

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-01/0013 of 17 September 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Wegde Anchor B
Product family to which the construction product belongs	Mechanical fastener for use in concrete
Manufacturer	MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach
Manufacturing plant	MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach
This European Technical Assessment contains	15 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330232-01-0601 Edition 12/2019
This version replaces	ETA-01/0013 issued on 29 November 2018

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-01/0013 English translation prepared by DIBt

Page 2 of 15 | 17 September 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 15 | 17 September 2020

European Technical Assessment ETA-01/0013 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Wedge anchor B is a fastener made of zinc coated steel or stainless steel which is placed into a drilled hole and anchored by application of the installation torque. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi static action) Method A	See Annex B4, C1 and C2
Characteristic resistance to shear load (static and quasi static action)	See Annex C3
Displacements and Durability	See Annex C4 and B1
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

European Technical Assessment ETA-01/0013

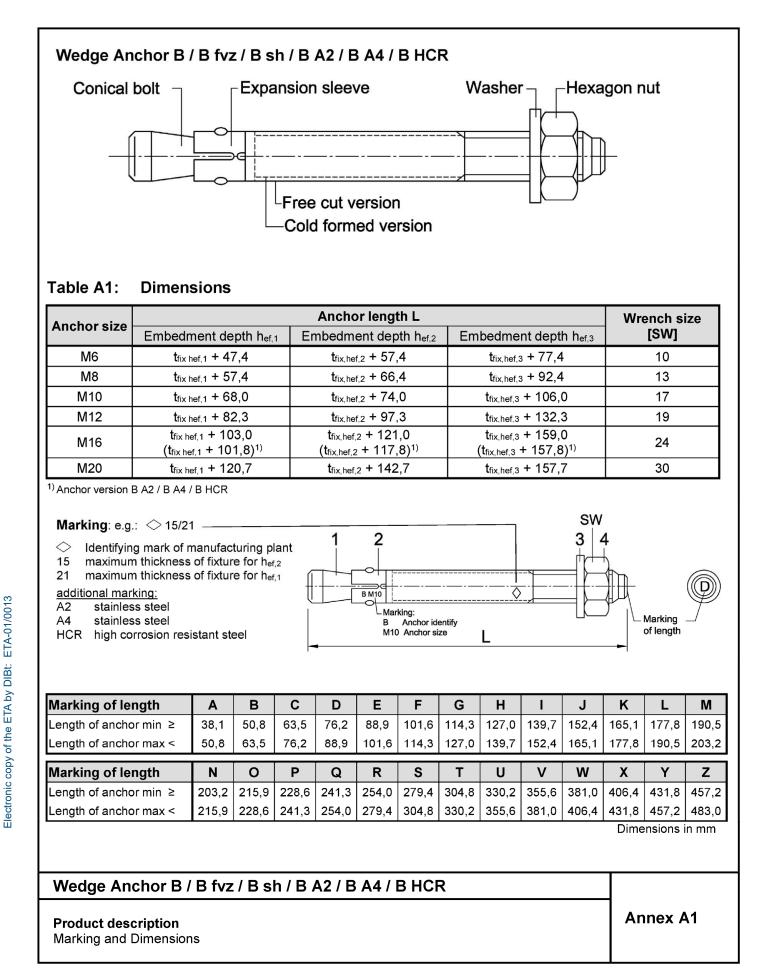
Page 4 of 15 | 17 September 2020

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 17 September 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Lange

