

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-02/0032 of 4 November 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Hilti push-in anchor HKD

Deformation-controlled expansion anchor made of galvanised or stainless steel of sizes M6, M8, M10, M12, M16 and M20 for use in non-cracked concrete

Hilti Aktiengesellschaft 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Aktiengesellschaft

19 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601 Edition 12/2019

ETA-02/0032 issued on 7 January 2015

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-02/0032 English translation prepared by DIBt

Page 2 of 19 | 4 November 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 19 | 4 November 2020

European Technical Assessment ETA-02/0032 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Hilti push-in anchor HKD is a fastener made of galvanized or stainless steel which is placed into a drilled hole and anchored by deformation-controlled expansion.

The fastener consists of an anchor body and an internal plug.

The fixture shall be anchored with a fastening screw or threaded rod according to Annex B2. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi static action) Method A	See Annex B3, C1 and C4
Characteristic resistance to shear load (static and quasi static action)	See Annex C2 and C5
Displacements and Durability	See Annex C3, C6 and B1
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

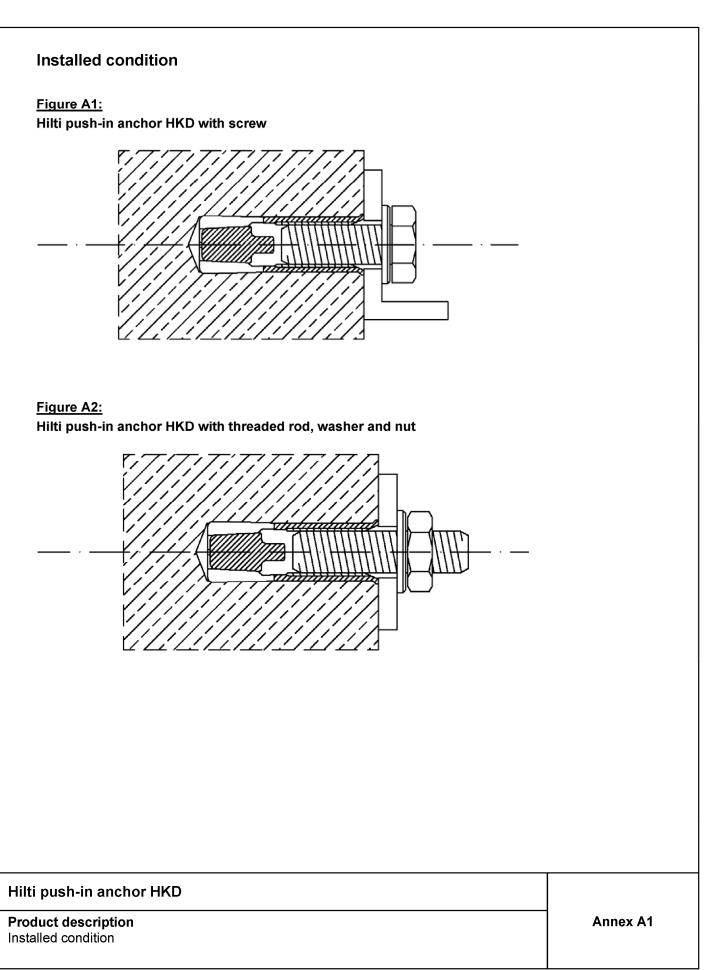
The system to be applied is: 1

European Technical Assessment ETA-02/0032 English translation prepared by DIBt

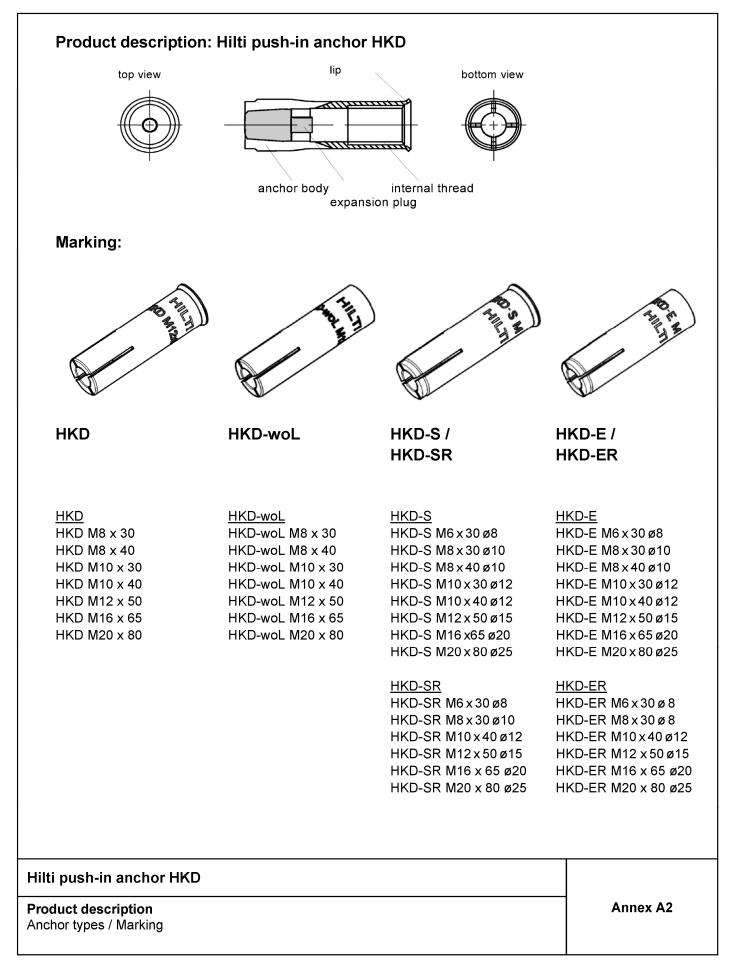
Page 4 of 19 | 4 November 2020

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

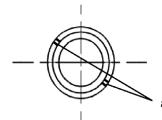
