

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-19/0671 vom 10. Dezember 2019

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von Deutsches Institut für Bautechnik

Injektionssystem VME plus für Bewehrungsanschlüsse

Systeme für nachträglich eingemörtelte Bewehrungsanschlüsse

MKT
Metall-Kunststoff-Technik GmbH & Co. KG
Auf dem Immel 2
67685 Weilerbach
DEUTSCHLAND

Werk 1, D Werk 2, D

21 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330087-00-0601

Europäische Technische Bewertung ETA-19/0671

Seite 2 von 21 | 10. Dezember 2019

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-19/0671

Seite 3 von 21 | 10. Dezember 2019

Besonderer Teil

1 Technische Beschreibung des Produkts

Gegenstand dieser Europäischen Technischen Bewertung ist der nachträglich eingemörtelte Anschluss von Betonstahl mit dem "Injektionssystem VME plus für nachträgliche Bewehrungsanschlüsse" durch Verankerung oder Übergreifungsstoß in vorhandene Konstruktionen aus Normalbeton auf der Grundlage der technischen Regeln für den Stahlbetonbau.

Für den Bewehrungsanschluss wird Betonstahl mit einem Durchmesser ϕ von 8 bis 40 mm oder der Zuganker ZA in den Größen M12 bis M24 entsprechend Anhang A und dem Injektionsmörtel VME plus verwendet. Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen dem Stahlteil, dem Injektionsmörtel und dem Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Bewehrungsanschlüsses von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter statischen und quasi-statische Lasten	Siehe Anhang C 1

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung			
Brandverhalten	der Klasse A1			
Feuerwiderstand	Siehe Anhang C 2 und C 3			

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330087-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

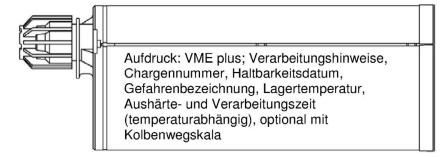
Europäische Technische Bewertung ETA-19/0671

Seite 4 von 21 | 10. Dezember 2019

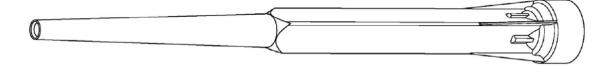
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 10. Dezember 2019 vom Deutschen Institut für Bautechnik

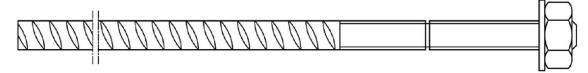

BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter

Beglaubigt:



Kartusche: Injektionsmörtel VME plus


440 ml, 585 ml und 1400 ml Kartusche (Typ: "side-by-side")


Statikmischer

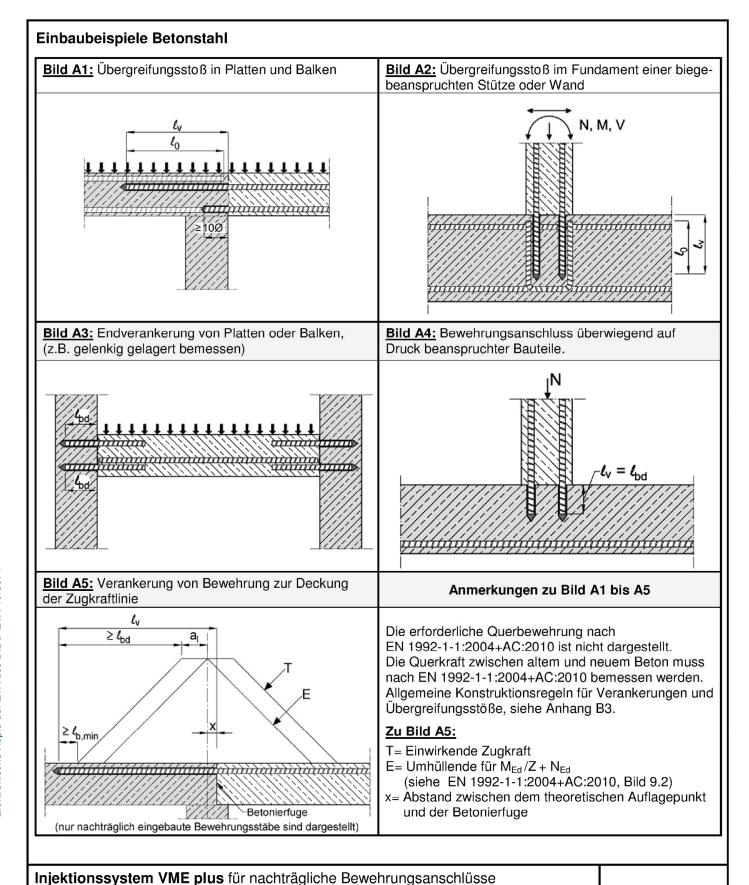
Injektionsadapter und Mischerverlängerung