Part	Designation	Material
в	electroplated	≥ 5 µm acc. to EN ISO 4042:1999
B fvz	hot-dip galvanized	\geq 40 μm (in average 50 μm) acc. to EN ISO 10684:2011 or EN ISO 1461:2009
B sh	sherardized	≥ 45 µm acc. to EN ISO 17668:2016
1	Conical bolt	Cold formed or machined steel
2	Expansion sleeve	Stainless steel according CRC II ¹⁾ , acc. to EN 10088:2014
3	Washer	Steel, zinc plated
4	Hexagon nut	Property class 8 acc. to EN ISO 898-2:2012
B A2		
1	Conical bolt	Stainless steel according CRC II ¹⁾ , coated
2	Expansion sleeve	Stainless steel according CRC II ¹⁾ , acc. to EN 10088:2014
3	Washer	Stainless steel according CRC II ¹⁾
4	Hexagon nut	Stainless steel according CRC II ¹⁾ , property class 70, coated, EN ISO 3506-2:2009
B A4		
1	Conical bolt	Stainless steel according CRC III ¹⁾ , coated
2	Expansion sleeve	Stainless steel according CRC II ¹⁾ or CRC III ¹⁾ , acc. to EN 10088:2014
3	Washer	Stainless steel according CRC III ¹⁾
4	Hexagon nut	Stainless steel according CRC III ¹⁾ , property class 70, coated, EN ISO 3506-2:2009
B HCF	8	
1	Conical bolt	Stainless steel according CRC V ¹⁾ , coated
2	Expansion sleeve	Stainless steel according CRC III ¹⁾ , acc. to EN 10088:2014
3	Washer	Stainless steel according CRC V ¹⁾
4	Hexagon nut	Stainless steel according CRC V ¹⁾ , property class 70, coated, EN ISO 3506-2:2009, EN 10088:2014

¹⁾ Corrosion resistance class according to EN 1993-1-4:2015, Annex A, Table A.3

Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR

Product description Materials Annex A2

Specifica	tions of intended use						
B / B fvz /	B / B fvz / B sh / B A2 / B A4 / B HCR		M8	M10	M12	M16	M20
В	electroplated	~	✓	✓	1	~	✓
B fvz	hot-dip galvanized	-	~	~	✓	~	✓
B sh	sherardized	✓	~	✓	~	~	~
B A2	stainless steel	✓	✓	✓	✓	~	✓
B A4	stainless steel	✓	~	✓	~	~	✓
B HCR	high corrosion resistant steel	~	✓	✓	✓	✓	✓
All	static or quasi-static action			`	/		
versions	uncracked concrete			,	(

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013 + A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016

Use conditions (Environmental conditions):

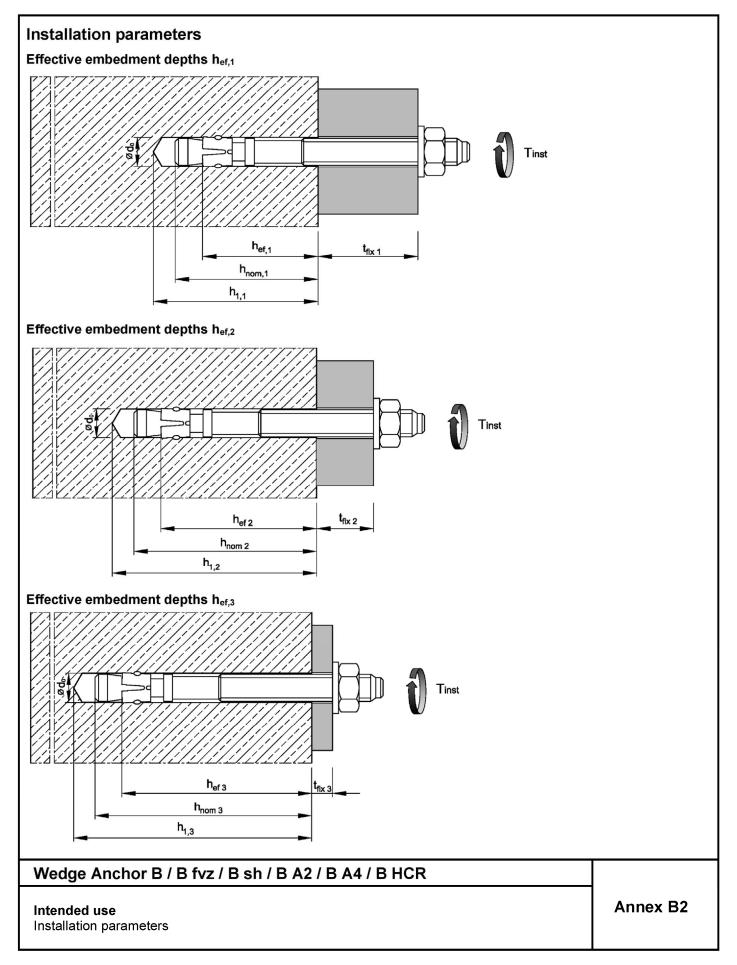
- Structures subject to dry internal conditions (all materials)
- For all other conditions:

