

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts Mitglied der EOTA, der UEAtc und der WFTAO

Datum: Geschäftszeichen:

07.10.2019 I 51-1.9.1-34/18

Nummer:

Z-9.1-679

Antragsteller:

Studiengemeinschaft Holzleimbau e. V. Heinz-Fangman-Straße 2 42287 Wuppertal

Geltungsdauer

vom: 7. Oktober 2019 bis: 7. Oktober 2024

Gegenstand dieses Bescheides:

BS-Holz aus Buche und BS-Holz Buche-Hybridträger und zugehörige Bauarten

Der oben genannte Regelungsgegenstand wird hiermit allgemein bauaufsichtlich zugelassen/genehmigt.

Dieser Bescheid umfasst elf Seiten.

Diese allgemeine bauaufsichtliche Zulassung/allgemeine Bauartgenehmigung ersetzt die allgemeine bauaufsichtliche Zulassung Nr. Z-9.1-679 vom 27. Oktober 2014. Der Gegenstand ist erstmals am 7. Oktober 2009 allgemein bauaufsichtlich zugelassen worden.

Seite 2 von 11 | 7. Oktober 2019

I ALLGEMEINE BESTIMMUNGEN

- 1 Mit diesem Bescheid ist die Verwendbarkeit bzw. Anwendbarkeit des Regelungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- 2 Dieser Bescheid ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- 3 Dieser Bescheid wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Dem Verwender bzw. Anwender des Regelungsgegenstandes sind, unbeschadet weiter gehender Regelungen in den "Besonderen Bestimmungen", Kopien dieses Bescheides zur Verfügung zu stellen. Zudem ist der Verwender bzw. Anwender des Regelungsgegenstandes darauf hinzuweisen, dass dieser Bescheid an der Verwendungs- bzw. Anwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden ebenfalls Kopien zur Verfügung zu stellen.
- Dieser Bescheid darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen diesem Bescheid nicht widersprechen, Übersetzungen müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Dieser Bescheid wird widerruflich erteilt. Die Bestimmungen können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.
- Dieser Bescheid bezieht sich auf die von dem Antragsteller gemachten Angaben und vorgelegten Dokumente. Eine Änderung dieser Grundlagen wird von diesem Bescheid nicht erfasst und ist dem Deutschen Institut für Bautechnik unverzüglich offenzulegen.
- Die von diesem Bescheid umfasste allgemeine Bauartgenehmigung gilt zugleich als allgemeine bauaufsichtliche Zulassung für die Bauart.

Seite 3 von 11 | 7. Oktober 2019

II BESONDERE BESTIMMUNGEN

1 Regelungsgegenstand und Verwendungs- bzw. Anwendungsbereich

Zulassungsgegenstand sind BS-Holz aus Buche und BS-Holz Buche-Hybridträger. BS-Holz aus Buche besteht mindestens aus drei flachseitig miteinander verklebten Lamellen aus Vollholz der Holzart Buche. BS-Holz Buche-Hybridträger bestehen aus Decklagen aus Lamellen der Holzart Buche und Kernlamellen aus Nadelholz.

Die Höhe H des Brettschichtholzes aus Buche beträgt maximal 600 mm und die Höhe der Buche-Hybridträger maximal 900 mm. Die Breite des Brettschichtholzes aus Buche und der Buche-Hybridträger beträgt maximal 160 mm.

Genehmigungsgegenstand sind Bauarten unter Verwendung von BS-Holz aus Buche bzw. BS-Holz Buche-Hybridträgern.

Mit chemischen Holzschutz- oder Feuerschutzmitteln behandeltes BS-Holz aus Buche bzw. BS-Holz Buche-Hybridträger sind nicht Gegenstand dieses Bescheides.