Zuganker ZA: M12, M16, M20, M24

Betonstahl: Ø8, Ø10, Ø12, Ø14, Ø16, Ø20, Ø22, Ø24, Ø25, Ø28, Ø32, Ø34, Ø36, Ø40

Injektionssystem VME plus für nachträgliche Bewehrungsanschlüsse

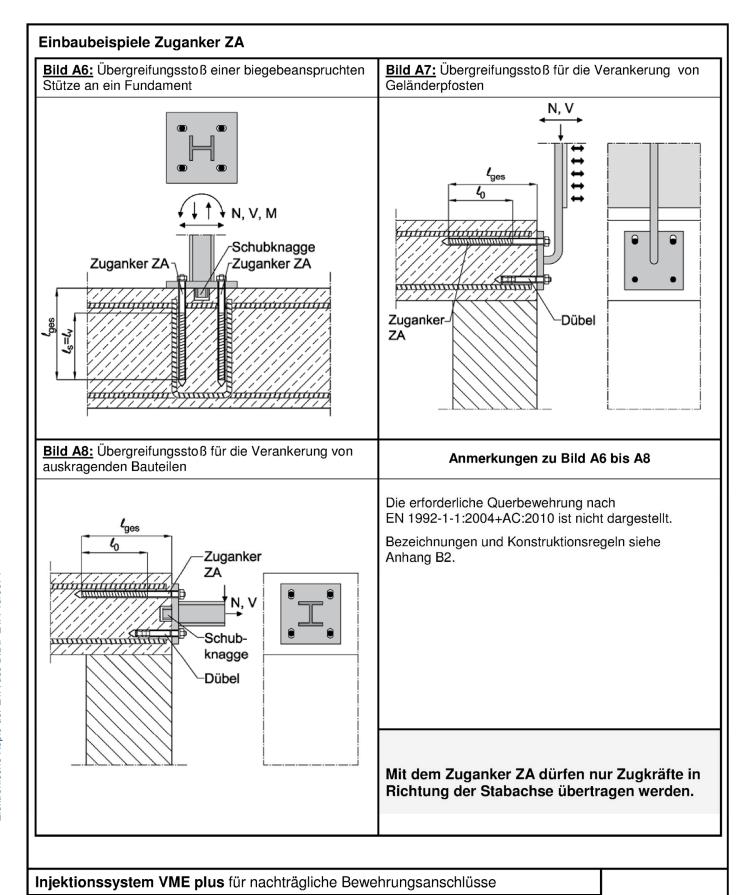
Produktbeschreibung


Kartusche / Statikmischer / Injektionsadapter mit Mischerverlängerung / Zuganker / Betonstahl

Anhang A1

Produktbeschreibung

Einbaubeispiele mit Bewehrungsstab


782972.19 8.06.01-297/19

Anhang A2

Produktbeschreibung

Einbaubeispiele für Zuganker ZA

Z82972.19 8.06.01-297/19

Anhang A3

Tabelle A1: Werkstoffe

Teil	Bezeichnung						Werk	stoff						
7	n kau		ZA	٧z		ZA A4				ZA HCR				
Zuga	anker	M12	M16	M20	M24	M12 M16 M20 M24				M12	M16	M20	M24	
1	Betonstabstahl		e B ger = k•f _{yk}		P oder	NCL ge	emäß E	N 1992	?-1-1/N/	4				
2	Gewindestab	EN 10	Stahl, verzinkt gemäß EN 10087:1998 oder EN 10263:2001				nichtrostender Stahl, 1.4362, 1.4401, 1.4404, 1.4571, EN 10088-1:2014				hochkorrosions- beständiger Stahl 1.4529, 1.4565, EN 10088-1:2014			
	f _{yk} [N/mm²]	640					640 560			640			560	
3	Unterlegscheibe	Stahl,	verzinl	kt		nichtrostender Stahl			hochkorrosions- beständiger Stahl					
4	Mutter	Stahl, verzinkt gemäß EN 10087:1998 oder EN 10263:2001				nichtrostender Stahl, 1.4362, 1.4401, 1.4404, 1.4571, EN 10088-1:2014 hochkorrosions- beständiger Stahl 1.4565, EN 10088-1:2014					Stahl 1.	4529,		
Beto	nstahl	_												
5	Betonstahl gemäß EN 1992-1-1:2004+ AC:2010, Anhang C	f _{yk} und k gemäß NDP oder NCL gemäß EN 1992-1-1/NA												

Bild A9: Zuganker ZA: M12, M16, M20, M24

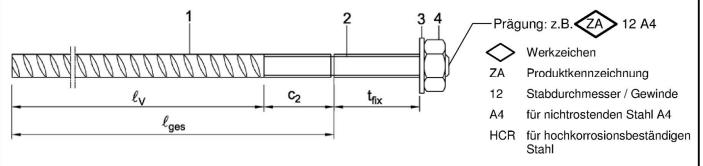
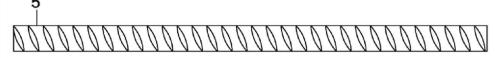



Bild A10: Betonstahl: Ø8, Ø10, Ø12, Ø14, Ø16, Ø20, Ø22, Ø24, Ø25, Ø28, Ø32, Ø34, Ø36, Ø40

- Mindestwerte der bezogenen Rippenfläche f_{R,min} gemäß EN 1992-1-1:2004+AC:2010
- Die Rippenhöhe muss 0,05∅ ≤ h_{rib} ≤ 0,07∅ betragen
 (∅: nomineller Durchmesser des Betonstahls; h_{rib}: Rippenhöhe des Betonstahls)

Injektionssystem VME plus für nachträgliche Bewehrungsanschlüsse	
Produktbeschreibung Werkstoffe / Prägung	Anhang A4

Spezifizierung des Verwendungszwecks

Betonstahl	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø22	Ø24	Ø25	Ø28	Ø32	Ø34	Ø36	Ø40
Statische oder quasi- statische Belastung		✓												
Brandbeanspruchung		✓												
Hammerbohren und Druckluftbohren		✓												
Saugbohren		√ -												

