

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-19/0672 vom 22. November 2019

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von Deutsches Institut für Bautechnik

Injektionssystem EHI Ultra für Beton

Verbunddübel zur Verankerung im Beton

KYOCERA SENCO Denmark A/S Svendebuen 2-6 3230 Græsted DÄNEMARK

Plant 1

32 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-01-0601

Europäische Technische Bewertung ETA-19/0672

Seite 2 von 32 | 22. November 2019

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-19/0672

Seite 3 von 32 | 22. November 2019

Besonderer Teil

1 Technische Beschreibung des Produkts

Das "Injektionssystem EHI Ultra für Beton" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel EHI Ultra und einem Stahlteil besteht. Das Stahlteil ist eine handelsübliche Gewindestange mit Scheibe und Sechskantmutter in den Größen M8 bis M30 oder ein Betonstahl in den Größen Ø8 bis Ø32 mm oder einer Innengewindestange IG-M6 bis IG-M20.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird. Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung		
Charakteristischer Widerstand unter Zugbeanspruchung	Siehe Anhang		
(statische und quasi-statische Einwirkungen)	C 1, C 2, C 3, C 5, C 7		
Charakteristischer Widerstand unter Querbeanspruchung	Siehe Anhang		
(statische und quasi-statische Einwirkungen)	C 1, C 4, C 6, C 8		
Verschiebungen	Siehe Anhang		
(statische und quasi-statische Einwirkungen)	C 9 bis C 11		
Charakteristischer Widerstand und Verschiebungen für	Siehe Anhang		
seismische Leitungskategorie C1 und C2	C 12 bis C 17		
Dauerhaftigkeit	Siehe Anhang		
	B 1		

3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Europäische Technische Bewertung ETA-19/0672

Seite 4 von 32 | 22. November 2019

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330499-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

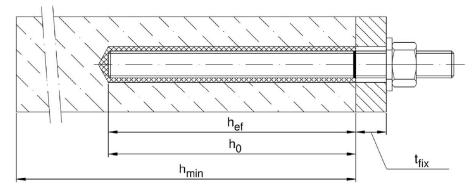
Folgendes System ist anzuwenden: 1

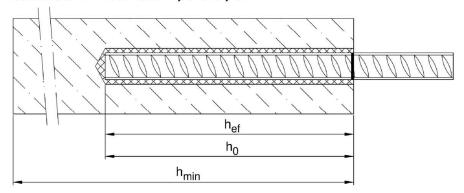
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

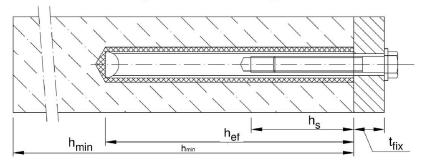
Ausgestellt in Berlin am 22. November 2019 vom Deutschen Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter


Beglaubigt:


Einbauzustand Gewindestange M8 bis M30

Vorsteckmontage oder


Durchsteckmontage (Ringspalt gefüllt mit Mörtel)

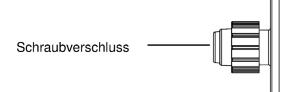
Einbauzustand Betonstahl Ø8 bis Ø32

Einbauzustand Innengewindeankerstange IG-M6 bis IG-M20

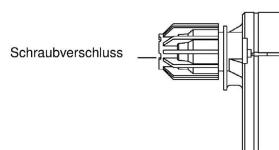
 t_{fix} = Dicke des Anbauteils

h_{ef} = Wirksame Verankerungstiefe

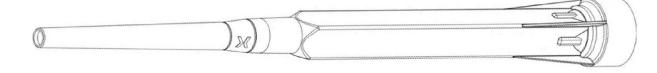
 $h_0 = Bohrlochtiefe$


 h_{min} = Mindestbauteildicke

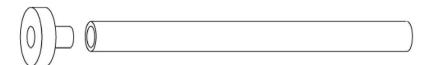
Injektionssystem EHI Ultra für Beton	
Produktbeschreibung	Anhang A 1
Einbauzustand	


Kartusche: EHI Ultra

150 ml, 280 ml, 300 ml bis 333 ml und 380 ml bis 420 ml Kartusche (Typ: Koaxial)


Aufdruck: EHI Ultra, Verarbeitungshinweise, Chargennummer, Haltbarkeit, Lagertemperatur, Gefahrennummern, Aushärtezeit und Verarbeitungszeit (abhängig von der Temperatur), Lagertemperatur, Optional mit Kolbenwegskala

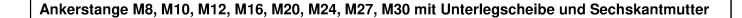
235 ml, 345 ml bis 360 ml und 825 ml Kartusche (Typ: "side-by-side")

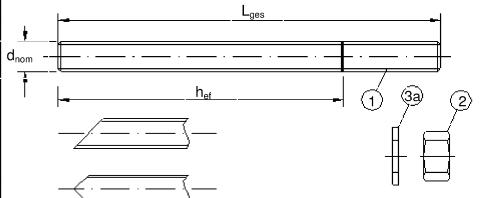


Aufdruck: EHI Ultra, Verarbeitungshinweise, Chargennummer, Haltbarkeit, Lagertemperatur, Gefahrennummern, Aushärtezeit und Verarbeitungszeit (abhängig von der Temperatur), Lagertemperatur, Optional mit Kolbenwegskala

Statikmischer

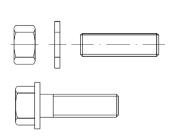
Verfüllstutzen und Mischerverlängerung

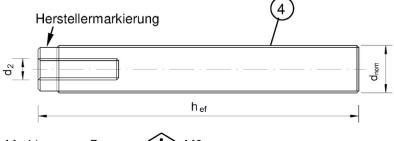

Injektionssystem EHI Ultra für Beton


Produktbeschreibung

Injektionssystem

Anhang A 2

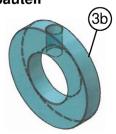


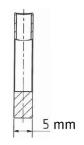

Handelsübliche Gewindestange mit:

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1
- Abnahmeprüfzeugnis 3.1 gemäß EN 10204:2004
- Markierung der Setztiefe

Innengewindeankerstange IG-M6, IG-M8, IG-M10, IG-M12, IG-M16, IG-M20

Ankerstange oder Schraube


Kennzeichnung Innengewinde
Werkszeichen


M8 Gewindegröße (Innengewinde)

A4 zusätzliche Kennung für nichtrostenden Stahl

HCR zusätzliche Kennung für hochkorrosionsbeständigen Stahl

Verfüllscheibe und Mischerreduzierstück zum Verfüllen des Ringspalts zwischen Anker und Anbauteil

