq,C2}	[kN]	16	27	40	60	86
Partial factor		γMs	[-]	1,53 1,5				1,6
Steel failure,	Stainless steel	A4, HCR						
Characteristic	resistance C1	$N_{\text{Rk},s,\text{eq},\text{C1}}$	[kN]	16	27	40	64	108
Characteristic	resistance C2	$N_{\text{Rk},s,\text{eq},\text{C2}}$	[kN]	16	27	40	64	108
Partial factor γ_{Ms} [-]					1,	5		1,68
Pull-out (stee	el zinc plated, sta	inless steel	A4 ar	nd HCR)				
Characteristic resistance C1 N _{Rk,p,eq,C1}		[kN]	5	9	16	25	36	
Characteristic	resistance C2	$N_{Rk,p,eq,C2}$	[kN]	2,3	3,6	10,2	13,8	24,4
Shear loads							-	-
Steel failure	without lever ar	m, Steel zi	nc pla	ted				
Characteristic	resistance C1	$V_{Rk,s,eq,C1}$	[kN]	9,3	20	27	44	69
Characteristic	resistance C2	$V_{Rk,s,eq,C2}$	[kN]	6,7	14	16,2	35,7	55,2
Partial factor		γMs	[-]		1,	25		1,33
Steel failure	without lever ar	m, Stainles	ss ste	el A4, HCR				
Characteristic	resistance C1	$V_{Rk,s,eq,C1}$	[kN]	9,3	20	27	44	69
Characteristic	resistance C2	$V_{Rk,s,eq,C2}$	[kN]	6,7	14	16,2	35,7	55,2
Partial factor		γMs	[-]		1,	25		1,4
Factor for	without filling of annular gap	$lpha_{ extsf{gap}}$	[-]			0,5		
annular gap	with filling of annular gap	$lpha_{ extsf{gap}}$	[-]			1,0		

Performance

Characteristic resistance for seismic loading, SMART S-BZ, standard anchorage depth, performance category C1 and C2

Annex C6

Table C7: Characteristic values for tension and shear load under fire exposure, SMART S-BZ, standard anchorage depth, cracked and uncracked concrete C20/25 to C50/60

Fastener size				М8	M10	M12	M16	M20	M24	M27
Tension load		-			<u></u>		<u> </u>			
Steel failure										
Steel, zinc plate	ed									
	R30	_		1,5	2,6	4,1	7,7	9,4	13,6	17,6
Characteristic	R60	- N _{Rk,s,fi}	[kN]	1,1	1,9	3,0	5,6	8,2	11,8	15,3
resistance	R90	- NHK,S,TI	[KIN]	0,8	1,4	2,4	4,4	6,9	10,0	13,0
	R120			0,7	1,2	2,2	4,0	6,3	9,1	11,8
Stainless steel	A4, HCR									
	R30			3,8	6,9	12,7	23,7	33,5	48,2	
Characteristic	R60	$N_{Rk,s,fi}$	[kN]	2,9	5,3	9,4	17,6	25,0	35,9	
resistance	R90	INHK,S,†i -	[[[,1]	2,0	3,6	6,1	11,5	16,4	23,6	_
	R120			1,6	2,8	4,5	8,4	12,1	17,4	
Shear load	-	•			-		-		-	
Steel failure wit	thout lever ar	rm								
Steel, zinc plate	ed									
	R30			1,6	2,6	4,1	7,7	11	16	20,6
Characteristic	R60	· .,	II.AII	1,5	2,5	3,6	6,8	11	15	19,8
resistance	R90	- V _{Rk,s,fi}	[kN]	1,2	2,1	3,5	6,5	10	15	19,0
	R120			1,0	2,0	3,4	6,4	10	14	18,6
Stainless steel	A4, HCR									
	R30			3,8	6,9	12,7	23,7	33,5	48,2	
Characteristic	R60	- .,	TL-NII	2,9	5,3	9,4	17,6	25,0	35,9	
resistance	R90	- V _{Rk,s,fi}	[kN]	2,0	3,6	6,1	11,5	16,4	23,6	-
	R120	-		1,6	2,8	4,5	8,4	12,1	17,4	
Steel failure wit	th lever arm									
Steel, zinc plate	ed									
·	R30			1,7	3,3	6,4	16,3	29	50	75
Characteristic	R60	- NAO	[[N] _{r=-3}	1,6	3,2	5,6	14	28	48	72
resistance	R90	- M ⁰ _{Rk,s,fi}	[Nm]	1,2	2,7	5,4	14	27	47	69
	R120	-		1,1	2,5	5,3	13	26	46	68
Stainless steel	A4, HCR								•	
	R30			3,8	9,0	19,7	50,1	88,8	153,5	
Characteristic	R60	-	,	2,9	6,8	14,6	37,2	66,1	114,3	
resistance	R90	- M ⁰ Rk,s,fi	[Nm]	2,1	4,7	9,5	24,2	43,4	75,1	-
	R120	-		1,6	3,6	7,0	17,8	32,1	55,5	

If pull-out is not decisive, $N_{Rk,p}$ must be replaced by $N_{Rk,c}^0$ in equation (D.4) and (D.5), FprEN 1992-4.