Zuganker ZA	M12	M16	M20	M24
Statische oder quasi- statische Belastung		٧	/	
Brandbeanspruchung		٧	/	
Hammerbohren und Druckluftbohren		٧	/	
Saugbohren		٧	/	

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton gemäß EN 206:2013+A1:2016
- Festigkeitsklasse C12/15 bis C50/60 gemäß EN 206:2013+A1:2016
- Maximal zulässiger Chloridgehalt im Beton von 0,40 % (CL 0,40) bezogen auf den Zementgehalt gemäß EN 206:2013+A1:2016
- Nicht karbonatisierter Beton

Anmerkung: Bei einer karbonatisierten Oberfläche des bestehenden Betons ist die karbonatisierte Schicht vor dem Anschluss des neuen Stabes im Bereich des nachträglichen Bewehrungsanschlusses mit dem Durchmesser von ∅ + 60 mm zu entfernen. Die Tiefe des zu entfernenden Betons muss mindestens der Mindestbetondeckung für die entsprechenden Umweltbedingungen nach EN 1992-1-1:2004+AC:2010 entsprechen. Dies entfällt bei neuen, nicht karbonatisierten Bauteilen und bei Bauteilen in trockener Umgebung.

Temperaturbereich:

• - 40 °C bis +80 °C (max. Kurzzeit-Temperatur +80 °C und max. Langzeit-Temperatur +50 °C)

Anwendungsbedingungen (Umweltbedingungen) mit Zuganker ZA:

- Bauteile unter Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile unter Bedingungen trockener Innenräume oder im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen
 - (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl)

Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden)

Injektionssystem VME plus für nachträgliche Bewehrungsanschlüsse	
Verwendungszweck Spezifikationen	Anhang B1

Spezifizierung des Verwendungszwecks – Fortsetzung

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen
- Bemessungsverfahren gemäß EN 1992-1-1:2004+AC:2010, EN 1992-1-2:2004+AC:2008 und Anhang B3 und B4
- Die tatsächliche Lage der Bewehrung im vorhandenen Bauteil ist auf der Grundlage der Baudokumentation festzustellen und beim Entwurf zu berücksichtigen

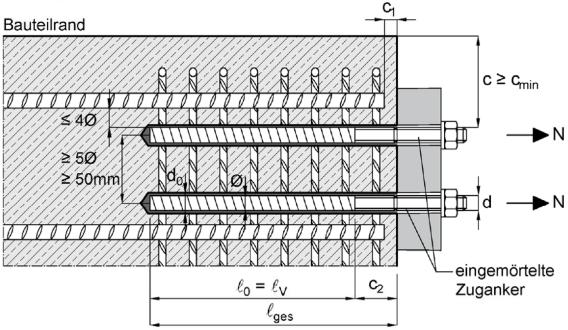
Einbau:

- · Trockener oder feuchter Beton
- · Installation in wassergefüllte Bohrlöcher ist nicht erlaubt
- · Bohrlochherstellung durch Hammer-, Druckluft-, oder Saugbohrer
- Der Einbau von nachträglich eingemörtelten Bewehrungsstäben oder Zugankern ZA ist durch entsprechend geschultes Personal und Überwachung auf der Baustelle vorzunehmen; die Bedingungen für die entsprechende Schulung des Baustellenpersonals und für die Überwachung auf der Baustelle obliegt den Mitgliedstaaten, in denen der Einbau vorgenommen wird
- Überprüfung der Lage der vorhandenen Bewehrung (wenn die Lage der vorhandenen Bewehrungsstäbe nicht ersichtlich ist, müssen diese mittels dafür geeigneter Bewehrungssuchgeräte auf Grundlage der Baudokumentation festgestellt und für die Übergreifungsstöße am Bauteil markiert werden)
- Die Mindestbetondeckung gemäß EN 1992-1-1:2004+AC:2010 ist einzuhalten

Injektionssystem VME plus für nachträgliche Bewehrungsanschlüsse

Verwendungszweck
Spezifikationen - Fortsetzung

Anhang B2


782972 19 8 06 01-297/19

Allgemeine Konstruktionsregeln für Zuganker ZA

- Die Länge des eingemörtelten Gewindes darf nicht zur Verankerungslänge hinzugerechnet werden
- Bewehrungsanschlüsse mit dem Zuganker ZA dürfen nur für die Übertragung von Zugkräften in Richtung der Stabachse verwendet werden
- Die Zugkraft muss über einen Übergreifungsstoß in die im Bauteil vorhandene Bewehrung weitergeleitet werden
- Der Querlastabtrag ist durch geeignete zusätzliche Maßnahmen sicher zu stellen, z.B. durch Schubknaggen oder durch Dübel mit einer europäischen technischen Bewertung (ETA)
- In der Ankerplatte sind die Durchgangslöcher für den Zuganker als Langlöcher in Richtung der Querkraft auszuführen
- Ist der lichte Abstand der gestoßenen Stäbe größer als 4Ø, so muss die Übergreifungslänge um die Differenz zwischen dem vorhandenen lichten Stababstand um 4Ø vergrößert werden