Injektionssystem EHI Ultra für Beton

Produktbeschreibung

Ankerstange, Innengewindeankerstange und Verfüllscheibe

Anhang A 3

Ta	belle A1: Werkstoffe					
Геil	Benennung	Werkstoff				
-	feuerverzinkt ≥ 40 μm gema	gemäß EN 10087:199 äß EN ISO 4042:1999 äß EN ISO 1461:2009 äß EN ISO 17668:2016	oder und E	,		
		Festigkeitsklasse		Charakteristische Zugfestigkeit	Charakteristische Streckgrenze	Bruchdehnung
			4.6	f _{uk} = 400 N/mm ²	$f_{yk} = 240 \text{ N/mm}^2$	A ₅ > 8%
1	Gewindestange			f _{uk} = 400 N/mm ²	$f_{yk} = 320 \text{ N/mm}^2$	A ₅ > 8%
	3	gemäß EN ISO 898-1:2013	5.6	f _{uk} = 500 N/mm ²	$f_{yk} = 300 \text{ N/mm}^2$	A ₅ > 8%
		LIV 130 030-1.2013	5.8	f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm ²	A ₅ > 8%
			8.8	f _{uk} = 800 N/mm ²	f _{yk} = 640 N/mm ²	$A_5 \ge 12\%^{3)}$
		gomäß	4	für Gewindestang	en der Klasse 4.6 c	der 4.8
2	Sechskantmutter	gemäß EN ISO 898-2:2012	<u>5</u> 8		en der Klasse 5.6 c	der 5.8
				für Gewindestang		
3а	Unterlegscheibe	Stahl, galvanisch verz (z.B.: EN ISO 887:200 EN ISO 7094:2000)				oder
3b	Verfüllscheibe	Stahl, galvanisch verz	zinkt,			
		Festigkeitsklasse		Charakteristische	Charakteristische	Bruchdehnung
		1 Cottight Citoria asse		Zugfestigkeit	Streckgrenze	Drachachilang
4	Innengewindeankerstange	gemäß		$f_{uk} = 500 \text{ N/mm}^2$	Streckgrenze f _{yk} = 400 N/mm ²	A ₅ > 8%
		gemäß EN ISO 898-1:2013	8.8	$f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$	$f_{yk} = 400 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$	A ₅ > 8% A ₅ > 8%
Nich Nich	Innengewindeankerstange htrostender Stahl A2 (Werkstoff 1.4 htrostender Stahl A4 (Werkstoff 1.4 hkorrosionsbeständiger Stahl (W	gemäß EN ISO 898-1:2013 4301 / 1.4307 / 1.4311 4401 / 1.4404 / 1.4571	8.8 / 1.4 / 1.4	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 667 oder 1.4541, ge 362 oder 1.4578, ge , gemäß EN 10088	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² emäß EN 10088-1:: emäß EN 10088-1:: -1: 2014)	A ₅ > 8% A ₅ > 8% 2014)
Nich Nich	ntrostender Stahl A2 (Werkstoff 1.4 ntrostender Stahl A4 (Werkstoff 1.4	gemäß EN ISO 898-1:2013 4301 / 1.4307 / 1.4311 4401 / 1.4404 / 1.4571	8.8 / 1.4 / 1.4	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 567 oder 1.4541, ge 362 oder 1.4578, ge , gemäß EN 10088 Charakteristische Zugfestigkeit	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² emäß EN 10088-1:: emäß EN 10088-1:: -1: 2014) Charakteristische Streckgrenze	A ₅ > 8% A ₅ > 8% 2014)
Nich Nich	ntrostender Stahl A2 (Werkstoff 1.4 ntrostender Stahl A4 (Werkstoff 1.4	gemäß EN ISO 898-1:2013 4301 / 1.4307 / 1.4311 4401 / 1.4404 / 1.4571 erkstoff 1.4529 oder 1. Festigkeitsklasse	8.8 / 1.4 / 1.4	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 667 oder 1.4541, ge 862 oder 1.4578, ge 9, gemäß EN 10088 Charakteristische Zugfestigkeit f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² emäß EN 10088-1:: emäß EN 10088-1:: -1: 2014) Charakteristische Streckgrenze f _{yk} = 210 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ 2014) Bruchdehnung $A_5 \ge 8\%$
Nich Nich Hoc	ntrostender Stahl A2 (Werkstoff 1.4 ntrostender Stahl A4 (Werkstoff 1.4 hkorrosionsbeständiger Stahl (W	gemäß EN ISO 898-1:2013 4301 / 1.4307 / 1.4311 4401 / 1.4404 / 1.4571 erkstoff 1.4529 oder 1. Festigkeitsklasse	8.8 / 1.45 / 1.45 4565	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 567 oder 1.4541, ge 362 oder 1.4578, ge , gemäß EN 10088 Charakteristische Zugfestigkeit	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² emäß EN 10088-1:: emäß EN 10088-1:: -1: 2014) Charakteristische Streckgrenze	$A_5 > 8\%$ $A_5 > 8\%$ 2014) 2014) Bruchdehnung $A_5 \ge 8\%$ $A_5 \ge 12\%$
Nich Nich Hoc	ntrostender Stahl A2 (Werkstoff 1.4 ntrostender Stahl A4 (Werkstoff 1.4 hkorrosionsbeständiger Stahl (W	gemäß EN ISO 898-1:2013 4301 / 1.4307 / 1.4311 4401 / 1.4404 / 1.4571 erkstoff 1.4529 oder 1. Festigkeitsklasse	8.8 / 1.45 / 1.43 4565	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 667 oder 1.4541, ge 862 oder 1.4578, ge 9, gemäß EN 10088 Charakteristische Zugfestigkeit f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² emäß EN 10088-1:: emäß EN 10088-1:: -1: 2014) Charakteristische Streckgrenze f _{yk} = 210 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ 2014) Bruchdehnung $A_5 \ge 8\%$
Nich Nich Hoc	ntrostender Stahl A2 (Werkstoff 1.4 ntrostender Stahl A4 (Werkstoff 1.4 hkorrosionsbeständiger Stahl (W	gemäß EN ISO 898-1:2013 4301 / 1.4307 / 1.4311 4401 / 1.4404 / 1.4571 rerkstoff 1.4529 oder 1. Festigkeitsklasse gemäß EN ISO 3506-1:2009	8.8 / 1.45 / 1.45 4565 50 70	$\begin{split} &f_{uk} = 500 \text{ N/mm}^2 \\ &f_{uk} = 800 \text{ N/mm}^2 \\ &567 \text{ oder } 1.4541, \text{ gr} \\ &362 \text{ oder } 1.4578, \text{ gr} \\ &362$	$\begin{split} f_{yk} &= 400 \text{ N/mm}^2 \\ f_{yk} &= 640 \text{ N/mm}^2 \\ \text{emäß EN 10088-1::} \\ \text{emäß EN 10088-1::} \\ \text{emäß EN 10088-1::} \\ \text{-1: 2014)} \\ \text{Charakteristische} \\ \text{Streckgrenze} \\ f_{yk} &= 210 \text{ N/mm}^2 \\ f_{yk} &= 450 \text{ N/mm}^2 \\ f_{yk} &= 600 \text{ N/mm}^2 \\ \text{en der Klasse 50} \end{split}$	$A_5 > 8\%$ $A_5 > 8\%$ 2014) 2014) Bruchdehnung $A_5 \ge 8\%$ $A_5 \ge 12\%$
Nich Nich Hoc	ntrostender Stahl A2 (Werkstoff 1.4 ntrostender Stahl A4 (Werkstoff 1.4 hkorrosionsbeständiger Stahl (W	gemäß EN ISO 898-1:2013 4301 / 1.4307 / 1.4311 4401 / 1.4404 / 1.4571 erkstoff 1.4529 oder 1. Festigkeitsklasse	8.8 / 1.45 / 1.45 .4565 50 70 80 50 70	$\begin{split} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 567 \text{ oder } 1.4541, \text{ gr} \\ 362 \text{ oder } 1.4578, \text{ gr} \\ \text{, gemäß EN } 10088 \\ \text{Charakteristische} \\ \text{Zugfestigkeit} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{fur Gewindestang-für Gewindestang-gemäß} \end{split}$	$\begin{split} f_{yk} &= 400 \text{ N/mm}^2 \\ f_{yk} &= 640 \text{ N/mm}^2 \\ \text{emäß EN 10088-1::} \\ \text{f_{yk}=2014)} \\ \text{Charakteristische Streckgrenze} \\ f_{yk} &= 210 \text{ N/mm}^2 \\ f_{yk} &= 450 \text{ N/mm}^2 \\ f_{yk} &= 600 \text{ N/mm}^2 \\ \text{en der Klasse 50} \\ \text{en der Klasse 70} \end{split}$	$A_5 > 8\%$ $A_5 > 8\%$ 2014) 2014) Bruchdehnung $A_5 \ge 8\%$ $A_5 \ge 12\%$
Nich Nich Hoc	ntrostender Stahl A2 (Werkstoff 1.4 ntrostender Stahl A4 (Werkstoff 1.4 hkorrosionsbeständiger Stahl (W	gemäß EN ISO 898-1:2013 4301 / 1.4307 / 1.4311 4401 / 1.4404 / 1.4571 rerkstoff 1.4529 oder 1. Festigkeitsklasse gemäß EN ISO 3506-1:2009 gemäß	8.8 / 1.45 / 1.45 4565 50 70 80 50 70 80 / 1.45 / 1.44 / 29 odd	$f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ 67 oder 1.4541, ge 667 oder 1.4578, ge 662 oder 1.4578, ge 662 oder 1.4578, ge 662 oder 1.4578, ge 602 comparts 1.4588 cer 1.4565, EN 10088 cer 1.45665,	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² emäß EN 10088-1:: f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² en der Klasse 50 en der Klasse 70 en der Klasse 80 67 oder 1.4541, EN 62 oder 1.4578, EN 68-1: 2014	$A_5 > 8\%$ $A_5 > 8\%$ 2014) 2014) Bruchdehnung $A_5 \ge 8\%$ $A_5 \ge 12\%$ 3) $A_5 \ge 12\%$ 3) 3 3 3 3 3 3 4 3 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 5 5 6 6 6 6 6 6 6 6 6 6
Nich Nich Hoc	ntrostender Stahl A2 (Werkstoff 1.4 htrostender Stahl A4 (Werkstoff 1.4 hkorrosionsbeständiger Stahl (Werkstoff 1.4 hkorrosionsbeständiger 1.4 hkorrosionsbeständiger 1.4 hkorrosionsbeständiger Stahl (Werkstoff 1.4 hkorrosionsbeständiger 1.4	gemäß EN ISO 898-1:2013 4301 / 1.4307 / 1.4311 4401 / 1.4404 / 1.4571 rekstoff 1.4529 oder 1. Festigkeitsklasse gemäß EN ISO 3506-1:2009 A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:200	8.8 / 1.45 / 1.45 4565 50 70 80 / 1.45 / 1.42 29 ode 06, El	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² f _{uk} = 800 N/mm ² 667 oder 1.4541, gg 662 oder 1.4578, gg gemäß EN 10088 Charakteristische Zugfestigkeit f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² für Gewindestang für Gewindestang für Gewindestang für Gewindestang für Gewindestang 107 / 1.4311 / 1.456 104 / 1.4571 / 1.436 1150 7089:2000, E	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² emäß EN 10088-1:: emäß EN 10088-1:: -1: 2014) Charakteristische Streckgrenze f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² en der Klasse 50 en der Klasse 70 en der Klasse 80 67 oder 1.4541, EN 62 oder 1.4578, EN 68-1: 2014 EN ISO 7093:2000	$A_5 > 8\%$ $A_5 > 8\%$ 2014) 2014) Bruchdehnung $A_5 \ge 8\%$ $A_5 \ge 12\%$ 3) $A_5 \ge 12\%$ 3) 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0
Nich Nich Hoc	ntrostender Stahl A2 (Werkstoff 1.4 htrostender Stahl A4 (Werkstoff 1.4 hkorrosionsbeständiger Stahl (Werkstof	gemäß EN ISO 898-1:2013 4301 / 1.4307 / 1.4311 4401 / 1.4404 / 1.4571 erkstoff 1.4529 oder 1. Festigkeitsklasse gemäß EN ISO 3506-1:2009 A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:200 EN ISO 7094:2000)	8.8 / 1.45 / 1.45 4565 50 70 80 / 1.45 / 1.42 29 ode 06, El	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² f _{uk} = 800 N/mm ² 667 oder 1.4541, gg 662 oder 1.4578, gg gemäß EN 10088 Charakteristische Zugfestigkeit f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² für Gewindestang für Gewindestang für Gewindestang für Gewindestang für Gewindestang 107 / 1.4311 / 1.456 104 / 1.4571 / 1.436 1150 7089:2000, E	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² emäß EN 10088-1:: f _{yk} = 210 N/mm ² f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² en der Klasse 50 en der Klasse 70 en der Klasse 80 67 oder 1.4541, EN 62 oder 1.4578, EN 68-1: 2014 EN ISO 7093:2000	$A_5 > 8\%$ $A_5 > 8\%$ 2014) 2014) Bruchdehnung $A_5 \ge 8\%$ $A_5 \ge 12\%$ 3) $A_5 \ge 12\%$ 3) 4 5 5 5 5 5 5 5 5 5 5
Nich Nich Hoc	ntrostender Stahl A2 (Werkstoff 1.4 htrostender Stahl A4 (Werkstoff 1.4 hkorrosionsbeständiger Stahl (Werkstoff 1.4 hkorrosionsbeständiger 1.4 hkorrosionsbeständiger Stahl (Werkstoff 1.4 hkorrosionsbeständiger 1.4 hkorrosionsbestän	gemäß EN ISO 898-1:2013 4301 / 1.4307 / 1.4311 4401 / 1.4404 / 1.4571 rekstoff 1.4529 oder 1. Festigkeitsklasse gemäß EN ISO 3506-1:2009 A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:200 EN ISO 7094:2000) Nichtrostender Stahl	8.8 / 1.44 / 1.43 .4565 50 70 80 / 1.43 / 1.44 29 odd 06, El	$f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ $567 \text{ oder } 1.4541, \text{ ge}$ $362 \text{ oder } 1.4578, \text{ ge}$ $362 \text{ oder } 1.4584 \text{ ischedit}$ $5ugfestigkeit$ $6ugfestigkeit$ $6ugfestigk$	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² emäß EN 10088-1:: f _{yk} = 210 N/mm ² f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² en der Klasse 50 en der Klasse 50 en der Klasse 80 67 oder 1.4541, EN 62 oder 1.4578, EN 68-1: 2014 EN ISO 7093:2000 ändiger Stahl Charakteristische	$A_5 > 8\%$ $A_5 > 8\%$ 2014) 2014) Bruchdehnung $A_5 \ge 8\%$ $A_5 \ge 12\%$ 3) $A_5 \ge 12\%$ 3) 3 3 3 3 3 3 3 3 4 3 4 5 4 5 4 5 4 5 5 6 6 6 6 6 6 6 6 6 6