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 4 November 2020 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Lange


Page 5 of European Technical Assessment ETA-02/0032 of 4 November 2020

English translation prepared by DIBt


Identification after installation

Each anchor can be identified with setting tool after installation

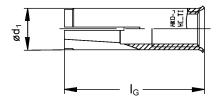
Table A1: Identification HKD and HKD-woL

Size	Setting tool	Top view
HKD M8x30	HSD-G M8 x 25/30	
HKD M8x40	HSD-G M8 x 40	
HKD M10x30	HSD-G M10 x 25/30	
HKD M10x40	HSD-G M10 x 40	
HKD M12x50	HSD-G M12 x 50	
HKD M16x65	HSD-G M16 x 65	
HKD M20x80	HSD-G M20 x 80	

Identification HKD-E(R) and HKD-S(R)

additional marking on end-face for M8x40 and M10x40

Hilti push-in anchor HKD


Product description Identification after installation Annex A3

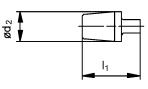


Table A2: Materials	
designation	material
HKD; HKD-woL	
anchor body	cold formed steel – galvanised to \geq 5 μm
expansion plug	cold formed steel
HKD-S; HKD-E	
anchor body	Steel Fe/Zn5 (galvanised \ge 5 μ m)
expansion plug	cold formed steel
HKD-SR; HKD-ER	
anchor body	Stainless steel of corrosion resistance class III according to EN1993-1-4:2006+A1:2015
expansion plug	1.4401, 1.4404 or 1.4571 according to EN 10088-1:2014

anchor body

expansion plug

Table A3: Dimensions

Anchor size			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65	M20x80
Anchor length	lg	[mm]	30	30	40	30	40	50	65	80
Anchor diameter	Ød₁	[mm]	8	9,95	9,95	11,8	12	14,9	19,8	24,8
Plug diameter	Ød ₂	[mm]	5	6,5	6,35	8,2	8,2	10,3	13,8	16,4
Plug length	l ₁	[mm]	15	12	16	12	16	20	29	30

Hilti push-in anchor HKD

Product description Materials and dimensions Annex A4

Specifications of intended use

Anchorages subject to:

Static and quasi-static loading.