Wedge Anchor SMART S-BZ

Performance

Characteristic values for tension and shear load under fire exposure, SMART S-BZ, standard anchorage depth, cracked and uncracked concrete C20/25 to C50/60

Annex C7

Table C8: Characteristic values for tension and shear load under fire exposure, SMART S-BZ, reduced anchorage depth, cracked and uncracked concrete C20/25 to C50/60

Fastener size				М8	M10	M12	M16
Tension load		_	-		<u>L</u>		
Steel failure							
Steel, zinc plated							
	R30			1,5	2,6	4,1	7,7
Characteristic	R60		FI2N11	1,1	1,9	3,0	5,6
resistance	R90	— N _{Rk,s,fi}	[kN]	0,8	1,3	1,9	3,5
	R120			0,6	1,0	1,3	2,5
Stainless steel A4,	, HCR						
	R30			3,2	6,9	12,7	23,7
Characteristic	R60		FLA 17	2,5	5,3	9,4	17,6
resistance	R90	─ N _{Rk,s,fi}	[kN]	1,9	3,6	6,1	11,5
	R120			1,6	2,8	4,5	8,4
Shear load	-				-	_	
Steel failure witho	ut lever arm						
Steel, zinc plated							
	R30			1,5	2,6	4,1	7,7
Characteristic resistance	R60		FLA 11	1,1	1,9	3,0	5,6
	R90	- V _{Rk,s,fi}	[kN]	0,8	1,3	1,9	3,5
	R120			0,6	1,0	1,3	2,5
Stainless steel A4,	, HCR						
	R30			3,2	6,9	12,7	23,7
Characteristic	R60		FL-N 17	2,5	5,3	9,4	17,6
resistance	R90	$ V_{Rk,s,fi}$	[kN]	1,9	3,6	6,1	11,5
	R120			1,6	2,8	4,5	8,4
Steel failure with le	ever arm						
Steel, zinc plated							
	R30			1,5	3,3	6,4	16,3
Characteristic	R60		[N1]	1,2	2,5	4,7	11,9
resistance	R90	─ M ⁰ Rk,s,fi	[Nm]	0,8	1,7	3,0	7,5
	R120	_		0,6	1,2	2,1	5,3
Stainless steel A4,	, HCR						
	R30			3,2	8,9	19,7	50,1
Characteristic	R60		FN 1 3	2,6	6,8	14,6	37,2
resistance	R90	─ M ⁰ Rk,s,fi	[Nm]	2,0	4,7	9,5	24,2
	R120			1,6	3,6	7,0	17,8

If pull-out is not decisive, $N_{Rk,p}$ must be replaced by $N_{Rk,c}^0$ in equation (D.4) and (D.5), FprEN 1992-4.

Wedge Anchor SMART S-BZ

Performance

Characteristic values for tension and shear load under fire exposure, SMART S-BZ, reduced anchorage depth, cracked and uncracked concrete C20/25 to C50/60

Annex C8

Table C9:	Displacements	under tension	load,	SMART S-BZ
-----------	----------------------	---------------	-------	-------------------