¹⁾ Festigkeitsklasse 70 oder 80 für Gewindestangen bis M24 und Innengewindeankerstange bis IG-M16, ²⁾ für IG-M20 nur Festigkeitsklasse 50

Injektionssystem EHI Ultra für Beton	
Produktbeschreibung Werkstoffe Gewindestangen und Innengewindeankerstangen	Anhang A 4

 $^{^{3)}}$ A₅ > 8% Bruchdehnung wenn <u>keine</u> Anforderungen der seismischen Leistungskategorie C2 bestehen $^{4)}$ Festigkeitsklasse 80 nur für nichtrostenden Stahl A4 und hochkorrosionsbeständigen Stahl HCR

Betonstahl Ø 8, Ø 10, Ø 12, Ø 14, Ø 16, Ø 20, Ø 24, Ø 25, Ø 28, Ø 32

- Mindestwerte der bezogenen Rippenfläche f_{R,min} gemäß EN 1992-1-1:2004+AC:2010
- Die Rippenhöhe muss 0,05d ≤ h ≤ 0,07d betragen (d: Nenndurchmesser des Stabes; h: Rippenhöhe des Stabes)

Tabelle A2: Werkstoffe

Teil	Benennung	Werkstoff
Beto	onstahl	
1	Betonstahl gemäß EN 1992-1-1:2004+AC:2010, Anhang C	Stäbe und Betonstabstahl vom Ring Klasse B oder C f_{yk} und k gemäß NDP oder NCL gemäß EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Injektionssystem EHI Ultra für Beton

Produktbeschreibung
Werkstoffe Betonstahl

Anhang A 5

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

- Statische und quasi-statische Lasten: M8 bis M30, Betonstahl Ø8 bis Ø32, IG-M6 bis IG-M20.
- Seismische Einwirkung für Anforderungsstufe C1: M8 bis M30 (außer feuerverzinkte Gewindestangen), Betonstahl Ø8 bis Ø32.
- Seismische Einwirkung für Anforderungsstufe C2: M12 bis M24 (außer feuerverzinkte Gewindestangen)

Verankerungsgrund:

- Verdichteter, bewehrter oder unbewehrter Normalbeton ohne Fasern gemäß EN 206:2013 + A1:2016.
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206:2013 + A1:2016.
- Ungerissener Beton: M8 bis M30, Betonstahl Ø8 bis Ø32, IG-M6 bis IG-M20.
- Gerissener Beton: M8 bis M30, Betonstahl Ø8 bis Ø32, IG-M6 bis IG-M20.

Temperaturbereich:

- I: 40 °C bis +80 °C (max. Langzeit-Temperatur +50 °C und max. Kurzzeit-Temperatur +80 °C)
- II: 40 °C bis +120 °C (max. Langzeit-Temperatur +72 °C und max. Kurzzeit-Temperatur +120 °C)
- III: 40 °C bis +160 °C (max. Langzeit-Temperatur +100 °C und max. Kurzzeit-Temperatur +160 °C)

Anwendungsbedingungen (Umweltbedingungen):

- · Bauteile unter den Bedingungen trockener Innenräume (alle Materialien).
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2006+A1:2015 entsprechend der Korrosionsbeständigkeitsklassen:
 - Nichtrostender Stahl A2 nach Anhang A 4, Tabelle A1: CRC II
 - Nichtrostender Stahl A4 nach Anhang A 4, Tabelle A1: CRC III
 - Hochkorrosionsbeständiger Stahl HCR nach Anhang A 4. Tabelle A1: CRC V

Bemessung:

- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.).
- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Die Bemessung der Verankerungen erfolgt nach EN 1992-4:2018 und Technical Report TR 055, Fassung Februar 2018.

Einbau:

- · Trockener, nasser Beton oder Wassergefüllte Bohrlöcher (nicht Seewasser).
- · Bohrlochherstellung durch Hammer- (HD), Hohl- (HDB) oder Pressluftbohren (CD).
- Überkopfmontage erlaubt.
- · Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.

Injektionssystem EHI Ultra für Beton	
Verwendungszweck	Anhang B 1
Spezifikationen	

Tabelle B1: Montagekennwerte für Gewindestangen											
gg											M30
Durchmesser Gewind	destange	$d = d_{nom}$	[mm]	8	10	12	16	20	24	27	30
Bohrernenndurchmes	sser	d ₀	[mm]	10	12	14	18	22	28	30	35
Effolting Verenkerun	antinfo	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Effektive Verankerun	gstiele	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Durchgangsloch im	Vorste	eckmontage d _f	[mm]	9	12	14	18	22	26	30	33
anzuschließenden Bauteil ¹⁾	Durchste	eckmontage d _f	[mm]	12	14	16	20	24	30	33	40
Maximales Montagedrehmoment		T _{inst} ≤	[Nm]	10	20	40 ²⁾	60	100	170	250	300
Mindestbauteildicke h _{min} [mm			[mm]	h _{ef} + 30) mm ≥ 1	00 mm		h _{ef} + 2d ₀			
Minimaler Achsabstand S _{min} [mm]			40	50	60	75	95	115	125	140	
Minimaler Randabsta	nd	c _{min}	[mm]	35	40	45	50	60	65	75	80

für Anwendungen unter Seismischer Einwirkung darf das Durchgangsloch im Anbauteil maximal d₁ + 1mm betragen oder alternativ ist der Ringspalt zwischen Gewindestange und Anbauteil mit Mörtel kraftschlüssig zu verfüllen.
 Maximales Drehmoment für M12 mit Festigkeitsklasse 4.6 ist 35 Nm

Tabelle B2: Montagekennwerte für Betonstahl

Größe Betonstahl			Ø 8 ¹⁾	Ø 10 ¹⁾	Ø 12 ¹⁾	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Durchmesser Betonstahl	$d = d_{nom}$	[mm]	8	10	12	14	16	20	24	25	28	32
Bohrernenndurchmesser	d_0	[mm]	10 12	12 14	14 16	18	20	25	32	32	35	40
Effektive	h _{ef,min}	[mm]	60	60	70	75	80	90	96	100	112	128
Verankerungstiefe	h _{ef,max}	[mm]	160	200	240	280	320	400	480	500	560	640
Mindestbauteildicke	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm				$h_{\rm e}$	_f + 2d ₀				
Minimaler Achsabstand	s _{min}	[mm]	40	50	60	70	75	95	120	120	130	150
Minimaler Randabstand	c _{min}	[mm]	35	40	45	50	50	60	70	70	75	85

¹⁾ beide Bohrernenndurchmesser können verwendet werden

Tabelle B3: Montagekennwerte für Innengewindeankerstangen

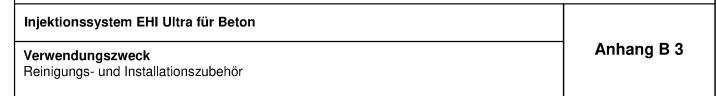
Größe Innengewindeankerstange		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Innendurchmesser der Hülse	d ₂	[mm]	6	8	10	12	16	20
Außendurchmesser der Hülse 1)	$d = d_{nom}$	[mm]	10	12	16	20	24	30
Bohrernenndurchmesser	d ₀	[mm]	12	14	18	22	28	35
Effektive Verankerungstiefe	h _{ef,min}	[mm]	60	70	80	90	96	120
Ellektive veralikerungstiele	h _{ef,max}	[mm]	200	240	320	400	480	600
Durchgangsloch im anzuschließenden Bauteil	d _f	[mm]	7	9	12	14	18	22
Maximales Montagedrehmoment	T _{inst} ≤	[Nm]	10	10	20	40	60	100
Einschraublänge min/max	I _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40
Mindestbauteildicke	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} +	- 2d ₀	
Minimaler Achsabstand	s _{min}	[mm]	50	60	75	95	115	140
Minimaler Randabstand	c _{min}	[mm]	40	45	50	60	65	80

¹⁾ Mit metrischem Gewinde gemäß EN 1993-1-8:2005+AC:2009

Injektionssystem EHI Ultra für Beton	
Verwendungszweck Montagekennwerte	Anhang B 2

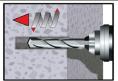
Tabelle B4: Parameter für Reinigungs- und Setzzubehör Innen-Installationsrichtung und $d_{b,min}$ $\boldsymbol{d_{b}}$ Gewinde-Verfüll-Anwendung von Betonstahl gewindemin. Bohrer - Ø stutzen stangen Bürsten - Ø hülse HD, HDB, CD Bürsten - Ø Verfüllstutzen [mm] [mm] [mm] [mm] [mm] [mm] M8 8 10 RB10 11,5 10,5 M10 8/10 IG-M6 12 RB12 13,5 12,5 Kein Verfüllstutzen notwendig 10 / 12 IG-M8 M12 14 RB14 14,5 15,5 12 16 RB16 17,5 16,5 VS18 M16 14 IG-M10 18 RB18 20,0 18,5 16 20 RB20 22,0 20,5 **VS20** M20 IG-M12 22 RB22 24,0 22,5 VS22 20 25 RB25 27,0 25,5 VS25 $h_{ef} >$ $h_{ef} >$ M24 IG-M16 28 RB28 30,0 VS28 28,5 all 250 mm 250 mm M27 30 RB30 31.8 30.5 VS30 24 / 25 32 RB32 34,0 32,5 **VS32** M30 28 IG-M20 35 37,0 **VS35** RB35 35,5 32 40 RB40 43,5 40,5 VS40

MAC - Handpumpe (Volumen 750 ml) Bohrerdurchmesser (d_0): 10 mm bis 20 mm Bohrlochtiefe (h_0): < 10 d_s Nur im ungerissenen Beton


CAC - Empfohlene Druckluftpistole (min 6 bar)

Bohrerdurchmesser (d₀): alle Durchmesser

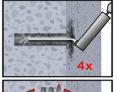
HDB - Hohlbohrersystem

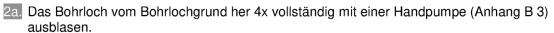

Bohrerdurchmesser (d₀): alle Durchmesser Das Hohlbohrersystem besteht aus dem Heller Duster Expert Hohlbohrer und einem Klasse M Staubsauger mit einem minimalen Unterdruck von 253 hPa und einer minimalen Durchflussmenge von 150 m³/h (42 l/s).