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibers in accordance with EN 206:2013+A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016.
- Uncracked concrete only.

Table B1: Overview use categories and performance categories

Anchorages subject to:	HKD / HKD-woL / HKD-E(R) and HKD-S(R) with …
	Threaded rod or screw
Hammer drilling	\checkmark
Static and quasi-static loading in uncracked concrete	M6 to M20 Table : C1, C2, C3, C4, C5 and C6

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel or stainless steel).
- For all other conditions according EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes Annex A4 Table A2 (stainless steels).

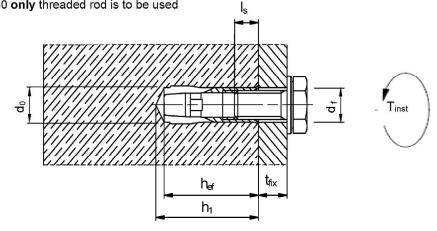
Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with: EN 1992-4:2018.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The anchor may only be set once.
- Overhead applications are permitted.

Hilti push-in anchor HKD


Intended use

Specifications

Table B2: Installat	able B2: Installation parameters for HKD-S(R), HKD-E(R), HKD and HKD-woL												
НКD			M6x30	M8x30	M8x40	M10x30 ¹⁾	M10x40	M12x50	M16x65	M20x80			
Nominal diameter of drill bit	d₀	[mm]	8	10	10	12	12	15	20	25			
Diameter of thread	d	[mm]	6	8	8	10	10	12	16	20			
drill hole depth	h1	[mm]	32	33	43	33	43	54	70	85			
Effective embedment depth	h _{ef}	[mm]	30	30	40	30	40	50	65	80			
Thread engagement length	I _{s,max}	[mm]	12,5	14,5	17,5	12,7	18	23,5	30,5	42			
Minimum screwing depth ¹⁾	I _{s,min}	[mm]	6	8	8	10	10	12	16	20			
Maximum torque moment	T _{inst}	[Nm]	4	8	8	15	15	35	60	100			
Maximum diameter of clearance hole in the fixture	df	[mm]	7	9	9	12	12	14	18	22			

¹⁾ with anchor size M10x30 **only** threaded rod is to be used

Requirements for fastening screw or threaded rod:

For anchors made of galvanised steel (HKD, HKD-woL, HKD-E and HKD-S) fastening screws or threaded rods of steel grade 4.6 / 5.6 / 5.8 or 8.8 according to EN ISO 898-1:2013 shall be specified.

For anchors made of stainless steel (HKD-ER and HKD-SR) fastening screw or threaded rod of steel grade 70 according EN ISO 3506:2020 shall be specified.

Minimum screw depth $I_{s,min}$ **:** The length of the screw shall be determined depending on thickness of fixture t_{fix} , admissible tolerances and available thread length $I_{s,max}$ as well as minimum screw depth $I_{s,min}$ according to Table B2

Hilti push-in anchor HKD

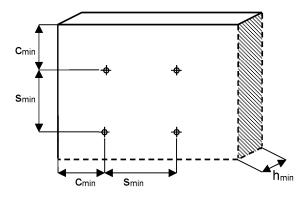
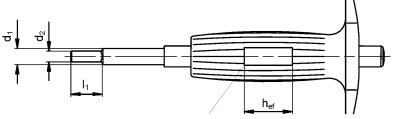
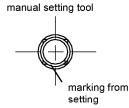

Intended Use Installation parameters

Table B3: Minimum	spaci	ng and mir	nimum edg	ge distanc	e for HKD	-S(R) and	HKD-E(R)
HKD-S(R), HKD-E(R)		M6x30 M8x30 M10x30	M8x40 M10x40	M12x50	M16x65	M20x80	
Minimum thickness of concrete member	\mathbf{h}_{min}	[mm]	100	100	100	130	160
Minimum spacing	S _{min}	[mm]	60	80	125	130	160
Minimum edge distance	C _{min}	[mm]	105	140	175	230	280

