

Zulassungsstelle für Bauprodukte und Bauarten Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts Mitglied der EOTA, der UEAtc und der WFTAO

Datum: Geschäftszeichen: 23.05.2019 I 15-1.13.4-5/18

Nummer:

Z-13.4-150

Antragsteller:

Kusser Granitwerke GmbHDreiburgenstraße 5
94529 Aicha vorm Wald

Geltungsdauer

vom: 20. Dezember 2018 bis: 20. Dezember 2021

Gegenstand dieses Bescheides:

Vorgespannte Segmentbrücken aus Granit

Der oben genannte Regelungsgegenstand wird hiermit allgemein bauaufsichtlich zugelassen/genehmigt.

Dieser Bescheid umfasst 13 Seiten und sechs Anlagen.

Der Gegenstand ist erstmals am 19. Dezember 2016 allgemein bauaufsichtlich zugelassen worden.

Seite 2 von 13 | 23. Mai 2019

I ALLGEMEINE BESTIMMUNGEN

- 1 Mit diesem Bescheid ist die Verwendbarkeit bzw. Anwendbarkeit des Regelungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- 2 Dieser Bescheid ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- 3 Dieser Bescheid wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Dem Verwender bzw. Anwender des Regelungsgegenstandes sind, unbeschadet weiter gehender Regelungen in den "Besonderen Bestimmungen", Kopien dieses Bescheides zur Verfügung zu stellen. Zudem ist der Verwender bzw. Anwender des Regelungsgegenstandes darauf hinzuweisen, dass dieser Bescheid an der Verwendungsbzw. Anwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden ebenfalls Kopien zur Verfügung zu stellen.
- Dieser Bescheid darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen diesem Bescheid nicht widersprechen, Übersetzungen müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Dieser Bescheid wird widerruflich erteilt. Die Bestimmungen können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.
- Dieser Bescheid bezieht sich auf die von dem Antragsteller gemachten Angaben und vorgelegten Dokumente. Eine Änderung dieser Grundlagen wird von diesem Bescheid nicht erfasst und ist dem Deutschen Institut für Bautechnik unverzüglich offenzulegen.
- 8 Die von diesem Bescheid umfasste allgemeine Bauartgenehmigung gilt zugleich als allgemeine bauaufsichtliche Zulassung für die Bauart.

Seite 3 von 13 | 23. Mai 2019

II BESONDERE BESTIMMUNGEN

1 Regelungsgegenstand und Verwendungs- bzw. Anwendungsbereich

1.1 Regelungsgegenstand

Regelungsgegenstand sind vorgespannte Überbauten aus Granitsegmenten für Plattenbrücken, welche als Einfeldträger ausgeführt werden. Das Tragwerk besteht aus mehreren vorgefertigten monolithischen Granitblöcken, die über verbundlose Spannglieder und Klebstoff in der Verbundfuge kraft- und formschlüssig miteinander verbunden sind. Es wird das Litzenspannverfahren mit der Zulassung Nr. Z-13.2-70 verwendet.

1.2 Anwendungsbereich

Die vorgespannten Segmentbrücken aus Granit sind für den Fußgänger- und Radverkehr gemäß DIN EN 1991-2 in Verbindung mit DIN EN 1991-2/NA mit einer Spannweite bis max. 22,0 m und einer Breite bis max. 4,0 m für eine Bemessung gemäß DIN EN 1992-2 in Verbindung mit DIN EN 1992-2/NA zugelassen. Abweichend hiervon gelten für den Granit die Materialkennwerte nach Abschnitt 3.1.6.

Die Feuerwiderstandsfähigkeit der Segmentbrücke ist nicht nachgewiesen. Gründung, Auflager und Ausstattungen sind nicht Gegenstand dieser Zulassung.

2 Bestimmungen für das Bauprodukt/die Bauprodukte

2.1 Eigenschaften und Zusammensetzung

2.1.1 Allgemeines

Es sind Zubehörteile entsprechend den Anlagen und den Technischen Lieferbedingungen, in denen Abmessungen, Material und Werkstoffkennwerte der Zubehörteile mit den zulässigen Toleranzen angegeben sind, zu verwenden. Die Technischen Lieferbedingungen sind beim Deutschen Institut für Bautechnik, der Zertifizierungsstelle und der Überwachungsstelle hinterlegt. Änderungen bedürfen grundsätzlich der Zustimmung des Deutschen Instituts für Bautechnik.

2.1.2 Bauliche Durchbildung

Der Brückenüberbau besteht aus vorgefertigten Granitsegmenten, die in Längstragrichtung aneinandergesetzt sind. Die Segmente werden durch intern geführte Spannglieder ohne Verbund zu einem Tragwerk zusammengefügt und miteinander verklebt. Die Länge der Segmente muss mindestens der doppelten Segmenthöhe entsprechen, darf jedoch 0,5 m nicht unterschreiten.

Die Richtwerte für die Bauwerkstoleranzen sind in Anlage 6 dargestellt. Weitere maßgebende Einzelmaße sind projektbezogen festzulegen.

2.1.3 Granit

Zum Einsatz kommt Granit des Typs Tittlinger Feinkorn mit der petrografischen Bezeichnung Biotitmonzogranit, fast gleichkörnig, kleinkörnig bis mittelkörnig aus dem Bruch Höhenberg, Bachstraße 27, D-94104 Tittling mit den Koordinaten 13,366 °östliche Länge und 48,744° nördliche Breite. Die Farbe des Granits ist im Detail schwarzweiß gesprenkelt, die Gesteinsstruktur richtungslos und die Kornorientierung praktisch isotrop. Der Granit hat eine Druckfestigkeit von $f_{c,k} \ge 120,0 \text{ N/mm}^2$, eine Biegezugfestigkeit von $f_{t,so,k} \ge 14,0 \text{ N/mm}^2$.

Seite 4 von 13 | 23. Mai 2019

2.1.4 Spannverfahren

Es wird das Litzenspannverfahren ohne Verbund Typ Lo des Herstellers BBV Systems GmbH mit der Stahlfestigkeit St 1570/1770 und dem Nennquerschnitt von 150 mm² je Litze verwendet. Die Verwendung in Granit nach Abschnitt 2.1.3 ist durch Lastübertragungs-versuche nachgewiesen. Es sind die Bestimmungen der Zulassung Nr. Z-13.2-70 zu beachten. Abweichend hierzu wird auf die Wendelbewehrung verzichtet, die Anzahl der Litzen auf maximal fünf Stück begrenzt und die Abmessungen der Ankerplatten sowie Achs- und Randabstände angepasst (siehe Anlage 4).

2.1.5 Epoxidharzklebstoff

Die Pressfugen der Granitblöcke werden mit einem Klebstoff, der unter Einhaltung des hinterlegten Prüfplans ein Anwendungsbereich bis 60 °C vorsieht, auf Basis von Epoxidharz zusammengefügt. Der zu verwendende Epoxidharzklebstoff sowie die Anforderungen an die Klebung sind beim Deutschen Institut für Bautechnik hinterlegt.

2.1.6 Entwässerung der Brücke

Vorgaben zur Entwässerung der Granitbrücke sind vom Bauherren zu machen.