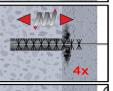
Setzanweisung

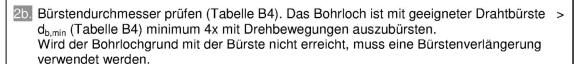
Bohrloch erstellen

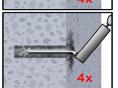
Bohrloch drehschlagend mit vorgeschriebenem Bohrerdurchmesser (Tabelle B1, B2 oder B3) und gewählter Bohrlochtiefe erstellen. Weiter mit Schritt 2. Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

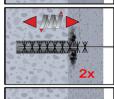


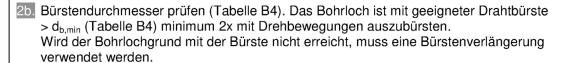

1b. Hohlbohrersystem (HDB) (siehe Anhang B 3)

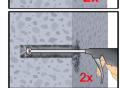

Bohrloch drehschlagend mit vorgeschriebenem Bohrerdurchmesser (Tabelle B1, B2 oder B3) und gewählter Bohrlochtiefe erstellen. Das Hohlbohrersystem entfernt den Bohrstaub und reinigt das Bohrloch während des Bohrens (Alle Konditionen). Weiter mit Schritt 3. Bei Fehlbohrungen ist das Bohrloch zu vermörteln.


Achtung! Vor der Reinigung muss im Bohrloch stehendes Wasser entfernt werden.


MAC: Reinigung in trockenen und feuchten für Durchmesser $d_0 \le 20$ mm und Bohrlochtiefe $h_0 \le 10d_{nom}$ (nur ungerissener Beton!)



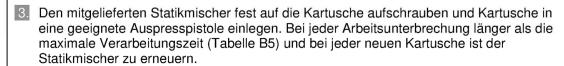

 Abschließend das Bohrloch erneut vom Bohrlochgrund her 4x vollständig mit einer Handpumpe (Anhang B 3) ausblasen.

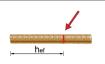

CAC: Reinigung in trockenen, feuchten und wassergefüllten Bohrlöchern für alle Durchmesser in gerissenem und ungerissenem Beton

2a. Das Bohrloch vom Bohrlochgrund her 2x vollständig mit Druckluft (min. 6 bar) (Anhang B 3) ausblasen, bis die ausströmende Luft staubfrei ist. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.

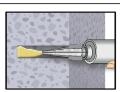
2c. Abschließend das Bohrloch erneut vom Bohrlochgrund her 2x vollständig mit Druckluft (min. 6 bar) (Anhang B 3) ausblasen, bis die ausströmende Luft staubfrei ist. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.

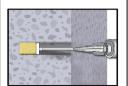
Nach der Reinigung ist das Bohrloch bis zum Injizieren des Mörtels vor erneutem Verschmutzen in einer geeigneten Weise zu schützen. Ggf. ist die Reinigung unmittelbar vor dem Injizieren des Mörtels zu wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrloches führen.

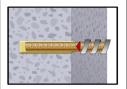

Verwendungszweck Setzanweisung Anhang B 4


778630 19 8 06 01-295/19

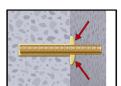
Setzanweisung (Fortsetzung)



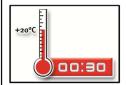

4. Vor dem Injizieren des Mörtels die geforderte Setztiefe auf der Ankerstange markieren.


5. Den Vorlauf solange verwerfen, bis sich eine gleichmäßig graue Mischfarbe eingestellt hat, jedoch min. 3 volle Hübe.

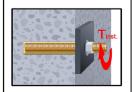
6. Gereinigtes Bohrloch vom Bohrlochgrund her ca. zu 2/3 mit Verbundmörtel befüllen. Langsames Zurückziehen des Statikmischers aus dem Bohrloch verhindert die Bildung von Lufteinschlüssen. Wird der Bohrlochgrund nicht erreicht, muss eine passende Mischerverlängerung verwendet werden. Die temperaturrelevanten Verarbeitungszeiten (Tabelle B5) sind zu beachten.



- 7. Verfüllstutzen und Mischerverlängerung sind gem. Tabelle B4 für die folgenden Anwendungen zu verwenden:
 - Horizontalmontage (horizontal Richtung) und Bodenmontage (vertikal Richtung nach unten): Bohrer-Ø d₀ ≥ 18 mm und Setztiefe hef > 250mm
 - Überkopfmontage (vertikale Richtung nach oben): Bohrer-Ø d₀ ≥ 18 mm



8. Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Setztiefe einführen.


Die Ankerstange muss schmutz-, fett-, und ölfrei sein.

Nach der Installation des Ankers muss der Ringspalt zwischen Ankerstange und Beton, bei Durchsteckmontage zusätzlich auch Anbauteil, komplett mit Mörtel ausgefüllt sein. Tritt keine Masse nach Erreichen der Verankerungstiefe heraus, ist diese Voraussetzung nicht erfüllt und die Anwendung muss vor Beendigung der Verarbeitungszeit wiederholt werden. Bei Überkopfmontage ist die Ankerstange zu fixieren (z.B. Holzkeile).

10. Die angegebene Aushärtezeit muss eingehalten werden. Anker während der Aushärtezeit nicht bewegen oder belasten. (siehe Tabelle B5).

11. Nach vollständiger Aushärtung kann das Anbauteil mit bis zu dem maximalen Drehmoment (Tabelle B1 oder B3) montiert werden. Die Mutter muss mit einem kalibriertem Drehmomentschlüssel festgezogen werden.

Bei der Vorsteckmontage kann optional der Ringspalt zwischen Ankerstange und Anbauteil nachträglich mit Mörtel verfüllt werden. Dafür Unterlegscheibe durch Verfüllscheibe ersetzen und Mischerreduzierung auf den Mischer stecken. Der Ringspalt ist verfüllt, wenn Mörtel austritt.

Injektionssystem EHI Ultra für Beton

Verwendungszweck

Setzanweisung (Fortsetzung)

Anhang B 5

Tabelle B5: Maximale Verarbeitungszeiten und minimale Aushärtezeiten

Beton ⁻	Tempe	eratur	Verarbeitungszeit	Mindest-Aushärtezeit in trockenem Beton	Mindest-Aushärtezeit in feuchtem Beton	
- 5 °C	bis	- 1 °C	50 min	5 h	10 h	
0 °C	bis	+ 4 °C	25 min	3,5 h	7 h	
+ 5 °C	bis	+ 9 °C	15 min	2 h	4 h	
+ 10 °C	bis	+ 14 °C	10 min	1 h	2 h	
+ 15 °C	bis	+ 19 °C	6 min	40 min	80 min	
+ 20 °C	bis	+ 29 °C	3 min	30 min	60 min	
+ 30 °C	bis	+ 40 °C	2 min	30 min	60 min	
Kartusch	entem	peratur	+5°C bis +40°C			