Anchor version	Use according to EN 1993-1-4:2015 corresponding to the corrosion resistance class CRC according to Annex A, Table A.2
B A2	CRC II
B A4	CRC III
B HCR	CRC V

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages are designed according to EN 1992-4:2018 or TR 055

Installation:


- Hole drilling by hammer drill bit or vacuum drill bit
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener

Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR

Intended use Specifications

Annex B1

Deutsches Institut für Bautechnik

Anch	nor size			M6	M8	M10	M12	M16	M20
Nom	inal drill hole diameter	d ₀ =	[mm]	6	8	10	12	16	20
Cutti	ng diameter of drill bit	$d_{cut} \leq$	[mm]	6,40	8,45	10,45	12,5	16,5	20,55
anb	В	T _{inst} =	[Nm]	8	15	30	50	100	200
n tor	B fvz	T _{inst} =	[Nm]	-	15	30	40	90	120
nstallation torque	B sh	T _{inst} =	[Nm]	5	15	30	40	90	120
Insta	B A2 / B A4 / B HCR	T _{inst} =	[Nm]	6	15	25	50	100	160
	neter of clearance hole e fixture	$d_{\rm f}$ \leq	[mm]	7	9	12	14	18	22
Emb	edment depth h _{ef,1}								
Effec	tive embedment depth	$h_{\text{ef},1} \geq$	[mm]	30	35	42	50	64	78
Dept	h of drill hole	$h_{1,1}\geq$	[mm]	45	55	65	75	95	110
Emb	edment depth	$h_{\text{nom},1} \geq$	[mm]	39	47	56	67	84	99
Emb	edment depth h _{ef,2}								
Effec	tive embedment depth	$h_{\text{ef},2} \geq$	[mm]	40	44	48	65	82 (80) ¹⁾	100
Dept	h of drill hole	$h_{1,2} \geq$	[mm]	55	65	70	90	110	130
Emb	edment depth	$h_{\text{nom},2} \geq$	[mm]	49	56	62	82	102	121
Emb	edment depth h _{ef,3}								
Effec	tive embedment depth	$h_{\text{ef},3} \geq$	[mm]	60	70	80	100	120	115
Dept	h of drill hole	$h_{1,3} \geq$	[mm]	75	91	102	125	148	145
Emb	edment depth	$h_{\text{nom},3} \geq$	[mm]	69	82	94	117	140	136