Fastener size			М8	M10	M12	M16	M20	M24	M27
Standard anchorage depth									
Steel zinc plated									
Tension load in cracked concrete	N	[kN]	2,4	4,3	7,6	11,9	17,1	21,1	24
Displacement	δ _{N0}	[mm]	0,6	1,0	0,4	1,0	0,9	0,7	0,9
Бізріасетет	$\delta_{\text{N}\infty}$	[mm]	1,4	1,2	1,4	1,3	1,0	1,2	1,4
Tension load in uncracked concrete	N	[kN]	5,7	7,6	11,9	16,7	23,8	29,6	34
Displacement	δη0	[mm]	0,4	0,5	0,7	0,3	0,4	0,5	0,3
Displacement	δ _{N∞}	[mm]	0,	8	1,4		0,8		1,4
Displacements under seismic tension lo	ads C2								
Displacements for DLS	$\delta_{\text{N,eq,(DLS)}}$	[mm]	2,3	4,1	4,9	3,6	5,1		
Displacements for ULS	$\delta_{\text{N,eq(ULS)}}$	[mm]	8,2	13,8	15,7	9,5	15,2	-	-
Stainless steel A4, HCR									
Tension load in cracked concrete	N	[kN]	2,4	4,3	7,6	11,9	17,1	19,0	
Displacement	δηο	[mm]	0,7	1,8	0,4	0,7	0,9	0,5	-
	 δ _{N∞}	[mm]	1,2	1,4	1,4	1,4	1,0	1,8	
Tension load in uncracked concrete	N	[kN]	5,8	7,6	11,9	16,7	23,8	33,5	
Disales and	δηο	[mm]	0,6	0,5	0,7	0,2	0,4	0,5	-
Displacement	 δ _{N∞}	[mm]	1,2	1,0	1,4	0,4	0,8	1,1	
Displacements under seismic tension lo	ads C2								
Displacements for DLS	$\delta_{\text{N,eq(DLS)}}$	[mm]	2,3	4,1	4,9	3,6	5,1		
Displacements for ULS	$\delta_{\text{N,eq(ULS)}}$	[mm]	8,2	13,8	15,7	9,5	15,2	-	-
Reduced anchorage depth								_	
Steel zinc plated, stainless steel A4,	HCR								
Tension load in cracked concrete	N	[kN]	2,4	3,6	6,1	9,0			
Di I	δηο	[mm]	0,8	0,7	0,5	1,0	-	-	-
Displacement	δ _{N∞}	[mm]	1,2	1,0	0,8	1,1			
Tension load in uncracked concrete	N	[kN]	3,7	4,3	8,5	12,6			
	δηο	[mm]	0,1	0,2	0,2	0,2	-	-	-
Displacement	 δ _{N∞}	[mm]	0,7	0,7	0,7	0,7			

Wedge A	Anchor	SMART	S-BZ
---------	---------------	-------	------

Performance

Displacements under tension load

Annex C9

Table C10:	Displacements under shear load, SMART S-BZ
------------	--

Fastener size			М8	M10	M12	M16	M20	M24	M27
Standard anchorage depth				•					
Steel zinc plated									
Shear load in cracked and uncracked concrete	٧	[kN]	6,9	11,4	17,1	31,4	36,8	64,9	96,8
Displacement	δνο	[mm]	2,0	3,2	3,6	3,5	1,8	3,5	3,6
Displacement	δν∞	[mm]	3,0	4,7	5,5	5,3	2,7	5,3	5,4
Displacements under seismi	c shear loa	ds C2							
Displacements for DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	3,0	2,7	3,5	4,3	4,7		
Displacements for ULS	$\delta_{\text{V,eq(ULS)}}$	[mm]	5,9	5,3	9,5	9,6	10,1		_
Stainless steel A4, HCR									
Shear load in cracked and uncracked concrete	V	[kN]	7,3	11,4	17,1	31,4	43,8	70,6	
Displacement	δνο	[mm]	1,9	2,4	4,0	4,3	2,9	2,8	-
	δν∞	[mm]	2,9	3,6	5,9	6,4	4,3	4,2	
Displacements under seismi	c shear loa	ds C2							
Displacements for DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	3,0	2,7	3,5	4,3	4,7		
Displacements for ULS	$\delta_{\text{V,eq(ULS)}}$	[mm]	5,9	5,3	9,5	9,6	10,1	-	-
Reduced anchorage depth						-			
Steel zinc plated									
Shear load in cracked and uncracked concrete	V	[kN]	6,9	11,4	17,1	31,4			
Diaplacement	δ_{V0}	[mm]	2,0	3,2	3,6	3,5	-	-	-
Displacement	δν∞	[mm]	3,0	4,7	5,5	5,3			
Stainless steel A4, HCR									
Shear load in cracked and uncracked concrete	V	[kN]	7,3	11,4	17,1	31,4			
Displacement	δνο	[mm]	1,9	2,4	4,0	4,3	_	-	-
Displacement	δν∞	[mm]	2,9	3,6	5,9	6,4			

Wedge	Anchor	SMART	S-BZ
-------	--------	--------------	------

Performance

Electronic copy of the ETA by DIBt: ETA-19/0670

Displacements under shear load

Annex C10

Table C11: Characteristic values for tension loads, SMART S-BZ IG, cracked concrete, static and quasi-static action