Injektionssystem EHI Ultra für Beton

Verwendungszweck
Aushärtezeit

Anhang B 6

1,33

Öße Gewindestangen			M8	M10	M12	M16	M20	M24	M27	M30
<u> </u>	As	[mm²]		58		157	245	353	459	561
		-	<u> </u>		,					
		[kN]	15 (13)	23 (21)	34	63	98	141	184	224
<u>, </u>			· ,	· '	42	78	122	176	230	280
<u> </u>	N _{Bk.s}		` '	46 (43)	67	125	196	282	368	449
chtrostender Stahl A2, A4 und HCR, Klasse 50			18	29	42	79	123	177	230	281
chtrostender Stahl A2, A4 und HCR, Klasse 70		[kN]	26	41	59	110	171	247	-	-
chtrostender Stahl A4 und HCR, Klasse 80		[kN]	29	46	67	126	196	282	-	-
narakteristische Zugtragfähigkeit, Teilsicherheit		rt ²⁾								1
ahl, Festigkeitsklasse 4.6 und 5.6	γ _{Ms,N}	[-]				2,0				
ahl, Festigkeitsklasse 4.8, 5.8 und 8.8	γ _{Ms,N}	[-]				1,5				
chtrostender Stahl A2, A4 und HCR, Klasse 50	γ _{Ms,N}	[-]				2,86	6			
chtrostender Stahl A2, A4 und HCR, Klasse 70	γ _{Ms,N}	[-]	1,87							
chtrostender Stahl A4 und HCR, Klasse 80	γ _{Ms,N}	[-]	1,6							
narakteristische Quertragfähigkeit, Stahlversage										
Stahl, Festigkeitsklasse 4.6 und 4.8	1111,5	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
Stahl, Festigkeitsklasse 5.6 und 5.8	' nk,5	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
Stahl, Festigkeitsklasse 8.8	110,5	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Nichtrostender Stahl A2, A4 und HCR, Klasse 50	nn,5	[kN]	9	15	21	39	61	88	115	140
Nichtrostender Stahl A2, A4 und HCR, Klasse 70	I' KK.S	[kN]	13	20	30	55	86	124	-	-
Nichtrostender Stahl A4 und HCR, Klasse 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	-	-
Stahl, Festigkeitsklasse 4.6 und 4.8	$ M^{\circ}_{Rk,s} $	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
Stahl, Festigkeitsklasse 5.6 und 5.8	M ^⁰ Rk.s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
Stahl, Festigkeitsklasse 8.8	M ^⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
Nichtrostender Stahl A2, A4 und HCR, Klasse 50	M ^⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
Nichtrostender Stahl A2, A4 und HCR, Klasse 70	M ^⁰ Rk,s	[Nm]	26	52	92	232	454	784	-	-
Nichtrostender Stahl A4 und HCR, Klasse 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	-	-
ahl, Festigkeitsklasse 4.6 und 5.6	γ _{Ms,V}	[-]				-				
-	γ _{Ms,V}	[-]								
obtractorder Stabl A2 A4 und UCD Klasse E0	100	[-]	2,38							
chtrostender Stahl A2, A4 und HCR, Klasse 50 chtrostender Stahl A2, A4 und HCR, Klasse 70	γ _{Ms,V}	[-]				1,56				
	ahl, Festigkeitsklasse 5.6 und 5.8 ahl, Festigkeitsklasse 8.8 chtrostender Stahl A2, A4 und HCR, Klasse 50 chtrostender Stahl A4 und HCR, Klasse 70 chtrostender Stahl A4 und HCR, Klasse 80 narakteristische Zugtragfähigkeit, Teilsicherheit ahl, Festigkeitsklasse 4.6 und 5.6 ahl, Festigkeitsklasse 4.8, 5.8 und 8.8 chtrostender Stahl A2, A4 und HCR, Klasse 50 chtrostender Stahl A2, A4 und HCR, Klasse 70 chtrostender Stahl A4 und HCR, Klasse 70 chtrostender Stahl A4 und HCR, Klasse 80 narakteristische Quertragfähigkeit, Stahlversage Stahl, Festigkeitsklasse 4.6 und 4.8 Stahl, Festigkeitsklasse 5.6 und 5.8 Stahl, Festigkeitsklasse 8.8 Nichtrostender Stahl A2, A4 und HCR, Klasse 50 Nichtrostender Stahl A2, A4 und HCR, Klasse 70 Nichtrostender Stahl A4 und HCR, Klasse 70 Nichtrostender Stahl A4 und HCR, Klasse 80 Stahl, Festigkeitsklasse 4.6 und 4.8 Stahl, Festigkeitsklasse 5.6 und 5.8 Stahl, Festigkeitsklasse 8.8 Nichtrostender Stahl A2, A4 und HCR, Klasse 50 Nichtrostender Stahl A2, A4 und HCR, Klasse 50 Nichtrostender Stahl A2, A4 und HCR, Klasse 50 Nichtrostender Stahl A2, A4 und HCR, Klasse 70 Nichtrostender Stahl A2, A4 und HCR, Klasse 50 Nichtrostender Stahl A2, A4 und HCR, Klasse 80 Nichtrostender Stahl A4, A4 und HCR, Klasse 80	narakteristische Zugtragfähigkeit, Stahlversagen 1) ahl, Festigkeitsklasse 4.6 und 4.8 ahl, Festigkeitsklasse 5.6 und 5.8 ahl, Festigkeitsklasse 8.8 chtrostender Stahl A2, A4 und HCR, Klasse 50 chtrostender Stahl A4, A4 und HCR, Klasse 70 chtrostender Stahl A4 und HCR, Klasse 80 narakteristische Zugtragfähigkeit, Teilsicherheitsbeiwer Ahl, Festigkeitsklasse 4.6 und 5.6 ahl, Festigkeitsklasse 4.8, 5.8 und 8.8 chtrostender Stahl A2, A4 und HCR, Klasse 50 chtrostender Stahl A2, A4 und HCR, Klasse 50 chtrostender Stahl A2, A4 und HCR, Klasse 70 chtrostender Stahl A2, A4 und HCR, Klasse 70 chtrostender Stahl A4 und HCR, Klasse 80 narakteristische Quertragfähigkeit, Stahlversagen 1) Stahl, Festigkeitsklasse 4.6 und 4.8 Stahl, Festigkeitsklasse 5.6 und 5.8 Nichtrostender Stahl A2, A4 und HCR, Klasse 50 V ⁰ Rk,s Stahl, Festigkeitsklasse 8.8 Nichtrostender Stahl A2, A4 und HCR, Klasse 70 V ⁰ Rk,s Nichtrostender Stahl A4 und HCR, Klasse 80 V ⁰ Rk,s Stahl, Festigkeitsklasse 4.6 und 4.8 Stahl, Festigkeitsklasse 4.6 und 4.8 Stahl, Festigkeitsklasse 5.6 und 5.8 Stahl, Festigkeitsklasse 5.6 und 5.8 M ⁰ Rk,s Stahl, Festigkeitsklasse 5.6 und 5.8 Michtrostender Stahl A2, A4 und HCR, Klasse 50 M ⁰ Rk,s Nichtrostender Stahl A2, A4 und HCR, Klasse 50 M ⁰ Rk,s Nichtrostender Stahl A2, A4 und HCR, Klasse 50 M ⁰ Rk,s Nichtrostender Stahl A2, A4 und HCR, Klasse 50 M ⁰ Rk,s Nichtrostender Stahl A2, A4 und HCR, Klasse 70 M ⁰ Rk,s Nichtrostender Stahl A2, A4 und HCR, Klasse 70 M ⁰ Rk,s Nichtrostender Stahl A2, A4 und HCR, Klasse 70 M ⁰ Rk,s Nichtrostender Stahl A2, A4 und HCR, Klasse 80 M ⁰ Rk,s Nichtrostender Stahl A2, A4 und HCR, Klasse 80 M ⁰ Rk,s Nichtrostender Stahl A2, A4 und HCR, Klasse 80 M ⁰ Rk,s Nichtrostender Stahl A2, A4 und HCR, Klasse 80 M ⁰ Rk,s Nichtrostender Stahl A2, A4 und HCR, Klasse 80 M ⁰ Rk,s Nichtrostender Stahl A2, A4 und HCR, Klasse 80 M ⁰ Rk,s Nichtrostender Stahl A2, A4 und HCR, Klasse 80 M ⁰ Rk,s	Annarakteristische Zugtragfähigkeit, Stahlversagen 1) Anl, Festigkeitsklasse 4.6 und 4.8 Anl, Festigkeitsklasse 5.6 und 5.8 Anl, Festigkeitsklasse 8.8 Anl, Festigkeitsklasse 4.6 und HCR, Klasse 70 Anl, Festigkeitsklasse 4.6 und 5.6 Anl, Festigkeitsklasse 4.8, 5.8 und 8.8 Anl, Festigkeitsklasse 4.8 und HCR, Klasse 50 Anl, Festigkeitsklasse 4.8 und HCR, Klasse 70 Anl, Festigkeitsklasse 4.6 und 4.8 Anl, Festigkeitsklasse 8.8 Anl, F	Amarakteristische Zugtragfähigkeit, Stahlversagen 1	Amarakteristische Zugtragfähigkeit, Stahlversagen 1	Arakteristische Zugtragfähigkeit, Stahlversagen 1	Parakteristische Zugtragfähigkeit, Stahlversagen Parakteristische Zugtragfähigkeit, Stahlversagen Parakteristische Zugtragfähigkeit, Stahlversagen Parakteristische Zugtragfähigkeit, Stahlversagen Parakteristische Zugtragfähigkeit, Teilsicherheitsbeiwert Parakteristische Zugtragfähigkeit, Teilsicherheitsbeiwert Parakteristische Zugtragfähigkeit, Teilsicherheitsbeiwert Parakteristische Zugtragfähigkeit, Stahlversagen Parakteristische Zugtragfähigkeit, Teilsicherheitsbeiwert Parakteristische Zugtragfähigkeit, Stahlversagen Parakteristische Zu			

¹⁾ Werte sind nur gültig für den hier angegebenen Spannungsquerschnitt As. Die Werte in Klammern gelten für unterdimensionierte Gewindestange mit geringerem Spannungsquerschnitt As für feuerverzinkte Gewindestangen gemäß. EN ISO 10684:2004+AC:2009.

Sofern andere nationalen Regelungen fehlen

 $\gamma_{\text{Ms,V}}$

[-]

Nichtrostender Stahl A4 und HCR, Klasse 80

Injektionssystem EHI Ultra für Beton	
Leistungen Charakteristische Werte der Stahlzugtragfähigkeit und Stahlquerzugtragfähigkeit von Gewindestangen	Anhang C 1

Tabelle C2:	Charakteristisc Belastungsarte		e für Beto	onausbruch und Spalten für alle
Dübelgröße				Alle Dübelarten und -größen
Betonausbruch				
ungerissener Be	ton	k _{ucr,N}	[-]	11,0
gerissener Betor	ı	k _{cr,N}	[-]	7,7
Randabstand		c _{cr,N}	[mm]	1,5 h _{ef}
Achsabstand		s _{cr,N}	[mm]	2 c _{cr,N}
Spalten			•	
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Randabstand	$2.0 > h/h_{ef} > 1.3$	C _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Achsabstand	'	s _{cr,sp}	[mm]	2 c _{cr,sp}

Injektionssystem EHI Ultra für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 2

Dübelgröße Gewindes	tangen			М8	M10	M12	M16	M20	M24	M27	M30	
Stahlversagen		1										
Charakteristische Zugtr	agfähigkeit	N _{Rk,s}	[kN]	A _s • f _{uk} (oder siehe Tabelle C1)								
Teilsicherheitsbeiwert		γ _{Ms,N}	[-]			;	siehe Ta	belle C	1			
Kombiniertes Versage												
Charakteristische Verbu	undtragfähigkeit	im ungeris:	senen Betor	n C20/2	5		ı			ı	ı	
E 5 I: 80°C/50°C	trockener und feuchter Beton,	^τ Rk,ucr	[N/mm ²]	17	17	16	15	14	13	13	13	
평 '를 II: 120°C/72°C	sowie wassergefülltes	^τ Rk,ucr	[N/mm ²]	15	14	14	13	12	12	11	11	
130 0/100 0	Bohrloch	^τ Rk,ucr	[N/mm²]	12	11	11	10	9,5	9,0	9,0	9,0	
Charakteristische Verbu	undtragfähigkeit	im gerisseı	nen Beton C	20/25	1	ı	T	1		T		
i: 80°C/50°C	trockener und feuchter Beton,	τ _{Rk,cr}	[N/mm²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0	
평 '를 II: 120°C/72°C	sowie wassergefülltes	^τ Rk,cr	[N/mm²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0	
=	Bohrloch	τ _{Rk,cr}	[N/mm ²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5	
Reduktionsfaktor ψ ⁰ sus	im gerissenen u	nd ungeris	senen Beto	n C20/2	25							
ੂ	trockener und			0,79								
୭ ୂ II: 120°C/72°C	feuchter Beton, sowie	Ψ^0_{sus}	[-]	0,75								
E 3 III: 160°C/100°C	wassergefülltes Bohrloch			0,66								
•		C25/30	'	1,02								
		C30/37		1,04								
Erhöhungsfaktor für Bet	ton	C35/45		1,07								
Ψ_{C}		C40/50		1,08								
		C45/55		1,09								
		C50/60					1,	10				
Betonausbruch							· · · -	0				
Relevante Parameter							siehe Ta	abelle C	2			
Spalten							-:-b- T-	de alla O				
Relevante Parameter						- ;	siehe Ta	ibelle C				
Montagebeiwert	1	I	1 1					Ī				
für trockenen und feuch	MAC				1	,2			NI	PA		
iur trockenen und ieuch Beton	CAC	04	[1	,0				
HDB		γinst	[-]				1	,2				
für wassergefülltes Bohrloch CAC							1	,4				