BS-Holz aus Buche und BS-Holz Buche-Hybridträger nach diesem Bescheid dürfen für alle Holzbauteile verwendet werden, für die die Verwendung von Vollholz oder Brettschichtholz in der Norm DIN EN 1995-1-1¹ in Verbindung mit DIN EN 1995-1-1/NA² erlaubt ist.

Die Anwendung darf nur unter den klimatischen Umgebungsbedingungen der Nutzungsklasse 1 nach DIN EN 1995-1-1 erfolgen.

2 Bestimmungen für das Bauprodukt/die Bauprodukte

2.1 Anforderungen an die Eigenschaften

2.1.1 Holz

BS-Holz aus Buche besteht aus mindestens drei flachseitig miteinander verklebten Lamellen aus Vollholz der Holzart Buche (Fagus sylvatica).

BS-Holz Buche-Hybridträger bestehen aus beidseitigen Decklamellen aus Vollholz der Holzart Buche (jeweils mindestens 2) und Kernlamellen aus Nadelholz.

Nationaler Anhang - National festgelegte Parameter - Eurocode 5:
Bemessung und Konstruktion von Holzbauten - Teil 1-1: Allgemeines Allgemeine Regeln und Regeln für den Hochbau

Z39427.19

DIN EN 1995-1-1:2010-12+A2:2014-07 Eurocode 5: Bemessung und Konstruktion von Holzbauten - Teil 1-1: Allgemeines - Allgemeine Regeln und Regeln für den Hochbau

DIN EN 1995-1-1/NA:2013-08 Nationa

Nr. Z-9.1-679

Seite 4 von 11 | 7. Oktober 2019

Die zu verklebenden Lamellen aus Vollholz der Holzart Buche müssen folgende Anforderungen erfüllen:

– Die Lamellen müssen visuell nach DIN 4074-5³ sortiert sein.

Zusätzliche Kriterien bezüglich der Ästigkeit und hinsichtlich des Elastizitätsmoduls sind für die Sortierklassen wie folgt zu erfüllen:

Tabelle 1: Sortierkriterien und Grenzwerte der Lamellen aus Buche

Bezeichnung	Sortierkriterien nach DIN 4074-5	Zusätzlich Ästigkeit	Elastizitätsmodul (N/mm²)			
LS 10	LS 10					
LS 10 + E13	LS 10		13000 < E _{dyn}			
LS 10 + E14	LS 10		14000 < E _{dyn}			
LS 13	LS 13					
LS 13 + A	LS 13	DEB ≤ 0,04				
LS 13 + E14	LS 13		14000 < E _{dyn}			
LS 13 + E15	LS 13		15000 < E _{dyn}			
LS 13 + A + E15	LS 13	DEB ≤ 0,04	15000 < E _{dyn}			
DEB = Ästigkeit A für den Einzelast nach DIN 4074-5						

Der dynamische Elastizitätsmodul E_{dyn} ist über die Eigenfrequenz, die mittels Längsschwingungsmessung bestimmt wird, und die Rohdichte der Lamelle zu ermitteln.

 Folgende Bedingungen zu den Querschnittsabmessungen der Lamellen aus Buchenholz müssen eingehalten werden:

 $A \le 4.800 \text{ mm}^2$

b ≤ 160 mm

 $h \le 30 \text{ mm}$.

Die Kernlamellen aus Nadelholz der Buche-Hybridträger werden nach DIN EN 14081- 1^4 in Verbindung mit DIN 20000- 5^5 sortiert. Sie entsprechen mindestens der Sortierklasse S 10 nach DIN 4074- 1^6 oder mindestens der Festigkeitsklasse C 24 nach DIN EN 338 7 . Sie dürfen aus folgenden Nadelholzarten bestehen: Fichte (Picea abies), Tanne (Abies alba) und Kiefer (Pinus sylvestris). Die Querschnittsabmessungen der Lamellen dürfen maximal b x h = 160 x 42 mm betragen.

Die Lamellen dürfen in Längsrichtung Keilzinkenverbindungen nach DIN EN 14080⁸ aufweisen.