2.1.7 Befestigungen

Für Befestigungen im Granit dürfen Verbundspreizdübel nach der europäischen technischen Bewertung ETA-04/0092 in hammergebohrten Löchern verwendet werden. Für die Bemessung dürfen maximal die Werte für ungerissenen Beton der Festigkeitsklasse C50/60 nach ETA-04/0092 angesetzt werden. Die in der ETA-04/0092 angegebenen Bestimmungen hinsichtlich Entwurf, Bemessung und Einbau sind zu beachten.

Geländerpfosten dürfen auch durch die gesamte Plattendicke durchgebolzt werden.

Bohrungen sind von Fachkräften im Werk auszuführen.

2.1.8 Auflagerung und Unterbauten

Die Auflagerung des Überbaus erfolgt in Längsrichtung als statisch bestimmtes Einfeldsystem. Die Konstruktion der Lager sowie die Brückenwiderlager sind nicht Gegenstand der Zulassung. Beanspruchungen in Querrichtung im Auflagerbereich sind gesondert nachzuweisen.

2.1.9 Ausbildung der Pressfugen

Die Fugen zwischen den Segmenten sind parallel zueinander und rechtwinklig zur Spannrichtung der Spannglieder anzuordnen. Der Abstand der Fugen ergibt sich aus der Segmentlänge, wobei die konstruktiven Vorgaben nach Abschnitt 2.1.2 einzuhalten sind.

2.2 Herstellung, Transport, Lagerung und Kennzeichnung

2.2.1 Herstellung

Die Rohblockgewinnung des Granits erfolgt im Steinbruch Höhenberg bei Tittling gemäß DIN EN 1467. Im Granitsägewerk werden die Rohblöcke zu Rohtranchen verarbeitet, sandgestrahlt und in die einzelnen Brückensegmente aufgeteilt. Unterseitige Nuten für die Spannglieder werden durch das Vorsägen von Schlitzen im Abstand von etwa 20 mm und das anschließende Abschlagen der verbleibenden Stege erzeugt. Mit Diamantfräsen wird der planmäßige Nutgrund hergestellt und die Kontaktflächen für eine senkrechte Lasteinleitung im Auflagerbereich vorbereitet.

Das Verkleben der Granitsegmente erfolgt mit einem Epoxidharzklebstoff nach Abschnitt 2.1.5.

Seite 5 von 13 | 23. Mai 2019

Der Klebstoff wird auf die eine Kontaktfläche dünn und eben und auf die Andere mit Hilfe einer Schablone bauchig und hohlraumfrei aufgetragen. Die Segmente werden anschließend zusammen gepresst. Die mittlere Schichtdicke des Fugenklebers darf 2 mm nicht überschreiten. Erst nach dem Erhärten des Epoxidharzmörtels an einer Fuge wird die nächste Verklebung ausgeführt. Die schrägen Bohrungen an den Randsegmenten erfolgen erst nach dem Verkleben der zu durchbohrenden Segmente, um einen Versatz des Bohrloches auszuschließen. Bei geradlinigem Spanngliedverlauf dürfen die Segmente auch einzeln durchbohrt werden. Es sind die Aussparungen und Bohrlöcher zu überprüfen. Knicke und Verschmutzungen sind unzulässig.

Die PE-Hüllrohre der Spannglieder werden entsprechend den Planvorgaben zugeschnitten und die Monolitzen eingeführt. Bei dem Verlegen der Litzen in den Nuten und Bohrungen ist auf eine symmetrische Auffächerung der Litzen nach Zulassung Nr. Z-13.2-70, Anlage 11 zu achten. Insbesondere im Bereich von Krümmungen muss sich jede Monolitze auf den Granit abstützen. An den Plattenstößen im Bereich der Nut ist durch Nachbearbeitung ein gleichmäßiger Übergang ohne Versatz zwischen den Segmenten herzustellen.

Nach einer Aushärtezeit des Klebstoffes von mindestens 12 Stunden bei einer Temperatur von mindestens 15 °C erfolgt die Montage der Spannanker und das Vorspannen entsprechend der Zulassung Nr. Z-13.2-70 sowie der Spannanweisung der statischen Berechnung.

Abweichend hierzu entfällt das Fixieren und Abdichten des Überschubröhrchens am Spannanker bedingt durch die nicht ausreichend gegebene Zugänglichkeit. Schließlich sind die Bohrungen und Ankertaschen mit "V1/10 Pagel Vergussmörtel" von Pagel Spezial-Beton GmBH und Co. KG nach DIN EN 1504-6 zu verfüllen. Der Ankerkopf ist zuvor mit einer geeigneten Abdeckung (z. B. aus Polystyrol) zu verkleiden, um Spannungsrisse infolge der unterschiedlichen thermischen Ausdehnungen der Materialien zu vermeiden.

2.2.2 Verpackung, Transport und Lagerung

Der Überbau der Segmentbrücke wird im vorgespannten Zustand als Ganzes auf die Baustelle transportiert. Erforderlichenfalls sind die Bauzustände während des Transportes und des Einbaus nach Abschnitt 3.1.8.6 nachzuweisen.

2.2.3 Kennzeichung

Der Lieferschein für die vorgespannten Segmentbrücken aus Granit muss vom Hersteller mit dem Übereinstimmungszeichen (Ü-Zeichen) nach den Übereinstimmungszeichen-Verordnungen der Länder gekennzeichnet sein. Die Kennzeichnung darf nur erfolgen, wenn die Voraussetzungen nach Abschnitt 2.3 Übereinstimmungsnachweis erfüllt sind.

2.3 Übereinstimmungsnachweis

2.3.1 Allgemeines

Die Bestätigung der Übereinstimmung der vorgespannten Segmentbrücke aus Granit mit den Bestimmungen dieser Zulassung muss für das Herstellwerk mit einem Übereinstimmungszertifikat auf der Grundlage einer werkseigenen Produktionskontrolle und einer regelmäßigen Fremdüberwachung einschließlich einer Erstprüfung des Bauprodukts nach Maßgabe der folgenden Bestimmungen erfolgen.

Für die Erteilung des Übereinstimmungszertifikats und die Fremdüberwachung einschließlich der dabei durchzuführenden Produktprüfungen hat der Hersteller des Bauprodukts eine hierfür anerkannte Zertifizierungsstelle sowie eine hierfür anerkannte Überwachungsstelle einzuschalten.

Die Erklärung, dass ein Übereinstimmungszertifikat erteilt ist, hat der Hersteller durch Kennzeichnung der Bauprodukte mit dem Übereinstimmungszeichen (Ü-Zeichen) unter Hinweis auf den Verwendungszweck abzugeben.

Dem Deutschen Institut für Bautechnik ist von der Zertifizierungsstelle eine Kopie des von ihr erteilten Übereinstimmungszertifikats und eine Kopie des Erstprüfberichts zur Kenntnis zu geben.

Seite 6 von 13 | 23. Mai 2019

Der Prüf- und Überwachungsplan ist beim DIBt hinterlegt.

2.3.2 Werkseigene Produktionskontrolle

In jedem Herstellwerk ist eine werkseigene Produktionskontrolle einzurichten und durchzuführen. Unter werkseigener Produktionskontrolle wird die vom Hersteller vorzunehmende kontinuierliche Überwachung der Produktion verstanden, mit der dieser sicherstellt, dass die von ihm hergestellten Bauprodukte den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung entsprechen.