Bild B1: Zuganker ZA

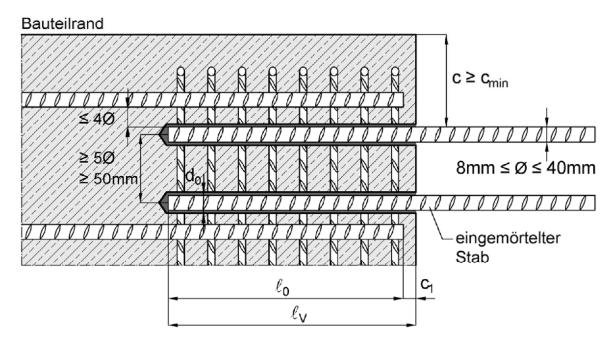
- c Betondeckung des eingemörtelten Zugankers ZA
- c₁ Betondeckung an der Stirnseite des einbetonierten Bewehrungsstabes
- c₂ Länge des eingemörtelten Gewindes
- c_{min} Mindestbetondeckung nach Tabelle B1 und EN 1992-1-1:2004+AC:2010, Abschnitt 4.4.1.2
- Ø Durchmesser des Zugankers (eingemörtelter Betonstahl)
- d Durchmesser des Zugankers (Gewindeteil)
- ℓ₀ Übergreifungslänge gemäß EN 1992-1-1:2004+AC:2010, Abschnitt 8.7.3
- ℓ_v wirksame Setztiefe $\ell_v \ge \ell_0 + c_1$
- ℓ_{ges} gesamte Setztiefe $\ell_{ges} \ge \ell_0 + c_2$
- d₀ Bohrernenndurchmesser nach Anhang B6

Injektionssystem VME plus für nachträgliche Bewehrungsanschlüsse

Verwendungszweck

Allgemeine Konstruktionsregeln (Zuganker ZA)

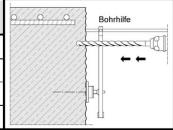
Anhang B3


782972 19 8 06 01-297/19

Allgemeine Konstruktionsregeln für eingemörtelten Betonstahl

- Die Übertragung von Querkräften zwischen vorhandenem und neuem Beton ist gemäß EN 1992-1-1:2004+AC:2010 nachzuweisen
- Bewehrungsanschlüsse dürfen nur für die Übertragung von Zugkräften in Richtung der Stabachse verwendet werden
- Die Betonierfugen sind mindestens derart aufzurauen, dass die Zuschlagstoffe herausragen
- Ist der lichte Abstand der gestoßenen Stäbe größer als 4Ø, so muss die Übergreifungslänge um die Differenz zwischen dem vorhandenen lichten Stababstand um 4Ø vergrößert werden

Bild B2: Eingemörtelter Betonstahl


- c Betondeckung des eingemörtelten Betonstahls
- c₁ Betondeckung an der Stirnseite des eingemörtelten Betonstahls
- c_{min} Mindestbetondeckung nach Tabelle B1 und EN 1992-1-1:2004+AC:2010, Abschnitt 4.4.1.2
- Ø Durchmesser des eingemörtelten Betonstahls
- ℓ₀ Übergreifungslänge gemäß EN 1992-1-1:2004+AC:2010, Abschnitt 8.7.3
- ℓ_v wirksame Setztiefe $\ell_v \ge \ell_0 + c_1$
- d₀ Bohrernenndurchmesser nach Anhang B6

Verwendungszweck Allgemeine Konstruktionsregeln (eingemörtelter Betonstahl) Anhang B4

Tabelle B1: Mindestbetondeckung c_{min} 1) des eingemörtelten Betonstahls und Zugankers ZA in Abhängigkeit vom Bohrverfahren

Bohrverfahren	Stabdurch- messer	C _{min} (<u>ohne</u> Bohrhilfe)	C _{min} (<u>mit</u> Bohrhilfe)		
Hammerbohren	< 25 mm	30 mm + 0,06 ℓ _V ≥ 2 Ø	30 mm + 0,02 ℓ _V ≥ 2 Ø		
Saugbohren	≥ 25 mm	40 mm + 0,06 ℓ _V ≥ 2 Ø	40 mm + 0,02 ℓ _v ≥ 2 Ø		
Pressluftbohren	< 25 mm	50 mm + 0,08 ℓ_{v}	50 mm + 0,02 ℓ _v		
Fressiuitbonren	≥ 25 mm	60 mm + 0,08 $\ell_{\rm V}$	60 mm + 0,02 ℓ _v		

¹⁾ Siehe Anhang B3 und B4; Die Mindestbetondeckung gemäß N 1992-1-1:2004+AC:2010 ist einzuhalten

Tabelle B2: Abmessungen und Installationsparameter Zuganker ZA

Größe	M12	M16	M20	M24			
Gewindedurchmesser	d	[mm]	12	16	20	24	
Betonstahldurchmesser	Ø	[mm]	12	16	20	25	
Bohrernenndurchmesser	d₀	[mm]	16	20	25	32	
Durchgangsloch im anzuschließenden Anbauteil	df	[mm]	14	18	22	26	
Schlüsselweite	SW	[mm]	19	24	30	36	
Querschnittsfläche (Gewindeteil)	As	[mm²]	84	84 157 245 353			
Wirksame Setztiefe	ℓv	[mm]	entsp	rechend stati	scher Berech	nnung	
Länge des eingemörtelten verzinkt		[mm]	≥ 20				
Gewindes A4 / HCR	C ₂	[mm]	≥ 100				
Max. Installationsmoment	T _{inst}	[Nm]	50 100 150 150				