Für die erforderlichen charakteristischen Biegefestigkeiten der Keilzinkenverbindungen gelten die Werte der Tabellen 2 und 3.

2.1.2 Klebstoff

Zur Verklebung des Brettschichtholzes aus Buche, der Buche-Hybridträger und der Keilzinkenverbindungen in den Lamellen sind die beim Deutschen Institut für Bautechnik hinterlegten Klebstoffe mit den jeweils geprüften Verarbeitungsrandbedingungen zu verwenden.

3	DIN 4074-5:2008-12	Sortierung von Holz nach der Tragfähigkeit - Teil 5: Laubschnittholz
4	DIN EN 14081-1:2011-05	Holzbauwerke - Nach Festigkeit sortiertes Bauholz für tragende Zwecke mit rechteckigem Querschnitt - Teil 1: Allgemeine Anforderungen
5	DIN 20000-5:2012-03	Anwendung von Bauprodukten in Bauwerken - Teil 5: Nach Festigkeit sortiertes Bauholz für tragende Zwecke mit rechteckigem Querschnitt
6	DIN 4074-1:2012-06	Sortierung von Holz nach der Tragfähigkeit - Teil 1: Nadelschnittholz
7	DIN EN 338:2016-07	Bauholz für tragende Zwecke - Festigkeitsklassen
8	DIN EN 14080: 2013-09	Holzbauwerke - Brettschichtholz und Balkenschichtholz - Anforderungen

Nr. Z-9.1-679

Seite 5 von 11 | 7. Oktober 2019

Die Verarbeitungsrichtlinien des jeweiligen Klebstoffs sind dem Hersteller des Brettschichtholzes aus Buche und der Buche-Hybridträger sowie der Überwachungsstelle zur Verfügung zu stellen.

2.1.3 Aufbau und Anforderungen

Der Aufbau des Brettschichtholzes aus Buche darf homogen - h - (alle Lamellen gehören der gleichen Festigkeitsklasse an) oder kombiniert - c - (die äußeren und die inneren Lamellen gehören unterschiedlichen Festigkeitsklassen an) sein. Bei kombiniertem Aufbau müssen die äußeren Lamellen mit gleicher Festigkeitsklasse je Seite mindestens 1/6 der Trägerhöhe H, jedoch mindestens zwei Lamellen, umfassen.

Anforderungen an den Aufbau des Brettschichtholzes aus Buche sind Tabelle 2 zu entnehmen.

Tabelle 2: Anforderung an die Sortier-/Festigkeitsklassen der Lamellen, die charakteristische Biegefestigkeit der Keilzinkenverbindung (in N/mm²) und an den dynamischen Elastizitätsmodul E_{dyn} (in N/mm²) für BS-Holz aus Buche unterschiedlicher Festigkeitsklassen

	GL 28h	GL 32c	GL 36c	GL 40c	GL 44c	GL 48c		
	Anforderungen an die äußeren Lamellen (> H/6 je Seite)							
Sortierung	ortierung LS 10 LS 13 LS13+A LS13+E14 LS13+E15 LS13+A							
E _{dyn}	-	-	-	>14000	>15000	>15000		
Anforderungen an die inneren Lamellen								
Sortierung	Sortierung LS 10 LS 10 LS 10 LS 10+E13 LS 10+E14 LS 10+E					LS 10+E14		
E _{dyn}	-	-	-	>13000	>14000	>14000		
Charakteristische Biegefestigkeit der Keilzinkenverbindungen								
$f_{m,j,k}$	≥ 47	≥ 55	≥ 58	≥ 62	≥ 65	≥ 69		

Bei BS-Holz Buche-Hybridträgern müssen die äußeren Lamellen aus Buchenholz und die Kernlamellen aus Nadelholz bestehen. Die äußeren Lamellen müssen hierbei je Seite mindestens 1/5 der Trägerhöhe H, jedoch mindestens zwei Lamellen, umfassen.