Die werkseigene Produktionskontrolle muss mindestens die im Prüfplan aufgeführten Maßnahmen umfassen. Der Prüfplan ist beim Deutschen Institut für Bautechnik und der für die Überwachung eingeschalteten Stelle hinterlegt.

Die Ergebnisse der werkseigenen Produktionskontrolle sind aufzuzeichnen und auszuwerten. Die Aufzeichnungen müssen mindestens folgende Angaben enthalten:

- Bezeichnung des Bauprodukts bzw. des Ausgangsmaterials und der Bestandteile
- Art der Kontrolle oder Prüfung
- Datum der Herstellung und der Prüfung des Bauprodukts bzw. des Ausgangsmaterials oder der Bestandteile
- Ergebnis der Kontrollen und Prüfungen und, soweit zutreffend, Vergleich mit den Anforderungen
- Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen.

Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren und der für die Fremdüberwachung eingeschalteten Überwachungsstelle vorzulegen. Sie sind dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

Bei ungenügendem Prüfergebnis sind vom Hersteller unverzüglich die erforderlichen Maßnahmen zur Abstellung des Mangels zu treffen. Bauprodukte, die den Anforderungen nicht entsprechen, sind so zu handhaben, dass Verwechslungen mit übereinstimmenden ausgeschlossen werden. Nach Abstellung des Mangels ist – soweit technisch möglich und zum Nachweis der Mängelbeseitigung erforderlich – die betreffende Prüfung unverzüglich zu wiederholen.

Der technische Bereich des Herstellers muss über einen Ingenieur mit mindestens fünf Jahren Berufserfahrung in der Verarbeitung von Granit sowie einen Ingenieur mit mindestens fünf Jahren Berufserfahrung in der Anwendung von Spannverfahren verfügen. Maßgebende technische Fachkräfte, die mit der Granitbearbeitung bzw. mit Arbeiten am Spannverfahren betraut sind, sollten mindestens über drei Jahre Berufserfahrung im jeweiligen Bereich verfügen.

Der Hersteller muss folgende Unterlagen in jeweils aktueller Fassung bereithalten:

Dokumentation über die betrieblichen Voraussetzungen, aus der mindestens folgende Punkte hervorgehen:

- Aufbau des technischen Bereichs und Verantwortlichkeiten der Mitarbeiter,
- Nachweis der Qualifikation des eingesetzten Personals,
- Nachweis der regelmäßig durchgeführten Schulungen,
- Ansprechpartner in Bezug auf die Herstellung des Tragwerks,
- Kontroll- und Ablagesystem.

Es darf nur Granit verwendet werden, für den ein amtlich anerkanntes Prüfzeugnis über die Materialeigenschaften Druckfestigkeit, Biegezugfestigkeit, Spaltzugfestigkeit, Elastizitätsmodul, Frostbeständigkeit und Rohdichte vorliegt. Die Prüfhäufigkeit richtet sich nach dem beim DIBt hinterlegten Prüfplan.

Seite 7 von 13 | 23. Mai 2019

2.3.3 Fremdüberwachung

In jedem Herstellwerk ist die werkseigene Produktionskontrolle durch eine Fremdüberwachung regelmäßig zu überprüfen, mindestens jedoch halbjährlich.

Im Rahmen der Fremdüberwachung ist eine Erstprüfung des Bauprodukts und der Produktionsbedingungen durchzuführen und es können auch Proben für Stichprobenprüfungen entnommen werden. Die Probeentnahmen und Prüfung obliegen jeweils der anerkannten Überwachungsstelle. Im Rahmen der Überprüfung der werkseigenen Produktionskontrolle sind mindestens die im hinterlegten Prüf- und Überwachungsplan angegebenen Prüfungen durchzuführen.

Die Ergebnisse der Zertifizierung und Fremdüberwachung sind mindestens zwölf Jahre aufzubewahren. Sie sind von der Zertifizierungsstelle bzw. der Überwachungsstelle dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

3 Bestimmungen für Planung, Bemessung und Ausführung

3.1 Bestimmungen für Planung und Bemessung

3.1.1 Allgemeines

Die Bestimmung der Beanspruchbarkeit des Granits erfolgt unter Anwendung der Regeln für Fassadenplatten gemäß DIN EN 1469.

Die Bemessung für den Granit erfolgt unter Anwendung der Regeln für unbewehrten Beton unter Nutzung der Materialkennwerte nach Abschnitt 3.1.6. Abweichend von DIN EN 1992-1-1 in Verbindung mit DIN EN 1992-1-1/NA ist für die Festigkeit des Granits ein Materialsicherheitsbeiwert von 1,8 zu beachten.

Des Weiteren sind für die Spanngliedausführung die Angaben nach der Zulassung Nr. Z-13.2-70 zu beachten. Der Tragwerksplaner muss für die Bemessung über Erfahrungen im Spannbetonbau und Granitbrückenbau verfügen.

Die Bemessung für das Zusammenwirken der einzelnen Granitblöcke in Längsrichtung erfolgt unter Nutzung der Regeln für den Stahl- und Spannbetonbau gemäß DIN EN 1992-2 in Verbindung mit DIN EN 1992-2/NA sowie DIN EN 1992-1-1. Weiterhin gelten die "Empfehlungen für Segmentfertigteilbrücken mit externen Spanngliedern"¹.

Die Festigkeiten des Granits und der Klebefuge sind zu berücksichtigen.

Bei ungünstigem Kleinklima und Tausalzbelastung ist eine leichte Abwitterung durch Salzkristallation nicht ausgeschlossen. Daher sollte bei geplantem Einsatz von Tausalz im Winter auf der Unterseite ein Abwitterungszuschlag von 5 mm berücksichtigt werden. Zudem sind Tropfnasen am Brückenrand und eine Abdichtung eventueller Bohrungen für Geländerbefestigungen vorzusehen.

3.1.2 Abmessungen und Umlenkung

Das Spannglied muss auf eine Länge von mindestens 100 cm hinter der Ankerplatte geradlinig geführt werden. Die Ankerplatte ist senkrecht hierzu anzuordnen.

Es sind die Mindestabmessungen für die Rand- und Achsabstände sowie die Abmessungen der Spannnische nach Anlage 4 zu beachten.

An offenen Nuten und an den Umlenkstellen werden die Spannglieder in einem zweiten PE-Hüllrohr geführt.

Empfehlungen für Segmentfertigteilbrücken mit externen Spanngliedern, 1999 vom Bundesministerium für Verkehr, Bau- und Wohnungswesen

Seite 8 von 13 | 23. Mai 2019

3.1.3 Lastannahmen

Die Lasteinwirkungen werden nach DIN EN 1991-2 in Verbindung mit DIN EN 1991-2/NA ermittelt oder in Übereinstimmung mit den geltenden technischen Baubestimmungen gesondert mit dem Bauherren vereinbart.

Die Einwirkungen aus Dienstfahrzeugen nach DIN EN 1991-2, Abschnitt 5.3.2.3 sind projektbezogen nach DIN EN 1991-2, Abschnitt 5.6.3 zu berücksichtigen. Klimatische Beanspruchungen sind in Abstimmung mit dem Bauherren zu berücksichtigen. Die Möglichkeit des Austausches von einzelnen Spanngliedern und Brückenlagern ist zu gewährleisten.