Tabelle B3: Verarbeitungs- und Aushärtezeiten

Tomporatur im Bobyloch	Vororboitungozoit 1)	Mindest - Aushärtezeit					
Temperatur im Bohrloch	Verarbeitungszeit 1)	trockener Beton	feuchter Beton				
[-]	[t _{gel}]	[tcure,dry]	[t _{cure,wet}]				
+5°C bis +9°C	80 min	48 h	96 h				
+ 10°C bis + 14°C	60 min	28 h	56 h				
+ 15°C bis + 19°C	40 min	18 h	36 h				
+ 20°C bis + 24°C	30 min	12 h	24 h				
+ 25°C bis + 34°C	12 min	9 h	18 h				
+ 35°C bis + 39°C	8 min	6 h	12 h				
+40 °C	8 min	4 h	8 h				
Kartuschentemperatur	+5°C bis +40°C						

 $^{^{1)}}$ t_{gel} : maximale Zeit vom Injizieren des Mörtels bis zum Ende des Setzvorgangs

Injektionssystem VME plus für nachträgliche Bewehrungsanschlüsse

Verwendungszweck

Mindestbetondeckung / Installationsparameter ZA / Verarbeitungs- und Aushärtezeiten

Anhang B5

Tabelle B4: Installationszubehör und max. Verankerungstiefe– Hammerbohrer (HD) oder Druckluftbohrer (CD)

Beton-	Zug-	Boh dur		Dürot	en-Ø	Bürsten-	Injektions-		ler 585ml	Kartusche 1400 ml	Mischer-
stahl Ø	anker ZA		sser I ₀	d		adoptor 1)		Hand- oder Akku-Pistole	Druckluft- pistole	Druckluft- pistole	ver- längerung
		HD	CD					$\ell_{ m v,max}$	$\ell_{ m v,max}$	$\ell_{ m v,max}$	
[mm]	[-]	[mm]	[mm]	[-]	[mm]	[mm]	[-]	[cm]	[cm]	[cm]	[-]
8	-	10	-	RB10	11,5	10,5	-	25	25	25	
L °	-	12	-	RB12	13,5	12,5	-	70	80	80	
10	-	12	-	RB12	13,5	12,5	-	25	25	25	
	-	14	-	RB14	15,5	14,5	VM-IA 14	70	100	100	
10	2 M12	14	1	RB14	15,5	14,5	VM-IA 14	25	25	25	Ê
12		16	16	RB16	17,5	16,5	VM-IA 16	70	130	120	30mm)
14	ı	18	18	RB18	20,0	18,5	VM-IA 18	70	130	140	
16	M16	20	20	RB20	22,0	20,5	VM-IA 20	70	130	160	v 9
20	M20	25	-	RB25	27,0	25,5	VM-IA 25	50	100	200	(^{&} v,max oder I-XLE
20	IVIZU	-	26	RB26	28,0	26,5	VM-IA 25	50	100	200	<u>*</u> 88 <u>*</u>
22	1	28	28	RB28	30,0	28,5	VM-IA 28	50	100	200	10 (&,max oder VM-XLE
24	-	32	32	RB32	34,0	32,5	VM-IA 32	50	100	200	
25	M24	32	32	RB32	34,0	32,5	VM-IA 32	50	100	200	VM-XE
28	-	35	35	RB35	37,0	35,5	VM-IA 35	50	100	200	5
32	-	40	40	RB40	43,5	40,5	VM-IA 40	50	100	200	
34	-	40	40	RB40	43,5	40,5	VM-IA 40	-	100	200	
36	-	45	45	RB45	47,0	45,5	VM-IA 45	-	100	200	
40	-	55	55	RB55	58,0	55,5	VM-IA 55	-	100	200	

¹⁾ Für die Horizontal- oder Überkopfmontage, sowie bei Bohrlöchern tiefer als 240mm

Tabelle B5: Installationszubehör und max. Verankerungstiefe – Saugbohrer (VD)

Beton-	Zug-	Bohrer- durch-	Dännt	<i>α</i>	Bürsten-	I	Kartu 440ml od		Kartusche 1400 ml	Mischer-		
stahl Ø	anker ZA	messer d₀		en-Ø l _b	\emptyset $d_{b,min}$	Injektions- adapter 1))	Hand- oder Akku-Pistole	Druckluft- pistole	Druckluft- pistole	ver- längerung		
		VD							ℓ _{v,max}	$\ell_{ m v,max}$	$\ell_{ m v,max}$	
[mm]	[-]	[mm]	[-]	[mm]	[mm]	[-]	[cm]	[cm]	[cm]	[-]		
8	-	10				-	25	25	25			
°	-	12				-	70	80	80			
10	ı	12				-	25	25	25			
10	-	14				VM-IA 14	70	100	100			
10	Madio	14				VM-IA 14	25	25	25			
12	M12	16				VM-IA 16	70	100	100	16		
14	-	18	keii	ne Rein	igung	VM-IA 18	70	100	100	世を出し		
16	M16	20		notwen	dig	VM-IA 20	70	100	100	VM-XE oder VM-XLE		
20	M20	25				VM-IA 25	50	100	100] 🗲 斉		
22	-	28				VM-IA 28	50	100	100			
24	1	32				VM-IA 32	50	100	100			
25	M24	32				VM-IA 32	50	100	100			
28	1	35				VM-IA 35	50	100	100			
32	-	40				VM-IA 40	50	100	100			

¹⁾ Für die Horizontal- oder Überkopfmontage, sowie bei Bohrlöchern tiefer als 240mm