Anforderungen an den Aufbau der Buche-Hybridträger sind Tabelle 3 zu entnehmen.

Tabelle 3: Anforderung an die Sortier-/Festigkeitsklassen der Lamellen, die charakteristische Biegefestigkeit der Keilzinkenverbindung (in N/mm²) und an den dynamischen Elastizitätsmodul E_{dyn} (in N/mm²) für BS-Holz Buche-Hybridträger unterschiedlicher Festigkeitsklassen

	GL 28 hyb	GL 32 hyb	GL 36 hyb	GL 40 hyb	GL 44 hyb	GL 48 hyb			
	Anforderungen an die äußeren Lamellen aus Buche (> H/5 je Seite)								
Sortie- rung	LS 10	LS 13	LS13+A LS13+E14		LS13+E15	LS13+A+E 15			
E _{dyn}	-	ı	ı	>14000	>15000	>15000			
	Anforderungen an die Kernlamellen aus Nadelholz								
Sortie- rung	S 10	S 10	S 10	S 10	S 10	S 10			
Chara	Charakteristische Biegefestigkeit der Keilzinkenverbindungen der Lamellen aus Buche								
$f_{m,j,k}$	≥ 50	≥ 59	≥ 61	≥ 65	≥ 68	≥ 72			
Charakteristische Biegefestigkeit der Keilzinkenverbindungen der Kernlamellen aus Nadelholz									
f _{m,j,k}	≥ 32	≥ 32	≥ 32	≥ 32	≥ 32	≥ 32			

Seite 6 von 11 | 7. Oktober 2019

2.2 Herstellung und Kennzeichnung

2.2.1 Herstellung

Für die Anforderungen an die Herstellung von BS-Holz aus Buche und von Buche-Hybridträgern gilt DIN EN 14080 sinngemäß, soweit in diesem Bescheid nichts anderes bestimmt ist.

Zusätzlich sind folgende Anforderungen zu beachten.

Die Keilzinkenverbindungen müssen nach DIN EN 14080 mit einer Mindestlänge der Keilzinken von 15 mm hergestellt werden.

Die Temperatur in den Herstellungsräumen muss mindestens 20 °C betragen.

Die zu verklebenden Holzflächen müssen gehobelt sein. Das Hobeln darf frühestens 6 h vor der Verklebung durchgeführt werden.

Bei der Verklebung muss die Holzfeuchte der Einzellamellen 9 % bis 12 % betragen.

Bei der Herstellung von BS-Holz aus Buche und von Buche-Hybridträgern sind die beim Deutschen Institut für Bautechnik hinterlegten Bestimmungen zu den Klebstoffen zu beachten.

Die Hersteller müssen im Besitz einer Bescheinigung C1 über die Eignung zum Kleben von tragenden Holzbauteilen gemäß DIN 1052-10:2012-05⁹, Abschnitt 5 sein.

2.2.2 Kennzeichnung

BS-Holz aus Buche und BS-Holz Buche-Hybridträger sowie deren Lieferscheine müssen vom Hersteller mit dem Übereinstimmungszeichen (Ü-Zeichen) nach den Übereinstimmungszeichen-Verordnungen der Länder gekennzeichnet werden. Die Kennzeichnung darf nur erfolgen, wenn die Voraussetzungen nach Abschnitt 2.3 erfüllt sind.

Darüber hinaus sind das BS-Holz aus Buche, die BS-Holz Buche-Hybridträger und/oder die Lieferscheine mit folgenden Angaben zu kennzeichnen:

- Bezeichnung des Zulassungsgegenstandes
- Festigkeitsklasse
- Tag der Herstellung

2.3 Übereinstimmungsnachweis

2.3.1 Allgemeines

Die Bestätigung der Übereinstimmung mit den Bestimmungen der von dem Bescheid erfassten allgemeinen bauaufsichtlichen Zulassung muss für jedes Herstellwerk mit einem Übereinstimmungszertifikat auf der Grundlage einer werkseigenen Produktionskontrolle und einer regelmäßigen Fremdüberwachung einschließlich einer Erstprüfung nach Maßgabe folgender Bestimmungen erfolgen.