Anpralllasten aus Straßenfahrzeugen unterhalb der Brücke sind nachzuweisen oder von zusätzlich anzuordnenden Schutzeinrichtungen aufzunehmen. Es ist der Lastfall einseitige Verkehrslast nachzuweisen.

3.1.4 Zulässige Vorspannkräfte

Am Spannende des Spannglieds BBV Lo1 darf abweichend von DIN EN 1992-1-1, Abschnitt 5.10.2.1, Gleichung (5.41) die aufgebrachte Höchstkraft P_{max} die in Tabelle 1 aufgeführte Kraft $P_{max} = 0.75$ A $_p$ f $_{pk}$ nicht überschreiten. Der Mittelwert der Vorspannkraft $P_{m0}(x)$ unmittelbar nach dem Absetzen der Pressenkraft auf die Verankerung darf abweichend von DIN EN 1992-1-1, Abschnitt 5.10.3, Gleichung (5.43) die in Tabelle 1 aufgeführte Kraft $P_{m0}(x) = 0.70$ A $_p$ f $_{pk}$ an keiner Stelle überschreiten. Für die Spannglieder BBV Lo3, Lo4 und Lo5 gelten die Vorgaben nach DIN EN 1992-1-1, Abschnitt 5.10.2.1, Gleichung (5.41) bzw. Abschnitt 5.10.3, Gleichung (5.43). Nach DIN EN 1992-1-1, Abschnitt 7.2 (5) darf im Grenzzustand der Gebrauchstauglichkeit die Spannstahlspannung infolge quasi-ständiger Einwirkungskombination 0,65 f $_{pk}$ nicht überschreiten.

Tabelle 1: Zulässige Vorspannkräfte

Spann- Anzah glied Litzer		Vorspannkraft St 1570/1770 f _{p0,1k} = 1500 N/mm ²			
3		P _{m0} (x) [kN]	P _{max} [kN]		
BBV Lo1	1	186	199		
BBV Lo4 ²	2	357	378		
BBV Lo3	3	536	567		
BBV Lo4	4	714	756		
BBV Lo5	5	893	945		

Ein Überspannen nach DIN EN 1992-1-1, 5.10.2.1 (2) ist nicht zulässig.

3.1.5 Weiterleitung der Kräfte im Granit

Die Eignung der Verankerung für die Überleitung der Spannkräfte auf den Granit unter Verzicht auf die Wendel- bzw. Zusatzbewehrung ist nachgewiesen.

3.1.6 Granit

Für den Granit ist ein Dauerstandsbeiwert von α = 0,8 sowie ein Materialsicherheitsbeiwert nach DIN 18516-3 von $\gamma_{\rm M}$ = 1,8 anzusetzen. Die Bemessungswerte für die Nachweise im Grenzzustand der Tragfähigkeit betragen:

Bemessungswert der Druckfestigkeit:

$$f_{cd} = \alpha f_{ck} / \gamma_M$$
 mit $f_{ck} = 120,0 \text{ N/mm}^2$

Durch Fortlassen von zwei Litzen gemäß Zulassung Nr. Z-13.2-70.

Seite 9 von 13 | 23. Mai 2019

- Bemessungswert der Biegezugfestigkeit:

$$f_{td} = \alpha f_{tk} / \gamma_M$$
 mit $f_{tk} = 12,0 \text{ N/mm}^2$

- Bemessungswert der Spaltzugfestigkeit:

$$f_{td,sp} = \alpha f_{tk,sp} / \gamma_M$$
 mit $f_{tk,sp} = 14,0 \text{ N/mm}^2$

Im Bereich der Nut ist der Bemessungswert der Biegezugfestigkeit auf 65 % abzumindern.

Des Weiteren sind für den Granit folgende Materialkennwerte zu berücksichtigen:

- Bemessungswert für den Elastizitätsmodul auf Druck und Zug:

$$E_d = 34.000 \text{ N/mm}^2$$

Rohdichte:

$$\rho = 2.7 \text{ t/m}^3$$

Querdehnzahl:

$$\mu = 0.15$$

- Linearer Wärmeausdehnungskoeffizient:

$$\alpha = 7 \cdot 10^{-6} \text{ 1/K}$$

3.1.7 Epoxidharzklebstoff

Der Bemessungswert des Klebstoffes im Grenzzustand der Tragfähigkeit für ständige und vorübergehende Lastkombinationen beträgt:

Bemessungswert der Drucktragfähigkeit:

$$\sigma_{Rd} = 40 \text{ N/mm}^2$$

- Bemessungswert der Schubtragfähigkeit:

$$\tau_{Rd} = 3 \text{ N/mm}^2$$

3.1.8 Bemessung im Grenzzustand der Tragfähigkeit

3.1.8.1 Nachweis für Biegemoment und Längskraft in den Fugen

Der Nachweis der klaffenden Fuge erfolgt in Anlehnung an die "Empfehlungen für Segmentfertigteilbrücken mit externen Spanngliedern"³.

Für den Nachweis ist die maßgebende Lastfallkombination aus ständigen und vorübergehenden Lasten unter Berücksichtigung zeitabhängiger Spannkraftverluste anzusetzen. Die Druckzone muss für alle Lastfallkombinationen mindestens 1/3 der Querschnittshöhe betragen.

Spaltzugspannungen infolge exzentrischer Lasteinleitung in der Kontaktfuge dürfen den Bemessungswert der Spaltzugfestigkeit des Granits nach Abschnitt 3.6 nicht überschreiten.

Die Zugfestigkeit des Klebstoffs darf nicht angesetzt werden.

3.1.8.2 Nachweis der Querkraft in den Fugen

Der Querkraftnachweis in den Fugen ist für die maßgebende Lastfallkombination nach DIN EN 1990 zu führen. Der Bemessungswert der Einwirkungen wird in Anlehnung an DIN EN 1990/NA/A1, Tabelle NA.A2.1 ermittelt. Der Nachweis ist im überdrückten Bereich mit dem Bemessungswert der Schubfestigkeit für den Klebstoff nach Abschnitt 3.1.7 zu führen.

3.1.8.3 Nachweis der Querkraft in den Granitsegmenten

Der Querkraftnachweis für den Granit erfolgt in Anlehnung an DIN EN 1992-1-1 in Verbindung mit DIN EN 1992-1-1/NA, Abschnitt 12.6.3 für unbewehrten Beton mit einer Umrechnung der Biegezugfestigkeit aus Abschnitt 3.6 nach DIN EN 1992-1-1 in Verbindung mit DIN EN 1992-1-1/NA, Abschnitt 3.1.2. Der Nachweis ist nur für den Rechteckquerschnitt im überdrückten Bereich zu führen.

Empfehlungen für Segmentfertigteilbrücken mit externen Spanngliedern, 1999 vom Bundesministerium für Verkehr, Bau- und Wohnungswesen

Seite 10 von 13 | 23. Mai 2019

3.1.8.4 Nachweis in Querrichtung

Der Nachweis auf Biegung erfolgt in Anlehnung an DIN EN 1992-1-1 in Verbindung mit DIN EN 1992-1-1/NA. Der Bemessungswert der Biegezugfestigkeit des Granits ist in Abschnitt 3.1.6 angegeben.