Injektionssystem VME plus für nachträgliche Bewehrungsanschlüsse

Verwendungszweck

Installationszubehör und max. Verankerungstiefe – alle Bohrverfahren

Anhang B6

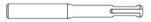

Installations- und Reinigungszubehör

Saugbohrer

Saugbohrer (MKT Saugbohrer SB, Würth Saugbohrer oder Heller Duster Expert Saugbohrer) und einem Klasse M Staubsauger mit einem Unterdruck von mind. 253 hPa und einer Durchflussrate von mind. 150m³/h (42 l/s)

Druckluftschlauch (min. 6 bar) mit Handschiebeventil

Empfohlene Druckluftpistole (min. 6 bar)



Bürste RB

Bürstenverlängerung

SDS Plus Adapter

Tabelle B6: Auspressgeräte

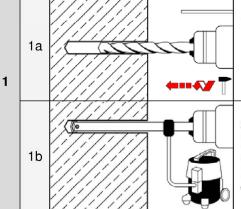
K	Kartusche	Manuell	Druckluftbetrieben			
Тур	Größe	Manuell				
y-side	440 ml, 585 ml	z.B.: VM-P 585 Profi oder VM-P 585 Akku	z.B.: VM-P 585 Pneumatik			
side-by	1400 ml	-	z.B.: VM-P 1400 Pneumatik			

Injektionssystem VME plus für nachträgliche Bewehrungsanschlüsse

Verwendungszweck

Reinigungs- und Installationszubehör / Auspressgeräte

Anhang B7

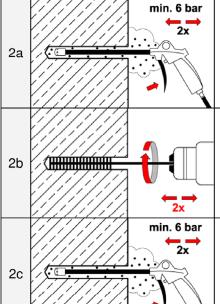

2

Montageanweisung

Bohrlocherstellung

Achtung: vor dem Bohren, karbonatisierten Beton entfernen und Kontaktfläche reinigen (siehe Anhang B1). Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

Hammerbohren oder Druckluftbohren


Bohrloch drehschlagend mit vorgeschriebenen Bohrlochdurchmesser (Tabelle B4) und gewählter Bohrlochtiefe erstellen. Weiter mit Schritt 2.

Saugbohrer

Bohrloch drehschlagend mit vorgeschriebenem Bohrlochdurchmesser (Tabelle B5) und gewählter Bohrlochtiefe erstellen. Dieses Bohrverfahren entfernt den Staub und reinigt das Bohrloch während des Bohrens. Weiter mit Schritt 3.

Reinigung von hammer- und druckluftgebohrten Bohrlöchern

Achtung: vor der Reinigung muss im Bohrloch stehendes Wasser entfernt werden

Das Bohrloch vom Bohrlochgrund her min. **2x** vollständig mit Druckluft (min. 6 bar) (Anhang B7) ausblasen, bis die ausströmende Luft staubfrei ist.

Bei tiefen Bohrlöchern sind geeignete Verlängerungen zu verwenden.

Bohrloch mit geeigneter Drahtbürste gem. Tabelle B4 (minimaler Bürstendurchmesser d_{b,min} ist einzuhalten und zu überprüfen) min. **2x** mittels eines Akkuschraubers oder einer Bohrmaschine ausbürsten. Bei tiefen Bohrlöchern eine geeignete Bürstenverlängerung benutzen.

Anschließend das Bohrloch vom Bohrlochgrund her erneut min. **2x** vollständig mit Druckluft (min. 6 bar) (Anhang B7) ausblasen, bis die ausströmende Luft staubfrei ist.

Bei tiefen Bohrlöchern sind geeignete Verlängerungen zu verwenden.

Nach der Reinigung ist das Bohrloch bis zum Injizieren des Mörtels vor erneutem Verschmutzen in einer geeigneten Weise zu schützen. Gegebenenfalls ist die Reinigung unmittelbar vor dem Injizieren des Mörtels zu wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrlochs führen.

Injektionssystem VME plus für nachträgliche Bewehrungsanschlüsse

Verwendungszweck

Montageanweisung Bohrlocherstellung und Reinigung **Anhang B8**

Montageanweisung (Fortsetzung)

Vorbereiten des Bohrlochs Markierung (z.B. mit Klebeband) auf dem Bewehrungsstab entsprechend 3 der Setztiefe & anbringen. Bohrlochtiefe durch Einführen des Stabes in das leere Bohrloch bis zur Markierung überprüfen. Der Bewehrungsstab bzw. Zuganker sollte schmutz-, fett-, und ölfrei sein. Kartusche mit Statikmischer (ggf. Verlängerungsrohr und Injektionsadapter) vorbereiten. Den mitgelieferten Statikmischer fest auf die Kartusche aufschrauben und in geeignete Auspresspistole (Tabelle B6) einlegen. 5 Bei jeder Arbeitsunterbrechung länger als die empfohlene Verarbeitungszeit (Tabelle B3) und bei jeder neuen Kartusche ist der Statikmischer auszutauschen. Der Mörtelvorlauf ist nicht zur Befestigung geeignet. Daher Vorlauf solange min.3x 6 verwerfen, bis sich eine gleichmäßig graue oder rote Mischfarbe eingestellt hat, jedoch mind. 3 volle Hübe.

Markierung für Mischerverlängerung:

(alle Bohrverfahren):

Füllmarke

lm

h₁

Auf Mischer und Mischerverlängerung müssen Mörtel-Füllmarke l_m und Bohrlochtiefe h_1 mit einem Klebeband oder Textmarker markiert werden. Grobe Abschätzung: $l_m = \frac{1}{3} \cdot h_1$

Solange das Bohrloch mit Mörtel befüllen, bis die Mörtel-Füllmarken Markierung l_m sichtbar wird.