Fastener size			М6	М8	M10	M12	
Installation factor	γinst	[-]		1,	2		
Steel failure							
Characteristic resistance, steel zinc plated	$N_{Rk,s}$	[kN]	16,1	22,6	26,0	56,6	
Partial factor	γMs	[-]		1	,5		
Characteristic resistance, stainless steel A4, HCR	$N_{Rk,s}$	[kN]	14,1	25,6	35,8	59,0	
	γMs	[-]	1,87				
Pull-out failure							
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	9	12	20	
Increasing factor for $N_{\text{RK},p}$	ψс	[-]	$\left(\frac{f_{\rm ck}}{20}\right)^{0.5}$				
Concrete cone failure							
Effective anchorage depth	h _{ef}	[mm]	45	58	65	80	
Factor for cracked concrete	$k_1 = k_{cr,N}$	[-]		7	,7		

Wedge Anchor SMART S-BZ IG

Performance

Characteristic values for **tension loads**, **SMART S-BZ IG**, **cracked concrete**, static and quasi-static action

Annex C11

Table C12: Characteristic values for tension loads, SMART S-BZ IG, uncracked concrete, static and quasi-static action

Fastener size			М6	М8	M10	M12	
Installation factor	γinst	[-]	1,2				
Steel failure							
Characteristic resistance, steel zinc plated	$N_{Rk,s}$	[kN]	16,1	22,6	26,0	56,6	
Partial factor	γMs	[-]		1,	,5		
Characteristic resistance, stainless steel A4, HCR	$N_{Rk,s}$	[kN]	14,1	25,6	35,8	59,0	
Partial factor	γMs	[-]	1,87				
Pull-out							
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	20	30	
Splitting (the higher resistance of Case 1 and	d Case 2 may	/ be applie	d)				
Minimum thickness of concrete member	h _{min}	[mm]	100	120	130	160	
Case 1							
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	9	12	16	25	
Edge distance	C _{cr,sp}	[mm]	1,5 h _{ef}				
Case 2							
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	20	30	
Edge distance	C _{cr,sp}	[mm]	2,5 h _{ef}				
Increasing factor for $N_{\text{Rk,p}}$ and $N^0_{\text{Rk,sp}}$	ψс	[-]	$\left(\frac{\mathrm{f_{ck}}}{20}\right)^{0.5}$				
Concrete cone failure							
Effective anchorage depth	h _{ef}	[mm]	45	58	65	80	
Factor for uncracked concrete	$k_1 = k_{ucr,N}$	[-]	11,0				

Wedge Anchor	SMART	S-BZ	IG
---------------------	--------------	------	----

Performance

Characteristic values for **tension loads**, **SMART S-BZ IG**, **uncracked concrete**, static and quasi-static action

Annex C12

Table C13: Characteristic values for shear loads, SMART S-BZ IG, cracked and uncracked concrete, static and quasi-static action

Fastener size			М6	M8	M10	M12	
Installation factor	γinst	[-]	1,0				
SMART S-BZ IG, steel zinc plated						-	
Steel failure without lever arm, Pre-setting	installati	on					
Characteristic resistance	$V^0_{Rk,s}$	[kN]	5,8	6,9	10,4	25,8	
Steel failure without lever arm, Through-se	etting ins	tallation					
Characteristic resistance	$V^0_{Rk,s}$	[kN]	5,1	7,6	10,8	24,3	
Steel failure with lever arm, Pre-setting ins	stallation						
Characteristic bending resistance	$M^0_{\text{Rk},s}$	[Nm]	12,2	30,0	59,8	104,6	
Steel failure with lever arm, Through-setting	ng installa	ation					
Characteristic bending resistance	$M^0_{\text{Rk,s}}$	[Nm]	36,0	53,2	76,0	207	
Partial factor for $V_{\text{Rk,s}}$ and $M^0_{\text{Rk,s}}$	γMs	[-]	1,25				
Ductility factor	k ₇	[-]	1,0				
SMART S-BZ IG, stainless steel A4, HCR							
Steel failure without lever arm, Pre-setting	installati	on					
Characteristic resistance	$V^0_{Rk,s}$	[kN]	5,7	9,2	10,6	23,6	
Partial factor	γ̃Ms	[-]	1,25				
Steel failure without lever arm, Through-se	etting ins	tallation					
Characteristic resistance	V^0 Rk,s	[kN]	7,3	7,6	9,7	29,6	
Partial factor	γMs	[-]		1,	25		
Steel failure with lever arm, Pre-setting ins	stallation						
Characteristic bending resistance	M^0 Rk,s	[Nm]	10,7	26,2	52,3	91,6	
Partial factor	γMs	[-]		1,	56		
Steel failure with lever arm, Through-setting	ng installa	ation					
Characteristic bending resistance	M^0 _{Rk,s}	[Nm]	28,2	44,3	69,9	191,2	
Partial factor	γMs	[-]	1,25				
Ductility factor	k 7	[-]	1,0				
Concrete pry-out failure							
Pry-out factor	k ₈	[-]	1,5	1,5	2,0	2,0	
Concrete edge failure							
Effective length of fastener in shear loading	l _f	[mm]	45	58	65	80	
Effective diameter of fastener	d _{nom}	[mm]	8	10	12	16	