Der Querkraftnachweis ist nach DIN EN 1992-1-1 in Verbindung mit DIN EN 1992-1-1/NA, Abschnitt 12.6.3 mit einer Umrechnung der Biegezugfestigkeit aus Abschnitt 3.1.6 nach DIN EN 1992-1-1 in Verbindung mit DIN EN 1992-1-1/NA, Abschnitt 3.1.2 zu führen.

Es ist auch der Bauzustand in der Achse der Kranseile nachzuweisen.

3.1.8.5 Nachweis der Einleitung der Vorspannkräfte

Durch Einhaltung der konstruktiven Vorgaben nach Anlage 4 ist der Nachweis der Lasteinleitung erbracht.

3.1.8.6 Nachweis im Bauzustand

Falls entsprechend der Bemessung erforderlich, ist eine Ballastierung der Brücke beim Transport und bei der Montage vorzusehen.

3.1.8.7 Weitere Nachweise

Zur Bemessung der Spannnischen unter Radlast, der Geländerbefestigung und der Befestigung der Querkraftdorne im Auflagerbereich kann der Granit linear elastisch gerechnet werden. Es gelten die Bemessungswerte nach Abschnitt 3.1.6.

3.1.9 Bemessung im Grenzzustand der Gebrauchstauglichkeit

3.1.9.1 Nachweis der Dekompression

Der Nachweis der Dekompression ist für die häufige Einwirkungskombination am oberen und unteren Rand des Querschnitts zu führen. Es sind die charakteristischen Werte der Vorspannkraft nach DIN EN 1992-1-1 in Verbindung mit DIN EN 1992-1-1/NA, Abschnitt 5.10.9 anzusetzen. Es ist auch der Bauzustand mit der verkürzten Spannweite in der Achse der Kranseile nachzuweisen.

3.1.9.2 Nachweis der Verformung

Der Gradient ist projektbezogen zu definieren und entsprechend einzuhalten. Die Durchbiegung unter quasi-ständiger Einwirkungskombination ist auf 1/500 der Stützweite zu begrenzen.

3.1.9.3 Nachweis des Schwingungsverhaltens

Der Nachweis des Schwingungsverhaltens erfolgt in Anlehnung an DIN EN 1991-2 in Verbindung mit DIN EN 1991-2/NA, Abschnitt 5 und DIN EN 1992-2 in Verbindung mit DIN EN 1992-2/NA Abschnitt NA.7.105.4.

3.1.9.4 Nachweis bei schiefwinkligen Brücken

Auch bei im Grundriss schiefwinkligen Brücken sind die Segmentfugen in Querrichtung rechtwinklig zu den Spanngliedern anzuordnen. Die Schiefwinkligkeit ist durch die Größe des Randsegments begrenzt. Die Verankerung des Spanngliedes muss mindestens die zweifache Bauteildicke von der Segmentfuge entfernt sein. Es ist nachzuweisen, dass die Zugspannungen infolge der Verdrillung der Brücke durch den Granit aufgenommen werden.

3.1.10 Bemessung im Grenzzustand der Ermüdung

Für Geh- und Radwegbrücken braucht nach DIN EN 1992-2/NA, Abschnitt 6.8.1 kein Ermüdungsnachweis geführt zu werden. Die planmäßige Ermüdungsbeanspruchung mit mehr als 10.000 Lastwechseln durch Dienst- und Sonderfahrzeuge ist durch diese Zulassung nicht erfasst.

Seite 11 von 13 | 23. Mai 2019

3.2 Bestimmung für die Ausführung

3.2.1 Allgemeines

Neben den für Spannverfahren relevanten Anforderungen nach DIN EN 13670 in Verbindung mit DIN 1045-3 gelten die "DIBt-Grundsätze für die Anwendung von Spannverfahren⁵".

3.2.2 Anforderungen und Verantwortlichkeiten

Für die Anforderungen und Verantwortlichkeiten der ausführenden Spezialfirma gelten die "DIBt-Grundsätze für die Anwendung von Spannverfahren⁴".

3.2.3 Ausführung

Für die Ausführung der Granitbrücke sind die Regeln für Betonfertigteile nach DIN 1045-4 sinngemäß zu beachten.

Ausführende Spezialfirmen müssen für die Anwendung des Spannverfahrens und bei der Granitverarbeitung durch den Hersteller auf der Grundlage der allgemeinen Verfahrensbeschreibung nach Abschnitt 2.3.2 umfassend geschult und autorisiert sein.

Die Brücke darf in jedem Fall erst sieben Tage nach der letzten Segmentverklebung ausgeliefert werden. Eine Belastung mit Verkehrslasten ist frühestens 14 Tage nach der Montage zulässig oder bei vorzeitigem Nachweis einer hinreichenden Aushärtung des Klebstoffes. Weite Vorgaben hierzu sind dem beim DIBt hinterlegten Prüf- und Überwachungsplan zu entnehmen.

3.2.4 Korrosionsschutz

Es gelten die Vorgaben nach der allgemeinen bauaufsichtlichen Zulassung des Spannverfahrens Z-13.2-70. Am Übergang PE-Rohrstutzen und PE-Mantel der Litzen wird am Spannanker auf das Klebeband nach Z-13.2-70 verzichtet. Der Korrosionsschutz der Litze ist in diesem Bereich durch den Vergussmörtel gegeben.

3.2.5 Ausführende Unternehmen

Der Einbau des Überbaus darf nur von Unternehmen durchgeführt werden, die über ausreichende Sachkenntnis und Erfahrung mit der Erstellung von Granittragwerken haben. Der für die Baustelle verantwortliche Ingenieur erhält eine entsprechende Bescheinigung von dem Antragsteller.

3.2.6 Kontrollen am fertigen Überbau

Es sind die Toleranzen nach Anlage 6 einzuhalten. Die Gradientengenauigkeit und Ebenflächigkeit ist nach den Vorgaben der Bauherren auszuführen.

3.2.7 Übereinstimmungserklärung

Die bauausführende Firma hat zur Bestätigung der Übereinstimmung der Bauart mit der allgemeinen Bauartgenehmigung eine Übereinstimmungserklärung gemäß §§16a Abs. 5, 21 Abs. 2 MBO abzugeben. Die Bescheinigung ist dem Bauherrn zur ggf. erforderlichen Weiterleitung an die zuständige Bauaufsichtsbehörde auszuhändigen.

4 Bestimmungen für Nutzung, Unterhalt und Wartung

Die vorgespannte Brücke aus Granit darf nicht mit Stoffen in Berührung kommen, die für den Granit, den Klebstoff oder das Spannverfahren schädigend wirken. Bei Einsatz von Tausalz im Winter ist bei der regelmäßigen Prüfung und Überwachung des Bauwerks nach DIN 1076 auch zu prüfen, ob und gegebenenfalls welche Absandungen durch Salzkristallisation vorliegen.

Veröffentlicht in den DIBt-Mitteilungen 37 (2006), Heft 4

Seite 12 von 13 | 23. Mai 2019

Die Granitbrücke darf nur in Absprache mit einem hierfür anerkannten Sachverständigen zusätzlich durch Anstriche, Beschichtungen oder ähnliches behandelt werden. Die Brücken dürfen nur mit Wasser oder anderen für die Materialien unschädlichen Stoffen gereinigt werden.