Table B4: Minimum spacing and minimum edge distance for HKD and HKD-woL

HKD, HKD-woL			M8x30 M10x30	M8x40 M10x40	M12x50	M16x65	M20x80
Minimum thickness of concrete member	h _{min}	[mm]	100	100	100	130	160
Minimum spacing	Smin	[mm]	60	80	125	130	160
	for c ≥	[mm]	105	140	175	230	280
Minimum edge distance	Cmin	[mm]	80	140	175	230	280
	for s≥	[mm]	120	80	125	130	160

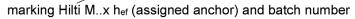


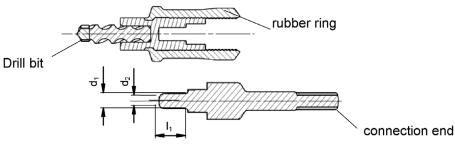

Hilti push-in anchor HKD

Intended Use Minimum spacing and minimum edge distance

Setting tools HSD			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65	M20x80
Diameter	d₁	[mm]	7,5	9,5	9,5	11,5	11,5	14,5	18	22
Diameter	d ₂	[mm]	5	6,5	6,5	8	8	10,2	13,5	16,5
Length	l ₁	[mm]	15	18	28	18	24	30	36	50

anchor gauge with imprint $M_{\cdot,x}$ $h_{\rm ef}$ (assigned anchor) the recess length corresponds to the anchor length $h_{\rm ef}$


Machine setting tool HSD-M M. x h_{ef} (e.g. HSD-M M8 x 30)



marking HSD-M M..x hef (assigned anchor)

Machine setting tool HSD-TE CX M.. x hef (e.g. HSD-TE-CX M8 x 30)

Hilti push-in anchor HKD

Intended Use Setting tools

Installation instructions		
Hole drilling and cleaning		
	Make a cylindrical hole.	
HILTTI	Clean the drill hole.	
Fastener setting		
	Install the anchor by hammering.	
HSD-G Mx	Choose the setting tool; an setting tool according to the	d confirm the size of e size of the anchor.
Setting check		
	HSD-G Mx: Hammer on the top of setting tool until the on the lips of the anchor. HSD-M Mx: set the anchor until the setting tool touch anchor.	
Loading the anchor		
	Apply the torque (check the values for T _{inst}) using torque v	vrench.
Hilti push-in anchor HKD		
Intended Use Installation instructions		Annex B5

HKD-S (R) HKD-E (R)			M6x30 ²⁾	M8x30 ²⁾	M8x40	M10x30 ²⁾	M10x40	M12x50	M16x65	M20×80	
Installation safety factor	γinst		1	,0	1,2		1	1,0	1		
Steel failure											
Steel grade 4.6	N _{Rk,s}	[kN]	8,0	14,6	14,6	23,2	23,2	33,7	62,8	98,0	
Partial safety factor	γMs ¹⁾					2	,0	•			
Steel grade 5.6	N _{Rk,s}	[kN]	10,1	18,3	18,3	18,5	19,9	42,2	54,7	86,9	
Partial safety factor	γMs ¹⁾			2,0	•	1,4	49	.9 2,0		47	
Steel grade 5.8	N _{Rk,s}	[kN]	10,1	17,4	17,4	18,5	19,9	35,3	54,7	86,9	
Partial safety factor	γMs ¹⁾		1,50	1,	53		1,49	1	1,	47	
Steel grade 8.8	N _{Rk,s}	[kN]	13,4	17,4	17,4	18,5	19,9	35,3	54,7	86,9	
Partial safety factor	γMs ¹⁾			1,53	I		1,49	1	1,	47	
Steel grade 70	N _{Rk,s}	[kN]	12,8	16,8	versi	on not	21,1	37,3	64,2	102,0	
Partial safety factor	tial safety factor $\gamma_{Ms}^{1)}$		1,8	83		lable					
Pullout failure											
Characteristic resistance C20/25	N _{Rk,p}	[kN]	8,1	8,1	9,0	8,1	12,4	17,4	25,8	35,2	
		C30/37				1,:	22				
Increasing factors for N _{Rk,p}	ψc	C40/50				1,	41				
τοι τηςκ,ρ		C50/60				1,	58				
Concrete cone and split	ting failu	re									
Characteristic resistance to prevent splitting	$N^0_{Rk,sp}$	[kN]	8,1	8,1	9,0	8,1	12,4	17,4	25,8	35,2	
Factor	kucr	[-]				11	,0				
Factor	k _{cr}	[-]			No pe	erformar	nce ass	essed			
Effective embedment depth	h _{ef}	[mm]	30 ²⁾	30 ²⁾	40	30 ²⁾	40	50	65	80	
Spacing	Scr,N	[mm]	90	90	120	90	120	150	195	240	
Edge distance	C _{cr,N}	[mm]	45	45	60	45	60	75	97	120	
Spacing	Scr,sp	[mm]	210	210	280	210	280	350	455	560	
Edge distance	C cr,sp	[mm]	105	105	140	105	140	175	227	280	