Injektionssystem EHI Ultra für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 3

Tabelle C4: Charakteristischer quasi-statischer			uerzu	ıgtragi	fähigk	eit un	ter sta	tische	er und	
Dübelgröße Gewindestangen			М8	M10	M12	M16	M20	M24	M27	M30
Stahlversagen ohne Hebelarm					•	•	•			
Charakteristische Quertragfähigkeit Stahl, Festigkeitsklasse 4.6, 4.8, 5.6 und 5.8	V ⁰ Rk,s	[kN]	0,6 ⋅ A _s ⋅ f _{uk} (oder siehe Tabelle C1)							
Charakteristische Quertragfähigkeit Stahl, Festigkeitsklasse 8.8 Nichtrostender Stahl A2, A4 und HCR, alle Festigkeitsklassen	V ⁰ Rk,s	[kN]	0,5 • A _s • f _{uk} (oder siehe Tabelle C1)							
Teilsicherheitsbeiwert	$\gamma_{Ms,V}$	[-]	siehe Tabelle C1							
Duktilitätsfaktor	k ₇	[-]				,	1,0			
Stahlversagen mit Hebelarm										
Charakteristisches Biegemoment	M ⁰ Rk,s	[Nm]		1,	2 · W _{el}	• f _{uk} (od	er siehe	Tabelle	e C1)	
Elastisches Widerstandsmoment	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]				siehe T	abelle C	1		
Betonausbruch auf der lastabgewandt	en Seite									
Faktor	k ₈	[-]				:	2,0			
Montagebeiwert	γ _{inst}	[-]	1,0							
Betonkantenbruch	•									
Effektive Dübellänge	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mi						300mm	
Außendurchmesser des Dübels	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Montagebeiwert	γ_{inst}	[-]	1,0							

Injektionssystem EHI Ultra für Beton	
Leistungen Charakteristische Werte der Querzugtragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 4

Dübelgröße Innengewindea	nkerstangen			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Stahlversagen ¹⁾										
Charakteristische Zugtragfähi	gkeit, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123	
Stahl, Festigkeitsklasse	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196	
Teilsicherheitsbeiwert 5.8 und	8.8	γMs,N	[-]			1	,5			
Charakteristische Zugtragfähi Nichtrostender Stahl A4 und F	gkeit, HCR, Klasse 70 ²⁾	N _{Rk,s}	[kN]	14	26	41	59	110	124	
Teilsicherheitsbeiwert		γMs,N	[-]			1,87			2,86	
Kombiniertes Versagen dur	ch Herauszieher	und Be	tonausbr	uch						
Charakteristische Verbundtra		erissene	n Beton Ca	20/25						
jg _ I: 80°C/50°C	trockener und feuchter Beton,	τ _{Rk,ucr}	[N/mm ²]	17	16	15	14	13	13	
II: 80°C/50°C III: 120°C/72°C III: 160°C/100°C	sowie	τ _{Rk,ucr}	[N/mm ²]	14	14	13	12	12	11	
트 Ö III: 160°C/100°C	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm²]	11	11	10	9,5	9,0	9,0	
Charakteristische Verbundtra	gfähigkeit im geris	ssenen E	Seton C20/	25		•				
기 다 U: 80°C/50°C	trockener und feuchter Beton,	τ _{Rk,cr}	[N/mm ²]	7,5	8,0	9,0	8,5	7,0	7,0	
I: 80°C/50°C II: 120°C/72°C III: 160°C/100°C	sowie	τ _{Rk,cr}	[N/mm ²]	6,5	7,0	7,5	7,0	6,0	6,0	
ြို့ III: 160°C/100°C	wassergefülltes Bohrloch	τ _{Rk,cr}	[N/mm ²]	5,5	6,0	6,5	6,0	5,5	5,5	
Reduktionsfaktor ψ ⁰ sus im ger	rissenen und ung	erissene	n Beton C	20/25						
	trockener und					0,	 79			
II: 120°C/72°C	feuchter Beton, sowie	ψ^0_{sus}	[-]			0,	75			
1: 80°C/50°C	wassergefülltes Bohrloch		, []	0,66						
<u>'</u>	12011110011	C	 25/30			1,	02			
		C	30/37			1,	04	-	-	
Erhöhungsfaktor für Beton		C	35/45	1,07						
Ψς		C ₄	40/50	1,08						
		C ₄	45/55			1,	09			
		C!	50/60			1,	10			
Betonausbruch										
Relevante Parameter						siehe Ta	abelle C2			
Spalten						., -				
Relevante Parameter						siehe La	abelle C2			
Montagebeiwert	MAC	1	I		1.0		T	NDA		
	1		1	1,2		1	NPA			
für trockenen und feuchten Ro		1				1	n			
für trockenen und feuchten Be		γ _{inst}	[-]				,0 ,2			

¹⁾ Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen der angegebenen Festigkeitsklasse gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel.

²⁾ für IG-M20 Festigkeitsklasse 50 gültig

Injektionssystem EHI Ultra für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 5

Tabelle C6: Charakteri quasi-stati				r Querz	ugtragfä	ähigkeit	unter st	atische	r und
Dübelgröße Innengewindeank	ngen		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Stahlversagen ohne Hebelarm								•	
Charakteristische 5	.8 V	∕ ⁰ Rk,s	[kN]	5	9	15	21	38	61
Quertragfähigkeit, — 8 Stahl, Festigkeitsklasse	.8 V	∕ ⁰ Rk,s	[kN]	8	14	23	34	60	98
Teilsicherheitsbeiwert 5.8 und 8		Ms,V	[-]				1,25		•
Charakteristische Quertragfähigkeit, nicht-rostender Stahl A4 und H0 Festigkeitsklasse 70 ²⁾	c _{R,} v	/ ⁰ Rk,s	[kN]	7	13	20	30	55	40
Teilsicherheitsbeiwert	γ ₁	Ms,V	[-]			1,56			2,38
Duktilitätsfaktor	k-	7	[-]				1,0		
Stahlversagen mit Hebelarm ¹⁾									
	.8 M	∕l ⁰ Rk,s	[Nm]	8	19	37	66	167	325
Biegemoment, — 8 Stahl, Festigkeitsklasse	.8 M	∕l ⁰ Rk,s	[Nm]	12	30	60	105	267	519
Teilsicherheitsbeiwert 5.8 und 8		Ms,V	[-]	1,25					
Charakteristisches Biegemomer nicht-rostender Stahl A4 und HC Festigkeitsklasse 70 ²⁾	it, CR, M	l ⁰ Rk,s	[Nm]	11	26	52	92	233	456
Teilsicherheitsbeiwert	γι	Ms,V	[-]		2,38				
Betonausbruch auf der lastab	gewan	ndten S	eite						
Faktor	k _{	8	[-]				2,0		
Montagebeiwert	γ_{i}	inst	[-]				1,0		
Betonkantenbruch	•								
Effektive Dübellänge	I _f		[mm]		min	(h _{ef} ; 12 • d	nom)		min(h _{ef} ; 300mm)
Außendurchmesser des Dübels	d	nom	[mm]	10	12	16	20	24	30
Montagebeiwert	γii	inst	[-]				1,0		

Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen der angegebenen Festigkeitsklasse gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel. ²⁾ für IG-M20 Festigkeitsklasse 50 gültig

Injektionssystem EHI Ultra für Beton	
Leistungen Charakteristische Werte der Querzugtragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 6

Tab	elle C7: Char statis	akteristische scher Belast		der Zug	tragi	ähig	keit ı	unter	stat	ische	er un	d qu	asi-	
Dübe	größe Betonstahl				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
	versagen													
Chara	kteristische Zugtra	gfähigkeit	N _{Rk,s}	[kN]					A_s •	$f_{uk}^{(1)}$				
Stahls	spannungsquersch	nitt	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsio	cherheitsbeiwert		γMs,N	[-]		•	•		1,	4 ²⁾	•			
Komb	iniertes Versager	n durch Herausz	ziehen und	Betonau	sbruc	h								
Chara	kteristische Verbur	ndtragfähigkeit ir	n ungerisse	enen Beto	n C20	1 C20/25								
atur-	I: 80°C/50°C	trockener und feuchter Beton,	τ _{Rk,ucr}	[N/mm ²]	14	14	14	14	13	13	13	13	13	13
Temperatur- bereich	II: 120°C/72°C	sowie wassergefülltes	τ _{Rk,ucr}	[N/mm²]	13	12	12	12	12	11	11	11	11	11
Ter	III: 160°C/100°C	Bohrloch	τ _{Rk,ucr}	[N/mm ²]	9,5	9,5	9,5	9,0	9,0	9,0	9,0	9,0	8,5	8,5
Chara	kteristische Verbur	ndtragfähigkeit ir	n gerissen	en Beton (020/25	5								
tur- h	I: 80°C/50°C	trockener und feuchter Beton,	τ _{Rk,cr}	[N/mm²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
Temperatur- bereich	II: 120°C/72°C	sowie	τ _{Rk,cr}	[N/mm ²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0
Ten	III: 160°C/100°C	wassergefülltes Bohrloch	τ _{Rk,cr}	[N/mm ²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0
Redul	ktionsfaktor ψ ⁰ sus i	m gerissenen un	d ungeriss	enen Beto	n C20	/25								
tur-	I: 80°C/50°C	trockener und feuchter Beton,		0,79										
Temperatur- bereich	II: 120°C/72°C	sowie	$ \Psi^0_{ m sus} $	[-]	0,75									
Ten	III: 160°C/100°C	wassergefülltes Bohrloch	; 		0,66									
			C2	5/30					1,	02				
				0/37						04				
1	ungsfaktor für Beto	on		5/45						07				
Ψο				0/50						80				
				5/55 0/60						09 10				
Betor	nausbruch		05	0/60					١,	10				
	ante Parameter							sic	ehe Ta	abelle	C2			
	Spalten													
Relev	ante Parameter							sie	ehe Ta	abelle	C2			
Monta	agebeiwert											<u> </u>		
		MAC				1,2					NPA			
für tro	ckenen und feucht		$-\gamma_{inst}$	[-]						,0				
fürwa	ssergefülltes Bohr	HDB loch CAC	-	• •	1,2 1,4									
1) c	issergeruntes DUIII	IOCII OAC							I	,+				