Optimales Mörtelvolumen: $l_m = h_1 * (1.2 * \frac{\phi^2}{d_2^2} - 0.2)$ [mm]

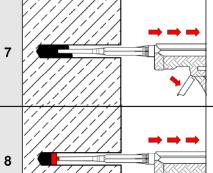
- l_m Länge vom Ende des Stauzapfens bis zur Markierung auf der Mischerverlängerung
- h_1 Bohrlochtiefe = geplante Setztiefe (ℓ_v bzw. ℓ_{ges})
- Ø Stabdurchmesser
- d_o Bohrernenndurchmesser

Injektionssystem VME plus für nachträgliche Bewehrungsanschlüsse

Verwendungszweck

Montageanweisung (Fortsetzung) - Vorbereiten des Bohrlochs Markierung für Mischerverlängerung **Anhang B9**

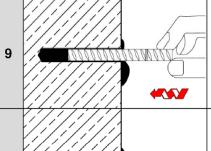
10


11

12

Montageanweisung (Fortsetzung)

Befüllen des Bohrlochs


Injektionsmörtel vom Bohrlochgrund her so lange befüllen, bis die Markierung auf der Mischerverlängerung (Anhang B9) am Bohrlochanfang erscheint. Langsames Zurückziehen des Statikmischers aus dem Bohrloch verhindert die Bildung von Lufteinschlüssen. Für Setztiefen größer 190mm passende Mischverlängerungen (Anhang B6) verwenden Die temperaturrelevanten Verarbeitungszeiten (Tabelle B3) sind einzuhalten.

Für die Horizontal- oder Überkopfmontage, sowie bei Bohrlöchern tiefer als 240mm, sind zwingend Injektionsadapter zu verwenden.

Die temperaturrelevanten Verarbeitungszeiten (Tabelle B3) sind einzuhalten.

Setzen des Bewehrungsanschlusses

C

Bewehrungsstab oder Zuganker unverzüglich bis zur Setztiefenmarkierung mit drehender Bewegung (zur Verbesserung der Mörtelverteilung) in das Bohrloch einführen.

Nach Installation des Stabes ist sicherzustellen, dass sich die Setztiefenmarkierung an der Bohrlochoberfläche befindet. Tritt kein Mörtel nach Erreichen der Setztiefe an der Bohrlochoberfläche heraus, ist diese Voraussetzung nicht erfüllt und die Anwendung muss vor Beendigung der Verarbeitungszeit wiederholt werden. Bei Überkopfmontage ist das Befestigungselement zu fixieren (z.B: Holzkeile).

Die angegebene Verarbeitungszeit $t_{\rm gel}$ ist zu beachten und einzuhalten. Achtung: die Aushärte- und Verarbeitungszeit kann auf Grund von unterschiedlichen Untergrund-Temperaturen variieren (Tabelle B3).

Während der Aushärtezeit t_{cure} Stab nicht bewegen oder belasten.

Nach Ablauf der Aushärtezeit t_{cure} kann der Bewehrungsstab oder Zuganker belastet werden.

Injektionssystem VME plus für nachträgliche Bewehrungsanschlüsse

Verwendungszweck

Montageanweisung (Fortsetzung)

Befüllen des Bohrlochs - Setzen des Bewehrungsanschlusses

Anhang B10

Minimale Verankerungslänge und minimale Übergreifungslänge

Die minimale Verankerungslänge $\ell_{\text{b,min}}$ und die minimale Übergreifungslänge $\ell_{\text{0,min}}$ gem. EN 1992-1-1:2004+AC:2010 ($\ell_{\text{b,min}}$ nach Gl. 8.6 und Gl. 8.7 und $\ell_{\text{0,min}}$ nach Gl. 8.11) müssen mit dem Erhöhungsfaktor α_{lb} nach Tabelle C1 multipliziert werden.

Tabelle C1: Erhöhungsfaktor alle Bohrverfahren

Erhöhungs-	Stabdurch- messer	Betonfestigkeitsklasse								
faktor		C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
α _{lb} [-]	Ø8 bis Ø40 ZA-M12 bis ZA-M24					1,0				

Tabelle C2: Reduktionsfaktor k_b – alle Bohrverfahren

ı	Reduktions-	Stabdurch- messer	Betonfestigkeitsklasse								
ı	faktor		C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
	k ь [-]	Ø8 bis Ø40 ZA-M12 bis ZA-M24					1,0				

Tabelle C3: Bemessungswerte der Verbundspannung f_{bd,PIR} in N/mm² für alle Bohrverfahren und für gute Verbundbedingungen

 $f_{bd,PIR} = k_b \cdot f_{bd}$

mit

 f_{bd} : Bemessungswert der Verbundspannung in N/mm², in Abhängigkeit von der Betonfestigkeitsklasse und dem Stabdurchmesser entsprechend EN 1992-1-1:2004+AC:2010 (für alle anderen Verbundbedingungen sind die Werte mit 0,7 zu multiplizieren) k_b : Reduktionsfaktor gem. Tabelle C2