Performance

Characteristic values for **shear loads**, **SMART S-BZ IG**, **cracked and uncracked concrete**, static and quasi-static action

Annex C13

Table C14: Characteristic values for **tension** and **shear load** under **fire exposure**, **SMART S-BZ IG**, cracked and uncracked concrete C20/25 to C50/60

Fastener size				М6	М8	M10	M12
Tension load			<u>.</u>			-	
Steel failure							
Steel zinc plated	l						
	R30			0,7	1,4	2,5	3,7
Characteristic	R60	I _{Rk,s,fi}	[kN]	0,6	1,2	2,0	2,9
resistance	R90	IRK,S,fi	[KIN]	0,5	0,9	1,5	2,2
	R120			0,4	0,8	1,3	1,8
Stainless steel A	4, HCR						
	R30			2,9	5,4	8,7	12,6
Characteristic	R60	.	[IcNI]	1,9	3,8	6,3	9,2
resistance	R90	Rk,s,fi	[kN]	1,0	2,1	3,9	5,7
	R120			0,5	1,3	2,7	4,0
Shear load							
Steel failure with	nout lever arm						
Steel zinc plated							
	R30			0,7	1,4	2,5	3,7
Characteristic	R60	Rk,s,fi	[kN]	0,6	1,2	2,0	2,9
resistance	R90	HK,S,fi		0,5	0,9	1,5	2,2
	R120			0,4	0,8	1,3	1,8
Stainless steel A	4, HCR						
	R30			2,9	5,4	8,7	12,6
Characteristic	R60	,_,	[kN]	1,9	3,8	6,3	9,2
resistance	R90	Rk,s,fi	[[,1]	1,0	2,1	3,9	5,7
	R120			0,5	1,3	2,7	4,0
Steel failure with	n lever arm						
Steel zinc plated							
	R30			0,5	1,4	3,3	5,7
Characteristic	R60	0 Rk,s,fi	[Nm] -	0,4	1,2	2,6	4,6
resistance	R90	HK,S,fI	[14111]	0,4	0,9	2,0	3,4
	R120			0,3	0,8	1,6	2,8
Stainless steel A	44, HCR						
	R30			2,2	5,5	11,2	19,6
Characteristic	R60	0 Rk,s,fi	[Nm] -	1,5	3,9	8,1	14,3
resistance	R90	HK,S,fi	[[1411]	0,7	2,2	5,1	8,9
	R120			0,4	1,3	3,5	6,2

Performance

Characteristic values for **tension** and **shear loads** under **fire exposure**, **SMART S-BZ IG** cracked and uncracked concrete C20/25 to C50/60

Annex C14

Table C15: Displacements under tension load, SMART S-BZ IG

Fastener size			M6	M8	M10	M12
Tension load in cracked concrete	N	[kN]	2,0	3,6	4,8	8,0
Displacements -	δηο	[mm]	0,6	0,6	0,8	1,0
	δ _{N∞}	[mm]	0,8	0,8	1,2	1,4
Tension load in uncracked concrete	N	[kN]	4,8	6,4	8,0	12,0
Displacements	δηο	[mm]	0,4	0,5	0,7	0,8
		[mm]	0,8	0,8	1,2	1,4

Table C16: Displacements under shear load, SMART S-BZ IG

Fastener size		М6	M8	M10	M12	
Shear load in cracked and uncracked concrete	V	[kN]	4,2	5,3	6,2	16,9
Displacements	δ_{V0}	[mm]	2,8	2,9	2,5	3,6
	δν∞	[mm]	4,2	4,4	3,8	5,3

Wedge Anchor SMART S-BZ IG

Performance
Displacements under tension load and under shear load SMART S-BZ IG

Annex C15

Electronic copy of the ETA by DIBt: ETA-19/0670