Die in DIN 1076 angegebenen Festlegungen hinsichtlich der regelmäßigen Prüfung und Überwachung des Bauwerks sind einzuhalten.

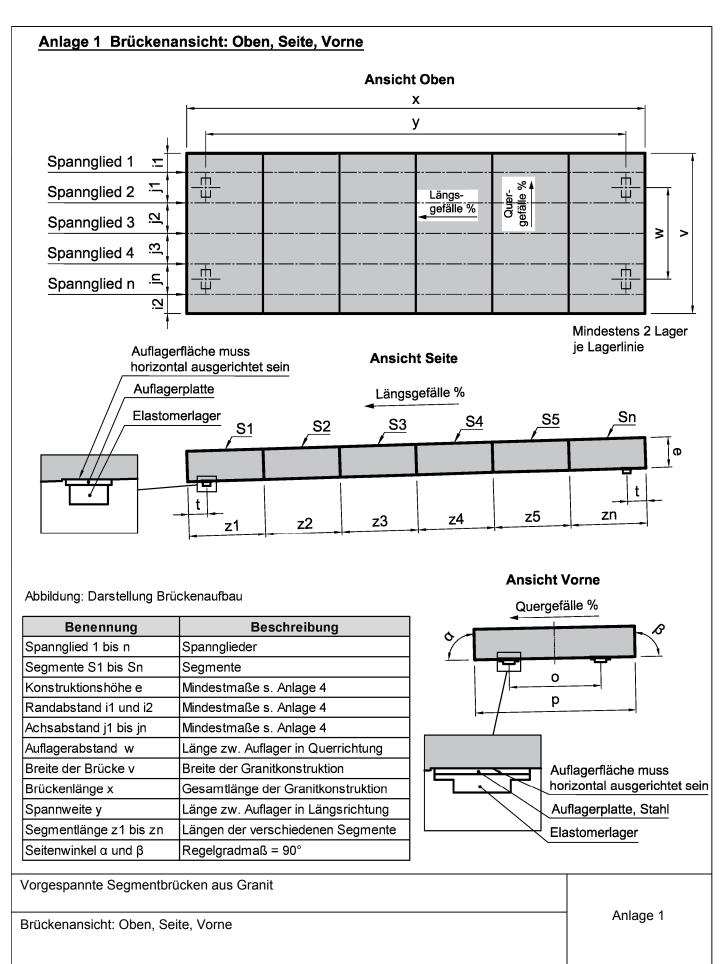
Der Bauherr hat die Brücke regelmäßig durch einen hierfür anerkannten Sachverständigen überprüfen und warten zu lassen. Der für die regelmäßige Zustandskotrolle beauftragte Sachverständige hat die Eignung der Konstruktion über ein Protokoll zu bescheinigen. Die Bescheinigung ist vom Betreiber für mindestens zwölf Jahre aufzubewahren und auf Verlangen der obersten Bauaufsichtsbehörde bzw. dem Deutschen Institut für Bautechnik vorzulegen.

Der Bauherr ist vom Hersteller auf diese Bestimmungen ausdrücklich hinzuweisen.

Folgende Bestimmungen werden in der allgemeinen bauaufsichtlichen Zulassung in Bezug genommen:

Z-13.2-70	BBV Litzenspannverfahren Typ Lo 140 mm² und 150 mm² ohne Verbund (mit aktueller Gültigkeit)
ETA-04/0092 vom 22. April 2015	MKT Injektionssystem VMZ; Kraftkontrolliert spreizender Verbunddübel mit Ankerstange VMZ-A und Innengewindehülse VMZ-IG zur Verankerung im Beton
DIN EN 1467:2004-03	Naturstein – Rohblöcke – Anforderungen; Deutsche Fassung EN 1467:2003.
DIN EN 1469:2015-05	Natursteinprodukte – Bekleidungsplatten - Anforderungen; Deutsche Fassung EN 1469:2015
DIN EN 1504-6:2006-11	Produkte und Systeme für den Schutz und die Instandsetzung von Betontragwerken – Definitionen, Anforderungen, Qualitätsüberwachung und Beurteilung der Konformität – Teil 6: Verankerung von Bewehrungsstäben; Deutsche Fassung EN 1504-6:2006
DIN EN 1990:2010-12	Eurocode: Grundlagen der Tragwerksplanung; Deutsche Fassung EN 1990:2002 + A1:2005 + A1:2005/AC:2010
DIN EN 1990/NA:2010-12 + A1	Nationaler Anhang – National festgelegte Parameter – Eurocode: Grundlagen der Tragwerksplanung + Änderung A1:2012-08
DIN EN 1991-2:2010-12	Eurocode 1: Einwirkungen auf Tragwerke – Teil 2: Verkehrslasten auf Brücken; Deutsche Fassung EN 1991-2:2003 + AC:2010
DIN EN 1991-2/NA:2012-08	Nationaler Anhang - National festgelegte Parameter – Eurocode 1: Einwirkungen auf Tragwerke – Teil 2: Verkehrslasten auf Brücken
DIN EN 1992-1-1:2011-01 + A1	Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Deutsche Fassung EN 1992-1-1:2004+AC:2010 + Änderung A1:2015-03
DIN EN 1992-1-1/NA:2013-04 + A1	Nationaler Anhang - National festgelegte Parameter - Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau + Änderung

Z27548.19 1.13.4-5/18


A1:2015-12

Seite 13 von 13 | 23. Mai 2019

DIN EN 1992-2:2010-12	Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 2: Betonbrücken – Bemessungs- und Konstruktionsregeln; Deutsche Fassung EN 1992-2:2005 + AC:2008
DIN EN 1992-2/NA:2013-04	Nationaler Anhang - National festgelegte Parameter - Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 2: Betonbrücken – Bemessungs- und Konstruktionsregeln
DIN EN 13670:2011-03	Ausführung von Tragwerken aus Beton; Deutsche Fassung EN 13670:2009
DIN 1045-3:2012-03	Tragwerke aus Beton, Stahlbeton und Spannbeton – Teil 3: Bauausführung – Anwendungsregeln zu DIN EN 13670.
DIN 1045-4:2012-02	Tragwerke aus Beton, Stahlbeton und Spannbeton – Teil 4: Ergänzende Regeln für die Herstellung und die Konformität von Fertigteilen
DIN 1076:1999-11	Ingenieurbauwerke im Zuge von Straßen und Wegen - Überwachung und Prüfung
DIN 18516-3:2013-09	Außenwandbekleidungen hinterlüftet – Teil 3: Naturwerkstein; Anforderungen, Bemessung
DrIng. Lars Eckfeldt Referatsleiter	Beglaubigt