¹⁾ In absence of other national regulations.

²⁾ For application with dry internal exposure only and statically indeterminate structural components only.

Hilti push-in anchor HKD

Performances

Characteristic resistance for Hilti push-in anchor HKD-S(R) and HKD-E(R) under tension loads in uncracked concrete

HKD-S (R) HKD-E (R)			M6x30 ²⁾	M8x30 ²⁾	M8x40	M10x30 ²⁾	M10x40	M12x50	M16x65	M20×80
Steel failure without leve	er arm				1	1	1	1		L
Steel grade 4.6	V ⁰ Rk,s	[kN]	4,0	7,3	7,3	7,4	8,0	16,9	21,9	34,7
Partial safety factor	γ _{Ms} ¹⁾			1,67		1,	25	1,67	1,	25
Steel grade 5.6	V ⁰ Rk,s	[kN]	5,0	7,0	7,0	7,4	8,0	14,1	21,9	34,7
Partial safety factor	γ _{Ms} ¹⁾		1,67	1,	27			1,25		
Steel grade 5.8	V ⁰ Rk,s	[kN]	5,0	7,0	7,0	7,4	8,0	14,1	21,9	34,7
Partial safety factor	γ _{Ms} ¹⁾		1,25	1,	27			1,25	-	
Steel grade 8.8	V ⁰ Rk,s	[kN]	5,3	7,0	7,0	7,4	8,0	14,1	21,9	34,7
Partial safety factor	γMs ¹⁾			1,27				1,25		<u>. </u>
Steel grade 70	V ⁰ Rk,s	[kN]	6,4	8,4	versio	on not	10,5	18,7	32,1	51,0
Partial safety factor	γ _{Ms} ¹⁾		1,	52	avai	lable		1,	52	
Ductility factor	k 7	[-]				1	,0			
Steel failure with lever a	rm									
Steel grade 4.6	M ⁰ Rk,s	[Nm]	6	15	15	30	30	52	133	260
Partial safety factor	γ _{Ms} ¹⁾					1,	67			
Steel grade 5.6	M ⁰ Rk,s	[Nm]	8	19	19	37	37	65	166	325
Partial safety factor	γ _{Ms} ¹⁾				•	1,	67			
Steel grade 5.8	M ⁰ Rk,s	[Nm]	8	19	19	37	37	65	166	325
Partial safety factor	γ _{Ms} ¹⁾					1,	25			
Steel grade 8.8	M ⁰ Rk,s	[Nm]	12	30	30	60	60	105	266	519
Partial safety factor	γ _{Ms} 1)					1,:	25		. <u> </u>	·
Steel grade 70	M ⁰ Rk,s	[Nm]	11	26	versio	on not	52	92	233	454
Partial safety factor	γ _{Ms} ¹⁾		1,	56	avai	lable		1,	56	
Ductility factor	k 7	[-]				1	,0			
Concrete pry-out failure										
Pry-out factor	k ₈	[-]				2	,0			
Concrete edge failure										
Effective length of anchor	lf	[mm]	30	30	40	30	40	50	65	80
External diameter of anchor	d _{nom}	[mm]	8	10	10	12	12	15	20	25

¹⁾ In absence of other national regulations.