¹⁾ Anchor version B A2 / B A4 / B HCR

Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR

Intended use Installation data Annex B3

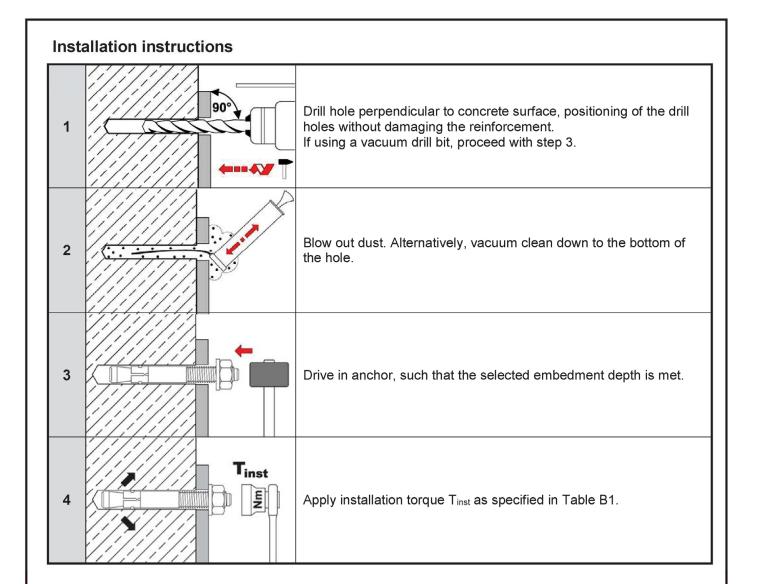
Deutsches Institut für Bautechnik

Anchor size			M6	M8	M10	M12	M16	M20
Embedment depth h _{ef,1}							•	•
Minimum member thickness	\mathbf{h}_{min}	[mm]	80	80	100	100	130	160
Minimum spacing	Smin	[mm]	35	40	55	100	100	140
Minimum edge distance	Cmin	[mm]	40	45	65	100	100	140
Embedment depth h _{ef,2}								
Minimum member thickness	\mathbf{h}_{min}	[mm]	100	100	100	130	170	200
Minimum spacing	Smin	[mm]	35	40	55	75	90	105
Minimum edge distance	Cmin	[mm]	40	45	65	90	105	125
Embedment depth h _{ef,3}								•
Minimum member thickness	\mathbf{h}_{min}	[mm]	120	126	132	165	208	215
Minimum spacing	Smin	[mm]	35	40	55	75	90	105
Minimum edge distance	Cmin	[mm]	40	45	65	90	105	125

¹⁾ Anchor version B fvz: M8-M20

Table B3: Minimum spacings and edge distances for B A2 / B A4 / B HCR

Anchor size			M6	M8	M10	M12	M16	M20
Embedment depth h _{ef,1}								
Minimum member thickness	h _{min}	[mm]	80	80	100	100	130	160
Minimum spacing	Smin	[mm]	35	60	55	100	110	140
Minimum edge distance	Cmin	[mm]	40	60	65	100	110	140
Embedment depth hef,2								
Minimum member thickness	h _{min}	[mm]	100	100	100	130	160	200
Minimum en eline	Smin	[mm]	35	35	45	60	80	100
Minimum spacing	for $c \ge$	[mm]	40	65	70	100	120	150
	Cmin	[mm]	35	45	55	70	80	100
Minimum edge distance	for s \geq	[mm]	60	110	80	100	140	180
Embedment depth h _{ef,3}								
Minimum member thickness	\mathbf{h}_{\min}	[mm]	120	126	132	165	200	215
NATION IN CONTRACTOR	Smin	[mm]	35	35	45	60	80	100
Minimum spacing	for c \geq	[mm]	40	65	70	100	120	150
Matata and a distance	Cmin	[mm]	35	45	55	70	80	100
Minimum edge distance	for s ≥	[mm]	60	110	80	100	140	180


Intermediate values by linear interpolation

Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR

Intended use

Minimum spacings and edge distances

Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR

Intended use Installation instructions Annex B5

Deutsches Institut für Bautechnik

Anchor size				M6	M8	M10	M12	M16	M20
Installation factor		γinst	[-]		· · · · ·	1	,0	1 1	
Steel failure									
Characteristic resi	stance	N _{Rk,s}	[kN]	8,7	15,3	26	35	65	107
Partial factor		γMs	[-]		1,	5		1,	6
Pull-out									
Characteristic resi	stance for	hef,1 NRk,p	[kN]	6,5 ²⁾	10,2 2)	13,4	17,4	25,2	33,9
in uncracked conc		hef,2 NRk,p	[kN]	10	13	16,4	25,8	36,5	49,2
C20/25	for	h _{ef,3} N _{Rk,p}	[kN]	10	13	16,4	26	40	55
Increasing factor for	or N _{Rk,p}	ψc	[-]		$\left(\frac{f_{ck}}{20}\right)^{0,5}$		$\left(\frac{f_{ck}}{20}\right)^{0,29}$	$\left(\frac{f_{ck}}{20}\right)^{0,33}$	$\left(\frac{f_{ck}}{20}\right)^0$
Splitting									
Characteristic resi in uncracked conc		N ⁰ Rk,sp	[kN]		m	i n [N Rk,p	; N ⁰ Rk,c ³	³⁾]	
Embedment dept	h h _{ef,1}								
Spacing		S cr,sp	[mm]	180	210	230	240	320	400
Edge distance		C cr,sp	[mm]	90	105	115	120	160	200
Embedment dept	h h _{ef,2}								
Spacing		S cr,sp	[mm]	160	220	240	330	410	500
Edge distance		C cr,sp	[mm]	80	110	120	165	205	250
Embedment dept	h h _{ef,3}								
Spacing		S cr,sp	[mm]	360	240	480	600	720	690
Edge distance		C cr,sp	[mm]	180	210	240	300	360	345
Concrete cone fa	ilure								
		for $h_{\text{ef},1} \ge$	[mm]	30 ²⁾	35 ²⁾	42	50	64	78
Effective embedme	ent depth	for $h_{ef,2} \geq$	[mm]	40	44	48	65	82	100
		for $h_{ef,3} \ge$	[mm]	60	70	80	100	120	115
Spacing		Scr,N	[mm]			3 h _{ef}	(1,2,3)		
Edge distance		C _{cr,N}	[mm]			1,5 h	ef (1,2,3)		
Factor —	incracked concrete	k ucr,N	[-]			11	1,0		
C	racked concrete	k _{cr,N}	[-]		No pe	erformai	nce asse	essed	