Verbund-	Stabdurch- messer	Betonfestigkeitsklasse								
spannung		C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
	Ø8 bis Ø32 ZA-M12 bis ZA-M24	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3
f _{bd,PIR} [N/mm²]	Ø34	1,6	2,0	2,3	2,6	2,9	3,3	3,6	3,9	4,2
[14/111111-]	Ø36	1,5	1,9	2,2	2,6	2,9	3,3	3,6	3,8	4,1
	Ø40	1,5	1,8	2,1	2,5	2,8	3,1	3,4	3,7	4,0

Injektionssystem VME plus für nachträgliche Bewehrungsanschlüsse

Leistungen

Erhöhungsfaktor α_{lb} / Reduktionsfaktor k_b / Bemessungswerte Verbundspannungen $f_{bd,PIR}$

Anhang C1

Bemessungswert der Verbundspannung f_{bd,fi} unter Brandbeanspruchung in den Betonfestigkeitsklassen C12/15 bis C50/60 (alle Bohrverfahren):

Der Bemessungswert der Verbundspannung f_{bd,fl} unter Brandbeanspruchung ist nach folgender Gleichung zu berechnen:

 $f_{bd,fi} = k_{fi}(\theta) \cdot f_{bd,PIR} \cdot \gamma_c / \gamma_{M,fi}$

mit: $\theta \le 278^{\circ}\text{C}$: $k_{fi}(\theta) = 4373.8 * \theta^{-1.598} / (f_{bd,PIR} * 4.3) \le 1.0$

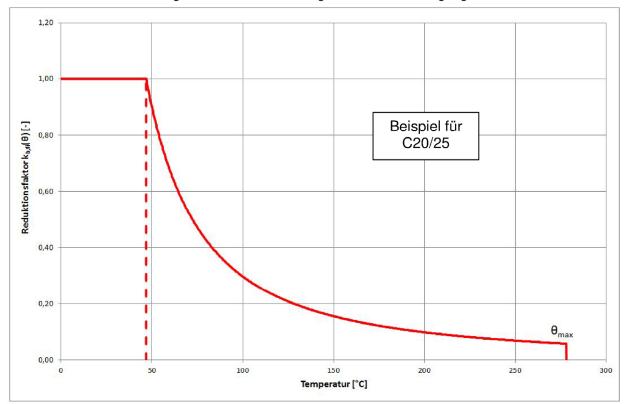
 $\theta > 278$ °C: $k_{fi}(\theta) = 0$

f_{bd,fi} Bemessungswert der Verbundspannung unter Brandbeanspruchung in N/mm²

θ Temperatur in °C in der Mörtelfuge

 $k_f(\theta)$ Reduktionsfaktor unter Brandbeanspruchung

f_{bd,PIR} Bemessungswert der Verbundspannung in N/mm² im kalten Zustand gem.


Tabelle C3 in Abhängigkeit von Betonfestigkeitsklasse, Stabdurchmesser, Bohrverfahren und Verbundbereich gemäß EN 1992-1-1:2004+AC:2010

 $\gamma_{\rm c}$ Teilsicherheitsbeiwert gemäß EN 1992-1-1:2004+AC:2010 $\gamma_{\rm M,fi}$ Teilsicherheitsbeiwert gemäß EN 1992-1-2:2004+AC:2008

Für den Nachweis unter Brandbeanspruchung sind die Verankerungslängen nach EN 1992-1-1:2004+AC:2010 Gleichung 8.3 mit der temperaturabhängigen Verbundspannung f_{bd,fi} zu ermitteln.

Bild C1: Beispielkurve des Reduktionsfaktors k_{fi}(θ)

in Betonfestigkeitsklasse C20/25 bei guten Verbundbedingungen

Injektionssystem VME plus für nachträgliche Bewehrungsanschlüsse

Leistungen

Bemessungswert der Verbundspannung f_{bd,fi} für Bewehrungsstäbe unter Brandbeanspruchung

Anhang C2

Tabelle C4: Charakteristische Zugtragfähigkeit unter Brandbeanspruchung, Zuganker ZA, Beton C12/15 bis C50/60, gemäß Technical Report TR 020

Zuganker ZA				M12	M16	M20	M24				
Stahlversagen											
Stahl verzinkt											
	R30				20						
Charakteristische	R60		[N/mm²]		15						
Zugtragfähigkeit	R90	σ _{Rk,s,fi}		13							
	R120	-			10	0					
Nichtrostender S	Nichtrostender Stahl A4, HCR										
	R30				30	0					
Charakteristische	R60		[N]/ma ma 2]		2	5					
Zugtragfähigkeit	R90	$\sigma_{Rk,s,fi}$	[N/mm²]		20	0					
	R120				10	6					

Bemessungswert der Stahlspannung $\sigma_{\text{Rd,s,fi}}$ unter Brandbeanspruchung für den Zuganker ZA

Der Bemessungswert der Stahlspannungen $\sigma_{Rd,s,fi}$ unter Brandbeanspruchung wird gemäß folgender Formel berechnet:

$$\sigma_{Rd,s,fi} = \sigma_{Rk,s,fi} / \gamma_{M,fi}$$

mit:

 $\sigma_{\text{Rk,s,fi}}$ Charakteristische Zugtragfähigkeit gemäß Tabelle C4

 $\gamma_{M,fi}$ Teilsicherheitsbeiwert unter Brandbeanspruchung gemäß EN 1992-1-2:2004+AC:2008

Injektionssystem VME	plus für nachträgliche Bewehrungsanschlüsse

Leistungen

Bemessungswert der Stahlspannungen für Zuganker ZA unter Brandbeanspruchung

Anhang C3