Für die Erteilung des Übereinstimmungszertifikats und die Fremdüberwachung einschließlich der dabei durchzuführenden Produktprüfungen hat der Hersteller des Bauprodukts eine hierfür anerkannte Zertifizierungsstelle sowie eine hierfür anerkannte Überwachungsstelle einzuschalten.

Die Übereinstimmungserklärung hat der Hersteller durch Kennzeichnung des Bauprodukts mit dem Übereinstimmungszeichen (Ü-Zeichen) unter Hinweis auf den Verwendungszweck abzugeben.

Dem Deutschen Institut für Bautechnik ist von der Zertifizierungsstelle eine Kopie des von ihr erteilten Übereinstimmungszertifikats zur Kenntnis zu geben.

DIN 1052-10:2012-05 Herstellung und Ausführung von Holzbauwerken - Teil 10: Ergänzende Bestimmungen

Z39427.19 1.9.1-34/18

,

Seite 7 von 11 | 7. Oktober 2019

2.3.2 Werkseigene Produktionskontrolle

In jedem Herstellwerk ist eine werkseigene Produktionskontrolle einzurichten und durchzuführen. Unter werkseigener Produktionskontrolle wird die vom Hersteller vorzunehmende kontinuierliche Überwachung verstanden, mit der dieser sicherstellt, dass die von ihm hergestellten Bauprodukte den Bestimmungen der von dem Bescheid erfassten allgemeinen bauaufsichtlichen Zulassung entsprechen.

Für die werkseigene Produktionskontrolle von BS-Holz aus Buche und von BS-Holz Buche-Hybridträgern gilt DIN EN 14080 sinngemäß, wobei die Biegefestigkeit der Keilzinkenverbindungen der Lamellen aus Buche und der Kernlamellen aus Nadelholz an mindestens drei Proben der höchsten Festigkeitsklasse je Schicht und Fertigungslinie zu bestimmen ist. Die Keilzinkenverbindungen der Lamellen aus Buche und der Kernlamellen aus Nadelholz müssen die Anforderungen an die charakteristische Biegefestigkeit nach Tabellen 2 oder 3 dieses Bescheids erfüllen.

Zur Bestimmung des dynamischen Elastizitätsmodul E_{dyn} der Lamellen aus Buche darf nur eine Verfahrensweise eingesetzt werden, für die die fremdüberwachende Stelle ihre Zustimmung gegeben hat.

Die werkseigene Produktionskontrolle soll mindestens die im Folgenden aufgeführten Maßnahmen einschließen:

- Überprüfung der Sortierung des Ausgangsmaterials
- Kontrolle und Prüfungen, die während der Herstellung durchzuführen sind:

Führen eines Leimbuches, in dem an jedem Leimtag mindestens Folgendes aufzuzeichnen ist:

Klebstoff:

Fabrikat, Herstellungs- und Lieferdatum, Verfalldatum; Mischungsverhältnis von Harz und Härter bei Polykondensationsklebstoffen, Holzfeuchtegehalt der Lamellen vor der Verklebung

Raumklima bei der Verklebung und Aushärtung

Klebstoffauftragsmenge

Offene und geschlossene Wartezeit des Klebstoffs

Pressdruck

Pressdauer

 Delaminierungsprüfung der Klebfugen nach DIN EN 14080:2013-09, Anhang C, Verfahren C an einem Prüfkörper je 10 m³ hergestelltem BS-Holz aus Buche oder von Buche-Hybridträgern; Die Anforderungen der Norm DIN EN 14080:2013-09, Abschnitt 5.5.5.2.2, Tabelle 9 sind zu erfüllen.