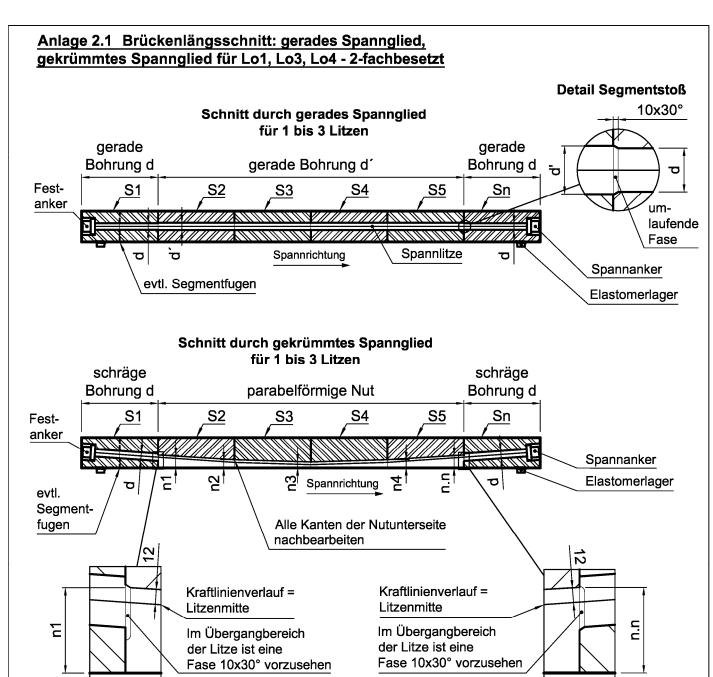
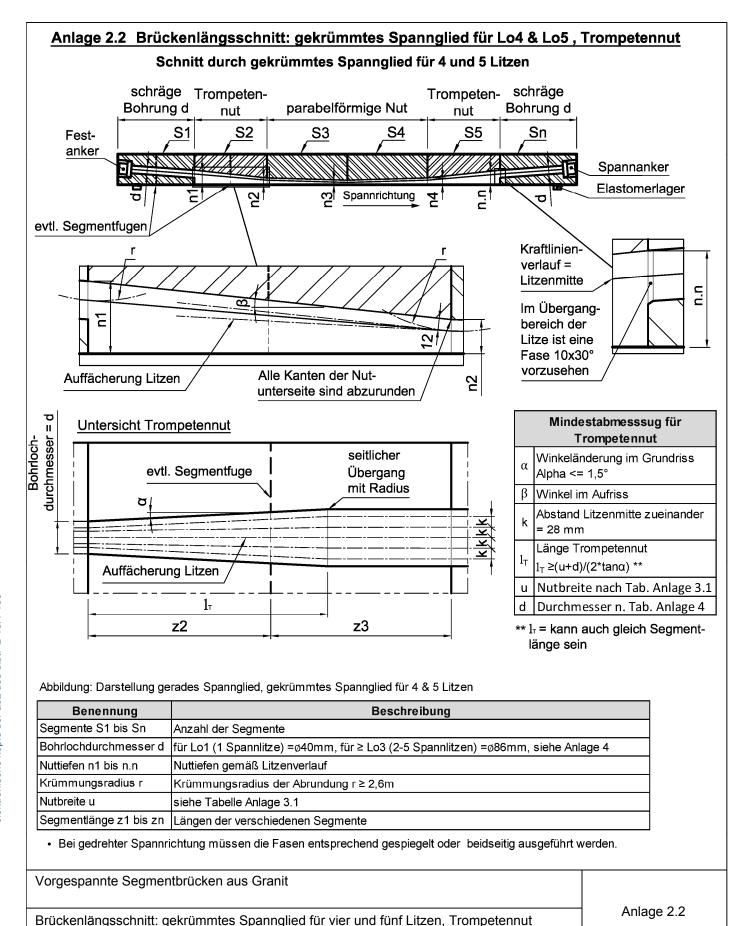


Abbildung: Darstellung gerades Spannglied, gekrümmtes Spannglied für 1 bis 3 Litzen

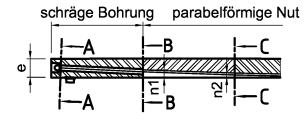

Benennung	Beschreibung
Segmente S1 bis Sn	Anzahl der Segmente
Bohrlochdurchmesser d	für Lo1 (1 Spannlitzen) =ø40mm, für ≥ Lo3 (2-5 Spannlitzen) =ø86mm
Bohrlochdurchmesser d'	für Lo1 (1 Spannlitzen) =ø50mm, für ≥ Lo3 (2-5 Spannlitzen) =ø95mm
Nuttiefen n1 bis n.n	Nuttiefen entsprechend des parabelförmigen Litzenverlaufs

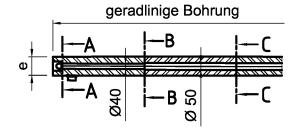
· Bei gedrehter Spannrichtung müssen die Fasen entsprechend gespiegelt oder beidseitig ausgeführt werden.

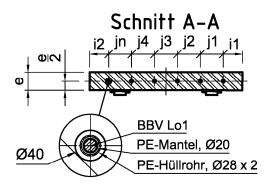
Vorgespannte Segmentbrücken aus Granit		
Brückenlängsschnitt: gerades Spannglied, gekrümmtes Spannglied für ein bis drei Litzen	Anlage 2.1	

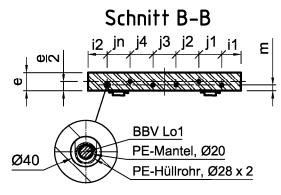
Z27565.19 1.13.4-5/18

Z27565.19 1.13.4-5/18




Anlage 3.1 Brückenquerschnitt: Bohrungs- & Nutanordnung; Litzenverlauf


Anordnung der Spannglieder: Beispiel eine Litze, 4 umgelenkte und 2 gerade Spannglieder


Schnitt durch parabelförmiges Spannglied

Schnitt durch gerades Spannglied

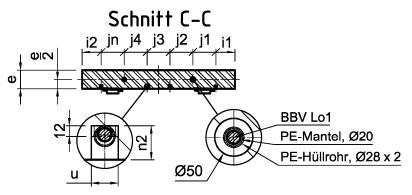


Abbildung: Darstellung Brückenquerschnitt, Bohrungs- & Nutanordnung für Beispiel Spannglied mit 1 Litze

Benennung	Beschreibung
Konstruktionshöhe e	Mindestmaße s. Anlage 4
Randabstand i1 & i2	Mindestmaße s. Anlage 4
Achsabstand j1 bis jn	Mindestmaße s. Anlage 4
Nuttiefen n1 & n2	Nuttiefen gemäß Litzenverlauf
Nutbreite u	siehe Tabelle

Nutbreite gemäß Litzenanzahl

Litzen-	Nutbreite u		
anzahl	[mm]		
1	35		
2	65		
3	95		
4	120		
5	150		

Vorgespannte Segmentbrücken aus Granit

Brückenquerschnitt: Bohrungs- & Nutanordnung, Litzenverlauf

Anlage 3.1

Anlage 3.2 Brückenquerschnitt: Bohrungs- & Nutanordnung, Litzenverlauf

Anordnung der Spannglieder: Beispiel fünf Litzen, 4 umgelenkte und 2 gerade Spannglieder