¹⁾ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen ²⁾ Sofern andere nationalen Regelungen fehlen

Injektionssystem EHI Ultra für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 7

Tabelle C8: Charakteri quasi-stati				erzug	ıtragf	ähigk	eit u	nter s	statis	cher	und	
Dübelgröße Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen ohne Hebelarm												
Charakteristische Quertragfähigkeit	V ⁰ Rk,s	[kN]				(0,50 • A	∖ _s •f _{uk} ²	2)			
Stahlspannungsquerschnitt	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]					1,	5 ²⁾				
Duktilitätsfaktor												
Stahlversagen mit Hebelarm	Stahlversagen mit Hebelarm											
Charakteristische Biegemoment	M ⁰ Rk,s	[Nm]				-	1.2 • W	el • fuk)			
Elastisches Widerstandsmoment	W _{el}	[mm³]	50	98	170	269	402	785	896	1534	2155	3217
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]					1,	5 ²⁾				
Betonausbruch auf der lastabge	ewandten Seit	te										
Faktor	k ₈	[-]					2	,0				
Montagebeiwert	γ _{inst}	[-]					1	,0				
Betonkantenbruch												
Effektive Dübellänge	l _f	[mm]			min(h	_{ef} ; 12 •	d _{nom})			min(l	h _{ef} ; 300	Omm)
Außendurchmesser des Dübels	d _{nom}	[mm]] 8 10 12 14 16 20 24 25 28 32									
Montagebeiwert	γ_{inst}	[-]					1	,0				

¹⁾ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen ²⁾ Sofern andere nationalen Regelungen fehlen

Injektionssystem EHI Ultra für Beton	
Leistungen Charakteristische Werte der Querzugtragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 8

Tabelle C9: Vers	chiebung u	nter Zugbean	spruc	hung ¹⁾	(Gewi	ndesta	ange)			
Dübelgröße Gewindes	tange		М8	M10	M12	M16	M20	M24	M27	M30
Ungerissener Beton C	20/25 unter sta	itischer und quas	si-statis	cher Bel	astung					
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046
80°C/50°C $\delta_{N\infty}$ -Faktor [mm/(N/mm ²			0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060
Temperaturbereich II:	[mm/(N/mm²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048	
120°C/72°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062
Temperaturbereich III:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179
160°C/100°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184
Gerissener Beton C20	/25 unter statis	cher und quasi-	statische	er Belas	tung					
Temperaturbereich I:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106
80°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137
Temperaturbereich II:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110
120°C/72°C $\delta_{\text{N}\infty}$ -Faktor [mm/(N/mm²)]		0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143	
Temperaturbereich III:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412
160°C/100°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor \cdot τ ; τ : einwirkende Verbundspannung unter Zugbelastung

$\delta_{N_{\infty}} = \delta_{N_{\infty}}\text{-Faktor} \cdot \tau;$

Tabelle C10: Verschiebung unter Querbeanspruchung²⁾ (Gewindestange)

Dübelgröße Gewinde	М8	M10	M12	M16	M20	M24	M27	M30		
Gerissener und unge	rissener Beton C	20/25 unter stat	ischer u	nd quas	si-statis	cher Bel	astung			
Alle	δ _{V0} - Faktor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
Temperaturbereiche	$\delta_{V\infty}$ - Faktor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

²⁾ Berechnung der Verschiebung

 $v_0 = \delta v_0$ -Faktor · V;

V: einwirkende Querlast

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}\text{-Faktor} \cdot V;$

Injektionssystem EHI Ultra für Beton	
Leistungen Verschiebungen unter statischer und quasi-statischer Belastung (Gewindestange)	Anhang C 9

8.06.01-295/19 Z78632.19

Tabelle C11: Vers	schiebung u	nter Zugbean	spruchu	ng ¹⁾ (Inr	engewir	ndeanke	rstange)	ı				
Dübelgröße Innengewi	ndeankerstanç	je	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20				
Ungerissener Beton Ca	Ungerissener Beton C20/25 unter statischer und quasi-statischer Belastung											
Temperaturbereich I:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,032	0,034	0,037	0,039	0,042	0,046				
80°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,042	0,044	0,047	0,051	0,054	0,060				
Temperaturbereich II:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,034	0,035	0,038	0,041	0,044	0,048				
120°C/72°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,044	0,045	0,049	0,053	0,056	0,062				
Temperaturbereich III:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,126	0,131	0,142	0,153	0,163	0,179				
160°C/100°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,129	0,135	0,146	0,157	0,168	0,184				
Gerissener Beton C20/	25 unter statis	cher und quasi-st	atischer B	elastung								
Temperaturbereich I:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,083	0,085	0,090	0,095	0,099	0,106				
80°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,170	0,110	0,116	0,122	0,128	0,137				
Temperaturbereich II:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,086	0,088	0,093	0,098	0,103	0,110				
120°C/72°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,111	0,114	0,121	0,127	0,133	0,143				
Temperaturbereich III:	δ _{N0} -Faktor	[mm/(N/mm²)]	0,321	0,330	0,349	0,367	0,385	0,412				
160°C/100°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,330	0,340	0,358	0,377	0,396	0,424				

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor $\cdot \tau$;

Berechnung der Verschiebung $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-}\underset{-}{\text{Faktor}}\cdot\tau; \qquad \tau\text{: einwirkende Verbundspannung unter Zugbelastung}$

Tabelle C12: Verschiebung unter Querbeanspruchung²⁾ (Innengewindeankerstange)

Dübelgröße Innengev	windeankersta	ange	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Gerissener und ungerissener Beton C20/25 unter statischer und quasi-statischer Belastung									
Alle	δ_{V0} -Faktor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04	
Temperaturbereiche	$\delta_{V\infty}$ -Faktor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06	

 $^{^{2)}}$ Berechnung der Verschiebung $\begin{array}{ll} \delta_{V0} = \delta_{V0}\text{-Faktor}\cdot V; & \text{V: einwirkende Querlast} \\ \delta_{V\infty} = \delta_{V\infty}\text{-Faktor}\cdot V; & \end{array}$

Injektionssystem EHI Ultra für Beton	
Leistungen Verschiebungen unter statischer und quasi-statischer Belastung (Innengewindeankerstange)	Anhang C 10

8.06.01-295/19 Z78632.19

Tabelle C13: V	Tabelle C13: Verschiebung unter Zugbeanspruchung ¹⁾ (Betonstahl)													
Dübelgröße Betons	tahl		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Ungerissener Beton C20/25 unter statischer und quasi-statischer Belastung														
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,042	0,043	0,045	0,048		
I: 80°C/50°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,054	0,055	0,058	0,063		
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,044	0,045	0,047	0,050		
II: 120°C/72°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,056	0,057	0,060	0,065		
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,163	0,164	0,172	0,186		
III: 160°C/100°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,168	0,169	0,177	0,192		
Gerissener Beton C	20/25 unter	statischer und	quasi-	statiscl	ner Bela	astung								
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,108		
I: 80°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,141		
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113		
II: 120°C/72°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148		
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,425		
III: 160°C/100°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,449		

Berechnung der Verschiebung $\delta_{N0} = \delta_{N0}\text{-Faktor} \cdot \tau; \qquad \tau\text{: einwirkende Verbundspannung unter Zugbelastung}$

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor τ ;

Tabelle C14: Verschiebung unter Querbeanspruchung²⁾ (Betonstahl)

Dübelgröße Betonst	tahl	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Gerissener und ung	erissener Be	ton C20/2	5 unter	statisc	her und	quasi-	statisch	er Bela	stung			
Alle	δ_{V0} - Faktor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
Temperaturbereiche	$\delta_{V\infty}$ - Faktor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

 $^{^{2)}}$ Berechnung der Verschiebung $\begin{array}{lll} \delta_{V0} = \delta_{V0}\text{-Faktor} \cdot \text{V}; & \text{V: einwirkende Querlast} \\ \delta_{V\infty} = \delta_{V\infty}\text{-Faktor} \cdot \text{V}; & \end{array}$

Injektionssystem EHI Ultra für Beton	
Leistungen Verschiebungen unter statischer und quasi-statischer Belastung (Betonstahl)	Anhang C 11

8.06.01-295/19 Z78632.19

Dübelgröße Gewinde	stange			M8	M10	M12	M16	M20	M24	M27	M30		
Stahlversagen													
Charakteristische Zugt (Leistungskategorie C	[kN]	1,0 • N _{Rk,s}											
Charakteristische Zugt (Leistungskategorie C2 Stahl, Festigkeitsklass Nichtrostender Stahl A Festigkeitsklasse ≥70	2) e 8.8	N _{Rk,s,eq,C2}	[kN]	NI	PA		1,0 •	$N_{Rk,s}$		NI	PA		
Teilsicherheitsbeiwert		γ _{Ms,N}	[-]			S	iehe Ta	abelle C	1				
Kombiniertes Versag	en durch Herau	sziehen und	Betonaust	oruch									
Charakteristische Verb	oundtragfähigkeit	im gerissener	n und unge	rissene	n Beton	C20/25	i	Γ					
I: 80°C/50°C		^τ Rk,eq,C1	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0		
I	trockener und	τ _{Rk,eq,C2}	[N/mm ²]	N	PA	3,6	3,5	3,3	2,3	N	PA		
erati	feuchter Beton,	^τ Rk,eq,C1	[N/mm ²]	6,0 6,5		7,0	7,5	7,0	6,0	6,0	6,0		
emperaturing bereight	sowie wassergefülltes	_	[N/mm²]	NPA		3,1	3,0	2,8	2,0	NI	PA		
<u>™</u> III: 160°C/100°C	Bohrloch	^τ Rk,eq,C1	[N/mm²]	5,5	5,5 5,5		6,5	6,0	5,5	5,5	5,5		
III: 160°C/100°C		τ _{Rk,eq,C2}	[N/mm²]	NI	PA	2,5	2,7	2,5	1,8	N	PA		
Reduktionsfaktor ψ^0_{sus}	_s im gerissenen u	nd ungerisse	nen Beton	C20/25									
ا: 80°C/50°C	trockener und			0,79									
Description of the control of the co	feuchter Beton, sowie wassergefülltes	Ψ^0_{sus}	[-]	0,75									
[©] III: 160°С/100°С	Bohrloch			0,66									
Erhöhungsfaktor für Be	eton ψ _c	C25/30 bis C	C50/60	1,0									
Betonausbruch		•											
Relevante Parameter						S	iehe Ta	abelle C	2				
Spalten													
Relevante Parameter						5	iehe Ta	abelle C	2				
Montagebeiwert													
für trockenen und feuchten CAC							1	,0					
Beton	HDB	γ _{inst}	[-]				1	,2					
für wassergefülltes Bol	hrloch CAC						1	,4					