Die Ergebnisse der werkseigenen Produktionskontrolle sind aufzuzeichnen und auszuwerten. Die Aufzeichnungen müssen mindestens folgende Angaben enthalten:

- Bezeichnung des Bauproduktes bzw. des Ausgangsmaterials und der Bestandteile
- Art der Kontrolle oder Prüfung
- Datum der Herstellung und der Prüfung des Bauproduktes bzw. des Ausgangsmaterials oder der Bestandteile
- Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen

Nr. Z-9.1-679

Seite 8 von 11 | 7. Oktober 2019

Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren und der für die Fremdüberwachung eingeschalteten Überwachungsstelle vorzulegen. Sie sind dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

Bei ungenügendem Prüfergebnis sind vom Hersteller unverzüglich die erforderlichen Maßnahmen zur Abstellung des Mangels zu treffen. Bauprodukte, die den Anforderungen nicht entsprechen, sind so zu handhaben, dass Verwechslungen mit übereinstimmenden ausgeschlossen werden. Nach Abstellung des Mangels ist - soweit technisch möglich und zum Nachweis der Mängelbeseitigung erforderlich - die betreffende Prüfung unverzüglich zu wiederholen.

2.3.3 Fremdüberwachung

In jedem Herstellwerk ist die werkseigene Produktionskontrolle durch eine Fremdüberwachung regelmäßig zu überprüfen, mindestens jedoch zweimal jährlich. Im Rahmen der Fremdüberwachung ist eine Erstprüfung durchzuführen, und es können auch Proben für Stichprobenprüfungen entnommen werden. Die Probenahme und Prüfungen obliegen jeweils der anerkannten Überwachungsstelle.

Es sind mindestens die im Rahmen der werkseigenen Produktionskontrolle gemäß Abschnitt 2.3.2 vorgesehenen Prüfungen durchzuführen. Je Fremdüberwachung sind mindestens 20 Lamellen mit Keilzinkenverbindungen der höchsten Festigkeitsklasse je Holzart, die der Hersteller verarbeitet, als Probekörper nach Zufallsgesichtspunkten zu entnehmen und nach DIN EN 14080:2013-09, Anhang E zu prüfen. Es ist die Flachkantbiegefestigkeit der Keilzinkenverbindungen der Lamellen zu bestimmen. Die Keilzinkenverbindungen der Lamellen aus Nadelholz müssen die Anforderungen an die charakteristische Biegefestigkeit nach Tabelle 2 oder 3 dieses Bescheids erfüllen.

Die Ergebnisse der Zertifizierung und Fremdüberwachung sind mindestens fünf Jahre aufzubewahren. Sie sind von der Zertifizierungsstelle bzw. der Überwachungsstelle dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

3 Bestimmungen für Planung, Bemessung und Ausführung

3.1 Planung und Bemessung

3.1.1 Allgemeines

Der statische Nachweis für die Standsicherheit von Holzbauteilen unter Verwendung von BS-Holz aus Buche oder von Buche-Hybridträger ist in jedem Einzelfall zu führen.

Die Bemessung von Holzbauteilen aus BS-Holz aus Buche und Buche-Hybridträgern ist gemäß DIN EN 1995-1-1 in Verbindung mit DIN EN 1995-1-1/NA durchzuführen, soweit in diesem Bescheid nichts anderes bestimmt ist.

Für den Rissfaktor k_{cr} gilt:

k_{cr} = 1,0 bei BS-Holz aus Buche und bei BS-Holz Buche-Hybridträger.

Zur Berechnung des bezogenen Kippschlankheitsgrades $\lambda_{\text{rel},m}$, des kritischen Kippmoments $M_{y,\text{crit}}^0$ bzw. der kritischen Biegedruckspannung $\sigma_{m,\text{crit}}$ nach DIN EN 1995-1-1:2010-12, Abschnitt 6.3.3 in Verbindung mit DIN EN 1995-1-1/NA NCI Zu 6.3.3 und NCI NA. 13.3 darf das Produkt der 5 %-Quantilen der Steifigkeitskennwerte mit dem Faktor 1,3 multipliziert werden.