¹⁾ Anchor version B fvz: M8-M20

²⁾ Restricted to the use of structural components with h_{ef} < 40mm which are statically indeterminate and subject to internal exposure conditions only

 $^{3)}$ $N^{0}{}_{Rk,c}$ according to EN 1992-4:2018

Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR

Performance

Characteristic values for tension loads for B / B fvz / B sh

٦

Anchor size				M6	M8	M10	M12	M16	M20
Installation factor		γinst	[-]			1	,0		
Steel failure									
Characteristic resistance		$N_{Rk,s}$	[kN]	10	18	30	44	88	134
Partial factor		γMs	[-]			1,50			1,68
Pull-out									
Characteristic resistance in	for h _{ef,1}	$N_{Rk,p}$	[kN]	6,5 ¹⁾	9 ¹⁾	12	17,4	25,2	33,9
uncracked concrete C20/25		$N_{Rk,p}$	[kN]	8	15	16,4	25	35,2	49,2
	for h _{ef,3}	$N_{Rk,p}$	[kN]	8	15	16,4	25	42	60
Increasing factor for $N_{RK,p}$		ψс	[-]			$\left(\frac{f_{ck}}{20}\right)$	$\left(\frac{1}{2}\right)^{0,5}$		
Splitting									
Characteristic resistance in uncracked concrete C20/25	Ν	1 ⁰ Rk,sp	[kN]			min [N _{Rk} ,	p;N ⁰ Rk,c ²⁾]	
Embedment depth h _{ef,1}									
Spacing		Scr,sp	[mm]	180	180	180	180	180	180
Edge distance		Ccr,sp	[mm]	90	90	90	90	90	90
Embedment depth h _{ef,2}									
The higher one of the decisive	e resistanc	ces of	Case 1	and Case	2 is applic	able			
Case 1									
<u>.</u>					1		1		1
Characteristic resistance in uncracked concrete C20/25	Ν	¶ ⁰ Rk,sp	[kN]	6	9	12	20	30	40
uncracked concrete C20/25 Spacing	Ν	S _{cr,sp}	[mm]	6	9	3	h _{ef}	30	40
	Ν			6	9	3	h _{ef} h _{ef}	30	40
uncracked concrete C20/25 Spacing	N	S _{cr,sp}	[mm]	6	9	3	h _{ef}	30	40
uncracked concrete C20/25 Spacing Edge distance Increasing factor for N ⁰ _{Rk,sp} Case 2	N	Scr,sp Ccr,sp	[mm] [mm]			$\frac{3}{1,5}$ $\left(\frac{f_{ck}}{20}\right)$	$\frac{h_{ef}}{h_{ef}}$		
uncracked concrete C20/25 Spacing Edge distance Increasing factor for N ⁰ _{Rk,sp} Case 2 Spacing	N	Scr,sp Ccr,sp	[mm] [mm]	160	220	$\frac{3}{1,5}$ $\left(\frac{f_{ck}}{20}\right)$	$\frac{h_{ef}}{h_{ef}}$	410	40
uncracked concrete C20/25 Spacing Edge distance Increasing factor for N ⁰ _{Rk,sp} Case 2 Spacing Edge distance	N	Scr,sp Ccr,sp ΨC	[mm] [mm] [-]			$\frac{3}{1,5}$ $\left(\frac{f_{ck}}{20}\right)$	$\frac{h_{ef}}{h_{ef}}$		
uncracked concrete C20/25 Spacing Edge distance Increasing factor for N ⁰ _{Rk,sp} Case 2 Spacing Edge distance Embedment depth h ef,3	N	Scr,sp Ccr,sp ΨC Scr,sp	[mm] [mm] [-] [mm] [mm]	160 80	220 110	$ 3 1,5 (\frac{f_{ck}}{20} 240 120 120 1 $	$\frac{h_{ef}}{h_{ef}}$	410 205	560 280