Injektionssystem EHI Ultra für Beton	
Leistungen	Anhang C 12
Charakteristische Werte der Zugtragfähigkeit unter Erdbebenbelastung (Leistungskategorie C1+C2)	

Tabelle C16: Charakteristi Erdbebenbel					_		nter						
Dübelgröße Gewindestange			M8	M10	M12	M16	M20	M24	M27	M30			
Stahlversagen ohne Hebelarm				•					•				
Charakteristische Quertragfähigkeit (Leistungskategorie C1)	V _{Rk,s,eq,C1}	[kN]	0,70 • V ⁰ _{Rk,s}										
Charakteristische Quertragfähigkeit (Leistungskategorie C2) Stahl, Festigkeitsklasse 8.8 Nichtrostender Stahl A4 und HCR, Festigkeitsklasse ≥70	V _{Rk,s,eq,C2}	[kN]	NPA 0,70 • V ⁰ _{Rk,s} NP					IPA					
Teilsicherheitsbeiwert	$\gamma_{Ms,V}$	[-]	siehe Tabelle C1										
Duktilitätsfaktor	k ₇	[-]					1,0						
Stahlversagen mit Hebelarm													
Oberaktariatiaahaa Diagomomont	M ⁰ Rk,s,eq,C1	[Nm]			Leistu	ing nich	t bewert	et (NPA)				
Charakteristisches Biegemoment	M ⁰ Rk,s,eq,C2	[Nm]			Leistu	ıng nich	t bewert	et (NPA)				
Betonausbruch auf der lastabgewa	andten Seite												
Faktor	k ₈	[-]					2,0						
Montagebeiwert	γ _{inst}	[-]					1,0						
Betonkantenbruch													
Effektive Dübellänge	I _f	[mm]		m	nin(h _{ef} ; 1	12 · d _{nor}	n)		min(h _{ef}	; 300mm)			
Außendurchmesser des Dübels	d _{nom}	[mm]	8	10	12	16	20	24	27	30			
Montagebeiwert	γ _{inst}	[-]					1,0		•				
Faktor für Ringspalt	$\alpha_{\sf gap}$	[-]				0,5	(1,0) ¹⁾						

Wert in der Klammer ist für gefüllte Ringspalte zwischen der Gewindestange und dem Durchgangsloch im Anbauteil gültig. Die Verwendung der Verfüllscheibe gemäß Anhang A 3 ist notwendig.

Injektionssystem EHI Ultra für Beton	
Leistungen Charakteristische Werte der Querzugtragfähigkeit unter Erdbebenbelastung (Leistungskategorie C1+C2)	Anhang C 13

1,4

Та	Tabelle C17: Charakteristische Werte der Zugtragfähigkeit unter Erdbebenbelastung (Leistungskategorie C1)													
Düb	elgröße Betonsta	hl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stal	nlversagen													
Cha	rakteristische Zugtı	ragfähigkeit	N _{Rk,s,eq}	[kN]					1,0 • A	s • f _{uk}	1)			
Stahlspannungsquerschnitt A _s				[mm²]	50	79	113	154	201	1	452	491	616	804
Teilsicherheitsbeiwert $\gamma_{Ms,N}$ [-]									1,	4 ²⁾				
Kon	nbiniertes Versage	d Betonau	sbruc	ch										
Cha	rakteristische Verb	undtragfähigke	en und ung	geriss	enen E	Beton (20/25							
ttur-	I: 80°C/50°C	trockener und feuchter Beto	I Ink.eu	[N/mm ²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
Femperatur bereich	II: 120°C/72°C	sowie wassergefülltes	τ _{Rk,eq}	[N/mm ²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0
Ten	III: 160°C/100°C	Bohrloch	τ _{Rk,eq}	[N/mm ²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0
Red	uktionsfaktor ψ ⁰ sus	im gerissener	und ungeriss	enen Beto	ton C20/25									
tur-	I: 80°C/50°C	trockener und feuchter Beto			0,79									
Femperatur- bereich	II: 120°C/72°C	sowie	ψ^0_{sus}	[-]	0,75									
Ter	III: 160°C/100°C	wassergefüllt Bohrloch	es						0,	66				
Erhö	hungsfaktor für Be	ton ψ _c	C25/30 b	is C50/60					1	,0				
Beto	onausbruch													
Rele	evante Parameter							si	ehe Ta	abelle	C2			
Spa														
	Relevante Parameter							si	ehe Ta	abelle	C2			
	ıtagebeiwert	Γ												
	rockenen und feuch									,0				
Betc	on	HDI	3 γ _{inst}	[-]					1	,2				

¹⁾ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen Sofern andere nationalen Regelungen fehlen

CAC

für wassergefülltes Bohrloch

Injektionssystem EHI Ultra für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter Erdbebenbelastung (Leistungskategorie C1)	Anhang C 14

Tabelle C18: Charakteristische Werte der Querzugtragfähigkeit unter Erdbebenbelastung (Leistungskategorie C1)												
Dübelgröße Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen ohne Hebelarm						1						
Charakteristische Quertragfähigkeit	V _{Rk,s,eq}	[kN]	$[N]$ 0,35 • $A_s \cdot f_{uk}^{2}$									
Stahlspannungsquerschnitt	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]	1,5 ²⁾									
Duktilitätsfaktor	k ₇	[-]	1,0									
Stahlversagen mit Hebelarm	1											
Charakteristische Biegemoment	M ⁰ _{Rk,s,eq}	[Nm]			L	eistunç.	g nicht	bewert	et (NPA	A)		
Betonausbruch auf der lastabg	ewandten Se	ite										
Faktor	k ₈	[-]					2	,0				
Montagebeiwert	γ _{inst}	[-]					1	,0				
Betonkantenbruch	•	•										
Effektive Dübellänge	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mm)mm)		
Außendurchmesser des Dübels	d _{nom}	[mm]	n] 8 10 12 14 16 20 24 25 28 3						32			
Montagebeiwert	γ _{inst}	[-]					1	,0				
Faktor für Ringspalt	$\alpha_{\sf gap}$	[-]					0,5 (1,0)3)				

Injektionssystem EHI Ultra für Beton	
Leistungen Charakteristische Werte der Querzugtragfähigkeit unter Erdbebenbelastung (Leistungskategorie C1)	Anhang C 15

¹⁾ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen
2) Sofern andere nationalen Regelungen fehlen
3) Wert in der Klammer ist für gefüllte Ringspalte zwischen der Gewindestange und dem Durchgangsloch im Anbauteil gültig. Die Verwendung der Verfüllscheibe gemäß Anhang A 3 ist notwendig.

Tabelle C19: Vei	Tabelle C19: Verschiebung unter Zugbeanspruchung ¹⁾ (Gewindestange)												
Dübelgröße Gewinde	stange		М8	M10	M12	M16	M20	M24	M27	M30			
Gerissener und ungerissener Beton C20/25 unter Erdbebenbelastung (Leistungskategorie C1)													
Temperaturbereich I: 80°C/50°C	δ_{N0} -Faktor	[mm/(N/mm ²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106			
	$\delta_{N\infty}$ -Faktor	[mm/(N/mm ²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137			
Temperaturbereich II:	δ_{N0} -Faktor	[mm/(N/mm ²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110			
120°C/72°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm ²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143			
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm ²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412			
III: 160°C/100°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424			

Tabelle C20: Verschiebung unter Zugbeanspruchung¹⁾ (Betonstahl)

Dübelgröße Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Gerissener und ungerissener Beton C20/25 unter Erdbebenbelastung (Leistungskategorie C1)												
Temperaturbereich δ _{N0} -Faktor [mm/(N/		[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,108
I: 80°C/50°C δ	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,141
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113
II: 120°C/72°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148
	δ_{N0} -Faktor	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,425
III: 160°C/100°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,449

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$;

τ: einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}\text{-Faktor} \cdot \tau;$

Tabelle C21:Verschiebung unter Querbeanspruchung²⁾ (Gewindestange)

Dübelgröße Gewinde	M8	M10	M12	M16	M20	M24	M27	M30			
Gerissener und ungerissener Beton C20/25 unter Erdbebenbelastung (Leistungskategorie C1)											
Alle	δ_{V0} - Faktor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
Temperaturbereiche	$\delta_{V\infty}$ - Faktor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	

Tabelle C22: Verschiebung unter Querbeanspruchung²⁾ (Betonstahl)

Dübelgröße Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Gerissener und ungerissener Beton C20/25 unter Erdbebenbelastung (Leistungskategorie C1)												
Alle	δ_{V0} - Faktor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
Temperaturbereiche	$\delta_{V\infty}$ - Faktor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

²⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor· V;

V: einwirkende Querlast

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}\text{-Faktor}\cdot V;$

Injektionssystem EHI Ultra für Beton	
Leistungen Verschiebungen unter Erdbebenbelastung (Leistungskategorie C1) (Gewindestange und Betonstahl)	Anhang C 16

Tabelle C23: Verschiebung unter Zugbeanspruchung ¹⁾ (Gewindestange)										
Dübelgröße Gewindestange				M10	M12	M16	M20	M24	M27	M30
Gerissener und ungerissener Beton C20/25 unter Erdbebenbelastung (Leistungskategorie C2)										
Alle	$\delta_{N,eq(DLS)}$	[mm]	NPA		0,24	0,27	0,29	0,27	NPA	
Temperaturbereiche	$\delta_{N,eq(ULS)}$	[mm]			0,55	0,51	0,50	0,58	INF	-A

Tabelle C24: Verschiebung unter Querbeanspruchung (Gewindestange)

Dübelgröße Gewindestange				M10	M12	M16	M20	M24	M27	M30
Gerissener und ungerissener Beton C20/25 unter Erdbebenbelastung (Leistungskategorie C2)										
Alle	$\delta_{V,eq(DLS)}$	[mm]	NI	2.4	3,6	3,0	3,1	3,5	NF	2.4
Temperaturbereiche	$\delta_{V,eq(ULS)}$	[mm]	NPA		7,0	6,6	7,0	9,3	INF	-A

Injektionssystem EHI Ultra für Beton

Leistungen
Verschiebungen unter Erdbebenbelastung (Leistungskategorie C2) (Gewindestange)

Anhang C 17