Nr. Z-9.1-679

Seite 9 von 11 | 7. Oktober 2019

Für die Bemessung von Holzverbindungen gelten die Bestimmungen der Norm DIN EN 1995-1-1 in Verbindung mit DIN EN 1995-1-1/NA wie für Laubholz bzw. Nadelholz (bei Hybridträgern) entsprechend.

Der Nachweis bei Druckbeanspruchungen rechtwinklig zur Faserrichtung ist bei BS-Holz aus Buche mit einem Querdruckbeiwert von $k_{c,90} = 1,0$ für alle Auflagerfälle zu führen.

Bei Buche-Hybridträgern ist der Nachweis bei Druckbeanspruchungen rechtwinklig zur Faserrichtung für die Decklamellen aus Buche mit einem Querdruckbeiwert von $k_{c,90}$ = 1,0 für alle Auflagerfälle zu führen. Die Druckfestigkeit der Decklamellen rechtwinklig zur Faserrichtung $f_{c,90,k}$ kann Tabelle 4 entnommen werden.

Bei Druckbeanspruchungen rechtwinklig zur Faserrichtung ist zusätzlich der Nachweis für die Kernlamellen aus Nadelholz zu führen, wobei eine Spannungsausbreitung von 45° im Bereich der Decklamellen angenommen werden darf. Dabei dürfen die Querdruckbeiwerte der Norm DIN EN 1995-1-1 in Verbindung mit DIN EN 1995-1-1/NA für die unterschiedlichen Auflagersituationen verwendet werden.

3.1.2 Festigkeits-, Steifigkeits- und Rohdichtekennwerte

Für BS-Holz aus Buche gelten die charakteristischen Festigkeits-, Steifigkeits- und Rohdichtekennwerte nach Tabelle 4.

Tabelle 4: Charakteristische Festigkeits-, Steifigkeits- und Rohdichtekennwerte für BS-Holz aus Buche unterschiedlicher Festigkeitsklassen

Festigkeitsklas	se	GL 28h	GL 32c	GL 36c	GL 40c	GL 44c	GL 48c	
Festigkeitskennwerte (N/mm²)								
Biegefestig- keit	$f_{m,g,k}^{a,b}$	28	32	36	40	44	48	
Zugfestigkeit	$f_{t,0,g,k}$	21						
	f _{t,90,g,k}			C),5			
Druckfestig-	$f_{c,0,g,k}$	25						
keit	f _{c,90,g,k}			8	3,4			
Schubfestig- keit	$f_{v,g,k}$			3	3,4			
	Steifigkeitskennwerte (N/mm²)							
Elastizitäts-	E _{0,g,mean}	13500	13500	13500	14300	15100	15100	
modul	E _{0,g,05}	12700	12700	12700	13700	14700	14700	
	E _{90,g,mean}	690						
	E _{90,g,05}	550						
Schubmodul	$G_{g,mean}$	1000						
	$G_{g,0,05}$	800						
		Roh	dichtekenn	wert (kg/m³)			
Rohdichte	ρ _{g,k} 650							
a Bei Flachkant-Biegebeanspruchung der Lamellen bei Trägern mit einer Querschnittshöhe h < 600 mm darf der charakteristische Festigkeitswert mit dem Beiwert								
$k_h = min \left\{ \left(\frac{600}{h} \right)^{0,14}; 1,1 \right\}$ multipliziert werden.								
b Die Werte	b Die Werte gelten für Hochkant- und Flachkant-Biegebeanspruchung der Lamellen des Brettschichtholzes.							

Die Definition der charakteristischen Festigkeits-, Steifigkeits- und Rohdichtekennwerte entspricht DIN EN 14080.