uncracked concrete C20/25 Spacing Edge distance Increasing factor for N ⁰ _{Rk,sp} Case 2 Spacing Edge distance Embedment depth h _{ef,3}	N	Scr,sp Ccr,sp ΨC Scr,sp	[mm] [mm] [-] [mm] [mm]	160 80 360	220 110 240	$ 3 1,5 (\frac{f_{ck}}{20} 120 480 480 $	$\frac{h_{ef}}{5} \frac{h_{ef}}{1000} 1000000000000000000000000000000000000$	410 205 720	560 280 690
uncracked concrete C20/25 Spacing Edge distance Increasing factor for N ⁰ _{Rk,sp} Case 2 Spacing Edge distance Embedment depth h _{ef,3} Spacing Edge distance	N	S _{cr,sp} C _{cr,sp} ΨC S _{cr,sp} C _{cr,sp}	[mm] [mm] [-] [mm] [mm]	160 80	220 110	$ 3 1,5 (\frac{f_{ck}}{20} 240 120 120 1 $	$\frac{h_{ef}}{h_{ef}}$	410 205	560 280
uncracked concrete C20/25 Spacing Edge distance Increasing factor for N ⁰ _{Rk,sp} Case 2 Spacing Edge distance Embedment depth h _{ef,3} Spacing Edge distance		Scr,sp Ccr,sp V/C Scr,sp Ccr,sp Scr,sp	[mm] [mm] [-] [mm] [mm] [mm]	160 80 360 180	220 110 240 210	$ 3 1,5 (\frac{f_{ck}}{20} 120 480 240 240 120 480 240 10 $	$\frac{h_{ef}}{h_{ef}}$ $\frac{h_{ef}}{0.5}$ $\frac{340}{170}$ $\frac{600}{300}$	410 205 720 360	560 280 690 345
uncracked concrete C20/25 Spacing Edge distance Increasing factor for N ⁰ _{Rk,sp} Case 2 Spacing Edge distance Embedment depth h _{ef,3} Spacing Edge distance Concrete cone failure	for	Scr,sp Ccr,sp V/C Scr,sp Ccr,sp Ccr,sp Ccr,sp	[mm] [mm] [-] [mm] [mm] [mm]	160 80 360 180 30 ¹⁾	220 110 240 210 35 ¹⁾	$ \begin{array}{r} 3 \\ 1,5 \\ \left(\frac{f_{ck}}{20}\right) \\ 240 \\ 120 \\ 480 \\ 240 \\ 42 \\ 42 \end{array} $	$\frac{h_{ef}}{5} \frac{h_{ef}}{1000} \frac{1000}{1000} \frac{1000}{1000}$	410 205 720 360 64	560 280 690 345 78
uncracked concrete C20/25 Spacing Edge distance Increasing factor for N ⁰ _{Rk,sp} Case 2 Spacing Edge distance Embedment depth h _{ef,3} Spacing Edge distance Concrete cone failure	for for	S _{cr,sp} C _{cr,sp}	[mm] [mm] [-] [mm] [mm] [mm] [mm]	160 80 360 180 30 ⁻¹⁾ 40	220 110 240 210 35 ¹⁾ 44	$ \begin{array}{r} 3 \\ 1,5 \\ $	$\frac{h_{ef}}{5} \frac{h_{ef}}{1000} \frac{1000}{1000} \frac{1000}{1000}$	410 205 720 360 64 80	560 280 690 345 78 100