²⁾ For application with dry internal exposure only and statically indeterminate structural components only.

Hilti push-in anchor HKD

Performances

Characteristic resistance for Hilti push-in anchor $\mathsf{HKD}\text{-}\mathsf{S}(\mathsf{R})$ and $\mathsf{HKD}\text{-}\mathsf{E}(\mathsf{R})$ under shear loads in uncracked concrete

Table C3: Displacements under tension load for HKD-S(R) and HKD-E(R)

HKD-S(R) HKD-E(R)			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65	M20x80
Tension load in C20/25 to C50/60 uncracked concrete	Ν	[kN]	3,3	3,3	3,6	3,3	5,1	7,1	12,6	17,2
Displacement –	δ _{N0}	[mm]	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
	δn∞	[mm]	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2

Table C4: Displacements under shear load for HKD-S and HKD-E

HKD-S HKD-E			M6x30	M8x30	M8x40	M10×30	M10x40	M12×50	M16×65	M20×80
Shear load in C20/25 to C50/60 uncracked concrete	V	[kN]	1,7	3,1	3,1	4,3	4,6	7,2	12,5	19,8
Displacement -	δvo	[mm]	0,35	0,35	0,40	0,35	0,40	0,45	0,75	0,75
	δv∞	[mm]	0,50	0,50	0,60	0,50	0,60	0,70	1,1	1,1

Table C5: Displacements under shear load for HKD-SR and HKD-ER

HKD-SR HKD-ER			M6x30	M8x30	M10x40	M12×50	M16×65	M20×80
Shear load in C20/25 to C50/60 uncracked concrete	V	[kN]	1,7	3,9	4,9	8,8	15,1	24,0
Dianlagoment	δvo	[mm]	0,35	0,45	0,45	0,55	0,9	0,9
Displacement —	δv∞	[mm]	0,50	0,65	0,65	0,85	1,3	1,3

Performance

Displacements under tension load and under shear load for HKD-S(R) and HKD-E(R)

Table C6:Characteristic resistance for Hilti push-in anchor HKD and HKD-woL
under tension loads in uncracked concrete

HKD HKD-woL			M8x30 ²⁾	M8x40	M10x30 ²⁾	M10x40	M12x50	M16x65	M20×80		
Installation safety factor	γinst		1,0	1,2			1,0				
Steel failure											
Steel grade 4.6	N _{Rk,s}	[kN]	14,6	14,6	19,9	22,1	33,7	62,8	98,0		
Partial safety factor	γ _{Ms} 1)		2	,0	1	,5		2,0			
Steel grade 5.6	N _{Rk,s}	[kN]	17,1	19,4	19,9	22,1	36,6	67,5	99,0		
Partial safety factor	γMs ¹⁾				-	1,5	-				
Steel grade 5.8	N _{Rk,s}	[kN]	17,1	19,4	19,9	22,1	36,6	67,5	99,0		
Partial safety factor	$\gamma_{\rm Ms}$ $^{1)}$					1,5					
Steel grade 8.8	$N_{Rk,s}$	[kN]	17,1	19,4	19,9	22,1	36,6	67,5	99,0		
Partial safety factor	γ _{Ms} ¹⁾					1,5					
Pullout failure											
Characteristic resistance C20/25	N Rk,p	[kN]	8,1	9,0	8,1	12,4	17,4	25,8	35,2		
		C30/37	1,22								
Increasing factors for N _{Rk.p}	ψο	C40/50				1,41					
		C50/60				1,58					
Concrete cone and split	ting failu	re									
Characteristic resistance to prevent splitting	$N^0_{Rk,sp}$	[kN]	8,1	9,0	8,1	12,4	17,4	25,8	35,2		
Factor	k _{ucr}	[-]				11,0					
Factor	k cr	[-]			No perfo	rmance a	assessed				
Effective embedment depth	h _{ef}	[mm]	30 ²⁾	40	30 ²⁾	40	50	65	80		
Spacing	Scr,N	[mm]	90	120	90	120	150	195	240		
Edge distance	Ccr,N	[mm]	45	60	45	60	75	97	120		
Spacing	Scr.sp	[mm]	210	280	210	280	350	455	560		
Edge distance	Ccr,sp	[mm]	105	140	105	140	175	227	280		

¹⁾ In absence of other national regulations.