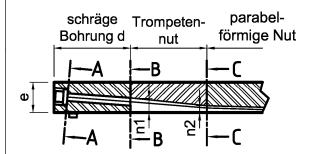
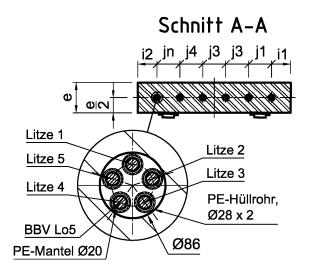
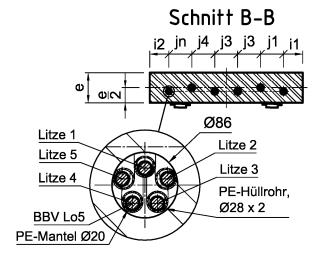
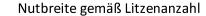
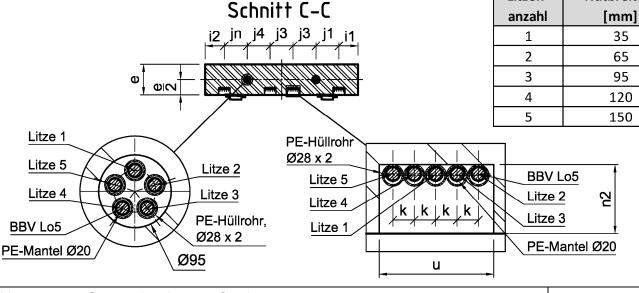





Abbildung: Darstellung Brückenquerschnitt, Bohrungs-& Nutanordnung für Beispiel Spannglied mit 5 Litzen

Benennung	Beschreibung
Konstruktionshöhe e	Mindestmaße s. Anlage 4
Randabstand i1 & i2	Mindestmaße s. Anlage 4
Achsabstand j1 bis jn	Mindestmaße s. Anlage 4
Nuttiefen n1 & n2	Nuttiefen gemäß Litzenverlaufs

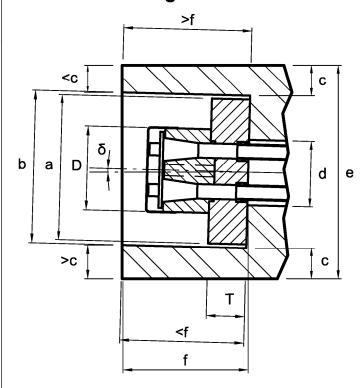


Litzen-

Nutbreite u

Vorgespannte Segmentbrücken aus Granit

Brückenquerschnitt: Bohrungs- & Nutanordnung, Litzenverlauf


Anlage 3.2

Anlage 4 Detail Anker: Seite, Vorne

Längsschnitt

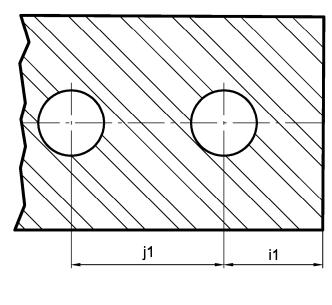
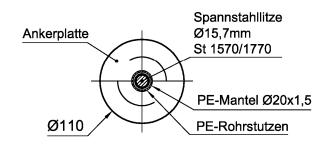


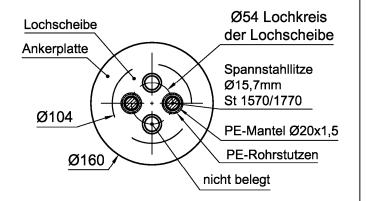
Abbildung: Abmessungen der Spanngliedverankerung

Litzenanzahl	1	2	3	4	5
Spanngliedbezeichnung	Lo1	Lo4**	Lo3	Lo4	Lo5
Durchmesser der Ankerplatte a [mm]	110*	160	180	190	200
Durchmesser der Spannische b [mm]	120	168	200	220	220
Mindestgranitüberdeckung c [mm]	15	11	15	30	40
Bohrlochdurchmesser d [mm]	40	86	86	86	86
Mindestkonstruktionshöhe e [mm]	150	190	230	280	300
Tiefe der Ankerbohrung f [mm]	125	145	155	165	175
Dicke der Ankerplatte T [mm]	15*	30	40	50	55
Durchmesser der Lochscheibe D [mm]	*	104	104	104	115
Mindestrandabstand i1 und i2 [mm] siehe Anlage 1	75	95	115	140	150
Mindestachsabstand j1 bis jn [mm] siehe Anlage 1	150	190	230	280	300

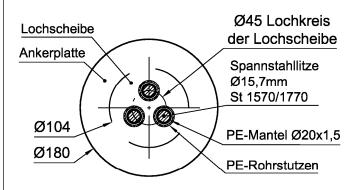
- Stahlgüte der Ankerplatte S235JR
- Winkel δ (Delta) = Neigung der Bohrung durch Litzenverlauf
 - * Bei Spannglied Lo1 sind Lochscheibe und Ankerplatte ein Bauteil
 - ** Belegung nach Anlage 5

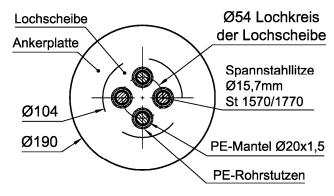

Vorgespannte Segmentbrücken aus Granit	
Abmessungen für die Spanngliedverankerung, Rand- und Achsabstände	Anlage 4

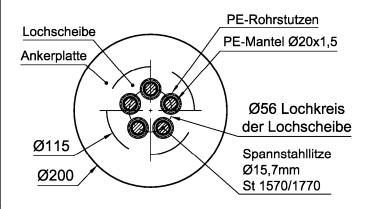
Z27565.19 1.13.4-5/18



Anlage 5 Litzenanordung


Anordnung bei Litze 1


Anordnung bei Litze 2

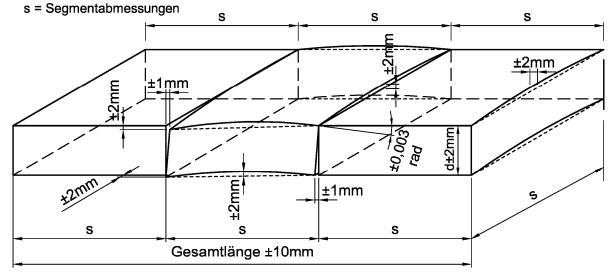

Anordnung bei Litze 3

Anordnung bei Litze 4

Anordnung bei Litze 5

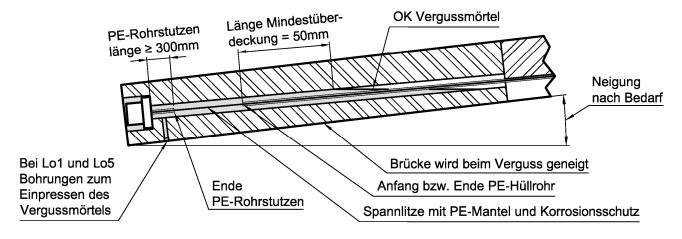
Vorgespannte Segmentbrücken aus Granit

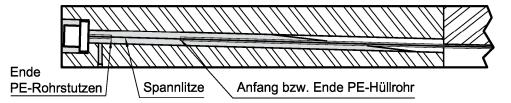
Litzenanordnung


Anlage 5

Anlage 6 Toleranzen, Verguss

Toleranzen


Gültig für Granitblöcke und Aussparrungen


- Vertikale und horizontale Lageabweichung von der nominellen Systemachse ±10mm
- Toleranz beim Fräsen der Nut ±1mm

Verguss

Schnitt durch Spannglied während Verguss

Schnitt durch Spannglied nach Verguss

Nach Aushärten des Vergussmörtels wird die Brücke wieder in die Waagrechte gebracht.

Vorgespannte Segmentbrücken aus Granit

Toleranzen, Verguss

Anlage 6