uncracked concrete C20/25 Spacing Edge distance Increasing factor for N ⁰ _{Rk,sp} Case 2 Spacing Edge distance Embedment depth h _{ef,3} Spacing Edge distance Concrete cone failure Effective Embedment depth	for for	Scr,sp Ccr,sp V/C Scr,sp Ccr,sp Ccr,sp Ccr,sp	[mm] [mm] [-] [mm] [mm] [mm] [mm] [mm]	160 80 360 180 30 ¹⁾	220 110 240 210 35 ¹⁾	$ \begin{array}{r} 3 \\ 1,5 \\ \left(\frac{f_{ck}}{20}\right)^{240} \\ 240 \\ 120 \\ 480 \\ 240 \\ 48 \\ 80 \\ 48 \\ 80 \\ 80 \\ \end{array} $		410 205 720 360 64	560 280 690 345 78
uncracked concrete C20/25 Spacing Edge distance Increasing factor for N ⁰ _{Rk,sp} Case 2 Spacing Edge distance Embedment depth h ef,3 Spacing Edge distance Concrete cone failure Effective Embedment depth Spacing	for for	S _{cr,sp} C _{cr,sp}	[mm] [mm] [-] [mm] [mm] [mm] [mm] [mm] [160 80 360 180 30 ⁻¹⁾ 40	220 110 240 210 35 ¹⁾ 44	$ \begin{array}{r} 3 \\ 1,5 \\ \begin{pmatrix} f_{ck} \\ 20 \\ 240 \\ 120 \\ 480 \\ 240 \\ 480 \\ 240 \\ 480 \\ 240 \\ 480 \\ 30 \\ 3 \end{array} $	hef hef 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	410 205 720 360 64 80	560 280 690 345 78 100
uncracked concrete C20/25 Spacing Edge distance Increasing factor for N ⁰ _{Rk,sp} Case 2 Spacing Edge distance Embedment depth h _{ef,3} Spacing Edge distance Concrete cone failure Effective Embedment depth Spacing Edge distance	for for for	S _{cr,sp} C _{cr,sp} V/C S _{cr,sp} C _{cr,sp} C _{cr,sp} C _{cr,sp} h _{ef,1} ≥ h _{ef,2} ≥ h _{ef,3} ≥	[mm] [mm] [-] [mm] [mm] [mm] [mm] [mm] [160 80 360 180 30 ⁻¹⁾ 40	220 110 240 210 35 ¹⁾ 44	$ \begin{array}{r} 3 \\ 1,5 \\ (\frac{f_{ck}}{20} \\ 240 \\ 120 \\ 480 \\ 240 \\ 480 \\ 240 \\ 480 \\ 240 \\ 480 \\ 3 \\ 1,5 \\ 3 \\ 1,5 \\$	hef hef 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	410 205 720 360 64 80	560 280 690 345 78 100
uncracked concrete C20/25 Spacing Edge distance Increasing factor for N ⁰ _{Rk,sp} Case 2 Spacing Edge distance Embedment depth h _{ef,3} Spacing Edge distance Concrete cone failure Effective Embedment depth	for for for	$\begin{array}{c} \mathbf{S}_{cr,sp} \\ \mathbf{C}_{cr,sp} \\ \psi C \\ \\ \mathbf{S}_{cr,sp} \\ \mathbf{C}_{cr,sp} \\ \\ \mathbf{h}_{ef,1} \geq \\ \\ \mathbf{h}_{ef,3} \geq \\ \\ \mathbf{S}_{cr,N} \end{array}$	[mm] [mm] [-] [mm] [mm] [mm] [mm] [mm] [160 80 360 180 30 ⁻¹⁾ 40	220 110 240 210 35 ¹⁾ 44	$ \begin{array}{r} 3 \\ 1,5 \\ (\frac{f_{ck}}{20} \\ 240 \\ 120 \\ 480 \\ 240 \\ 480 \\ 240 \\ 480 \\ 240 \\ 480 \\ 3 \\ 1,5 \\ 3 \\ 1,5 \\$	hef hef 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	410 205 720 360 64 80	560 280 690 345 78 100

Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR

Performance

Characteristic values for tension loads for B A2 / B A4 / B HCR

Deutsches Institut für Bautechnik

Anchor size					M6	M8	M10	M12	M16	M20
Installation factor			γinst	[-]				1,0	· · · ·	
Steel failure without le	ever arm									
Characteristic	B / B fvz ¹⁾ /	B sh	V ⁰ Rk.s	[kN]	5	11	17	25	44	69
resistance			V ⁰ Rk,s	[kN]	7	12	19	27	50	86
Ductility factor				[-]				1,0	·	
Steel failure with lever	r arm									
Characteristic bending	B / B fvz ¹⁾ /	B sh	M ⁰ Rk.s	[Nm]	9	23	45	78	186	363
resistance	B A2 / B A4	I/BHCR	M ⁰ Rk,s	[Nm]	10	24	49	85	199	454
Partial factor for B / B fvz ¹⁾ / B		B sh	γMs	[-]	1,25			1,33		
$V^{0}_{Rk,s}$ and $M^{0}_{Rk,s}$	B A2 / B A4	I / B HCR	γMs	[-]			1,25			1,4
Concrete pry-out failu	re		·							
Factor for h	B / B fvz ¹⁾ /	B sh	kଃ	[-]	1,0	2,3	2,5	2,9	2,8	3,1
Factor for h ef	B A2 / B A4	I/BHCR	kଃ	[-]	1,0	2,3	2,8	2,8	3,0	3,3
Concrete edge failure										
		for h _{ef,1}	lf	[mm]	30 ²⁾	35 ²⁾	42	50	64	78
Effective length of anche loading	or in shear	for h ef,2	lf	[mm]	40	44	48	65	82 (80) ³⁾	100
		for h _{ef,3}	lf	[mm]	60	70	80	100	120	115
Outside diameter of and	chor		d _{nom}	[mm]	6	8	10	12	16	20

³⁾ Anchor version B A2 / B A4 / B HCR

Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR

Performance Characteristic values for **shear loads**

Anchor size			M6	M8	M10	M12	M16	M20	
Embedment depth h _{ef,1}		/		•					
B / B fvz ¹⁾ / B sh									
Tension load	N	[kN]	2,9	5,0	6,5	8,5	12,3	16,6	
Displacement	δνο	[mm]	0,3	0,4					
	δn∞	[mm]	0,6	1,8					
B A2 / B A4 / B HCR									
Tension load	N	[kN]	2,9	4,3	5,7	8,5	12,3	16,6	
Displacement	δνο	[mm]	0,4	0,7	0,4	0,4	0,6	1,5	
	δ _{N∞}	[mm]		1,3					
Embedment depth h _{ef,2} and h _{ef,3}									
B / B fvz ¹⁾ / B sh									
Tension load	N	[kN]	4,3	5,8	7,6	11,9	16,7	23,8	
Displacement	δνο	[mm]	0,4	0,5					
	δ _{N∞}	[mm]	0,7	2,3					
B A2 / B A4 / B HCR		· ·							
Tension load	N	[kN]	3,6	5,7	7,6	11,9	17,2	24,0	
Displacement	δνο	[mm]	0,7	0,9	0,5	0,6	0,9	2,1	
	δ _{N∞}	[mm]			1,8			4,2	

¹⁾ Anchor version B fvz: M8-M20

Table C6: Displacements under shear loads

Anchor size			M6	M8	M10	M12	M16	M20
B / B fvz ¹⁾ / B sh								
Shear load	V	[kN]	2,9	6,3	9,7	14,3	23,6	37,0
Displacement	δvo	[mm]	1,2	1,5	1,6	2,6	3,1	4,4
	δv∞	[mm]	2,4	2,2	2,4	3,9	4,6	6,6
B A2 / B A4 / B HCR								
Shear load	V	[kN]	4,0	6,9	10,9	15,4	28,6	43,7
Displacement	δvo	[mm]	1,1	2,0	1,2	2,0	2,2	2,1
	δv∞	[mm]	1,7	3,0	1,8	3,0	3,3	3,2

¹⁾ Anchor version B fvz: M8-M20

Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR

Performance Displacements