Nr. Z-9.1-679

Seite 10 von 11 | 7. Oktober 2019

Für BS-Holz Buche-Hybridträger gelten die charakteristischen Festigkeits-, Steifigkeits- und Rohdichtekennwerte der Tabelle 5. Für die nicht in der Tabelle 5 angegebenen Festigkeits- und Steifigkeitskennwerte sind die Werte für Brettschichtholz der Festigkeitsklasse GL 24h nach DIN EN 14080:2013-09, Abschnitt 5.1.4.3, Tabelle 5, anzusetzen.

Tabelle 5: Charakteristische Festigkeits-, Steifigkeits- und Rohdichtekennwerte für BS-Holz Buche-Hybridträger unterschiedlicher Festigkeitsklassen

Festigkeitsklasse		GL 28 hyb	GL 32 hyb	GL 36 hyb	GL 40 hyb	GL 44 hyb	GL 48 hyb
	Fest	igkeitsker	nnwerte (N/mm²)			
Biegefestig- keit	f _{m,y,k} ^a Flachkant-Biege- beanspruchung der Lamellen des Brett- schichtholzes	28	32	36	40	44	48
	f _{m,z,k} Hochkant-Biege- beanspruchung der Lamellen des Brett- schichtholzes	28	32	32	32	32	32
Schubfestig- keit	$f_{v,k}$	2,50					
	Steif	igkeitskei	nnwerte (N/mm²)			
Elastizitäts-	E _{0,mean}	13200	13200	13200	14000	14700	14700
modul	E _{0,05}	12400	12400	12400	13300	14200	14200
Rohdichtekennwert für die Kernlamellen aus Nadelholz (kg/m³)							
Rohdichte	380						
Bei Flachkant-Biegebeanspruchung der Lamellen bei Trägern mit einer Querschnittshöhe h < 600 mm darf der charakteristische Festigkeitswert mit dem Beiwert $k_h = \min \left\{ \left(\frac{600}{h} \right)^{0,14}; 1,1 \right\} \text{multipliziert werden}.$							
Bei h > 600 mm muss der charakteristische Festigkeitswert mit dem Beiwert							
$k_h = \max \left\{ \left(\frac{600}{h} \right)^{0,14}; 0,9 \right\}$ multipliziert werden.							

3.2 Brandschutz

Brettschichtholz nach diesem Bescheid erfüllt die Anforderungen an das Brandverhalten von Baustoffen der Baustoffklasse B2 (normalentflammbar) gemäß DIN 4102-1¹⁰

10

DIN 4102-1:1998-05

Brandverhalten von Baustoffen und Bauteilen – Teil 1: Baustoffe – Begriffe, Anforderungen und Prüfungen

Seite 11 von 11 | 7. Oktober 2019

3.3 Ausführung

Für die Ausführung von tragenden Holzbauteilen unter Verwendung von BS-Holz aus Buche und Buche-Hybridträgern gilt die Norm DIN EN 1995-1-1 in Verbindung mit DIN EN 1995-1-1/NA, soweit in diesem Bescheid nichts anderes bestimmt ist.

Durchbrüche sind in BS-Holz aus Buche und Buche-Hybridträgern nicht zulässig.

Bei der Verwendung von Verbindungsmitteln sind die Bestimmungen der Norm DIN EN 1995-1-1 in Verbindung mit DIN EN 1995-1-1/NA oder der allgemeinen bauaufsichtlichen Zulassung/allgemeinen Bauartgenehmigung bzw. der Europäischen Technischen Bewertung der jeweiligen Verbindungsmittel zu beachten.

Die bauausführende Firma muss zur Bestätigung der Übereinstimmung der Bauart mit der allgemeinen Bauartgenehmigung eine Übereinstimmungserklärung gemäß § 16a Abs. 5 unter Beachtung von § 21 Abs. 2 MBO¹¹ abgeben.

Reiner Schäpel Referatsleiter Beglaubigt

11 MBO Musterbauordnung