²⁾ For application with dry internal exposure only and statically indeterminate structural components only.

Hilti push-in anchor HKD

Performances

Characteristic resistance for Hilti push-in anchor HKD and HKD-woL under tension loads in uncracked concrete

		M8x30 ²⁾	M8×40	M10x30 ²⁾	M10x40	M12x50	M16x65	M20×80
re without lever an	m		•	I	1	I		1
e 4.6 V ⁰ _R	k,s [kN]	7,3	7,3	10,0	11,0	16,9	31,4	49
ety factor γ _{Ms}	1)	1,	67	1,	25		1,67	
e 5.6 V ⁰ _R	k,s [kN]	8,6	9,2	10,0	11,0	18,3	33,8	49,5
ety factor γ _{Ms}	1)	1,25	1,67			1,25		
e 5.8 V ⁰ _R	k,s [kN]	8,6	9,2	10,0	11,0	18,3	33,8	49,5
ety factor γ _{Ms}	1)				1,25		•	
e 8.8 V ⁰ _R	k,s [kN]	8,6	9,2	10,0	11,0	18,3	33,8	49,5
ety factor γ _{Ms}	1)				1,25			
ctor k ₇	[-]				1,0			
re with lever arm								
e 4.6 M ⁰ F	Rk,s [Nm]	15	15	30	30	52	133	260
ety factor γ _{Ms}	1)				1,67			
e 5.6 M ⁰ F	Rk,s [Nm]	19	19	37	37	65	166	325
ety factor γ _{Ms}	1)				1,67		•	
e 5.8 M ⁰ F	Rk,s [Nm]	19	19	37	37	65	166	325
ety factor γ _{Ms}	1)			I	1,25	1		1
∋ 8.8 M ⁰ F	Rk,s [Nm]	30	30	60	60	105	266	519
ety factor γ _{Ms}	1)			1	1,25		•	•
ctor k7	[-]				1,0			
pry-out failure		1						
tor k ₈	[-]				2,0			
edge failure								
ength of anchor I _f	[mm]	30	40	30	40	50	65	80
ameter of d _{nor}	n [mm]	10	10	12	12	15	20	25
ameter of								

.

¹⁾ In absence of other national regulations.

²⁾ For application with dry internal exposure only and statically indeterminate structural components only.

Hilti push-in anchor HKD

Performances

Characteristic resistance for Hilti push-in anchor HKD and HKD-woL under shear loads in uncracked concrete

Table C8: Displacements under tension load for HKD and HKD-woL

HKD HKD-woL			M8x30	M8x40	M10x30	M10x40	M12x50	M16x65	M20x80
Tension load in C20/25 to C50/60 uncracked concrete	Ν	[kN]	4,0	4,3	4,0	6,1	8,5	12,6	17,2
Displacement –	δησ	[mm]	0,1	0,1	0,1	0,1	0,1	0,1	0,1
	δ _{N∞}	[mm]	0,3	0,3	0,3	0,3	0,3	0,2	0,2

Table C9: Displacements under shear load for HKD and HKD-woL

HKD HKD-woL			M8x30	M8x40	M10x30	M10x40	M12x50	M16x65	M20×80
Shear load in C20/25 to C50/60 uncracked concrete	Ν	[kN]	3,1	3,1	4,3	4,6	7,2	12,5	19,8
Displacement –	δvo	[mm]	0,35	0,40	0,35	0,40	0,45	0,75	0,75
	δv∞	[mm]	0,50	0,60	0,50	0,60	0,70	1,1	1,1

Hilti push-in anchor HKD

Performance

Displacements under tension load and under shear load for HKD and HKD-woL