

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-02/0024 of 2 January 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection System fischer FIS V

Bonded fastener for use in concrete

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

34 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601

ETA-02/0024 issued on 13 February 2017

European Technical Assessment ETA-02/0024

Page 2 of 34 | 2 January 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z21816.19 8.06.01-707/18

European Technical Assessment ETA-02/0024

Page 3 of 34 | 2 January 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "fischer injection system FIS V" is a bonded fastener consisting of a cartridge with injection mortar fischer FIS V and a steel element according to Annex A5.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static tension load	See Annex C 1, C 2, C 5 to C 8
Characteristic resistance for static and quasi-static shear load	See Annex C 1 to C 4
Displacements for static and quasi-static loads	See Annex C 9 to C 10
Characteristic resistance for seismic performance categories C1 and C2	See Annex C 11 to C 14
Durability	See Annex B 2

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z21816.19 8.06.01-707/18

European Technical Assessment ETA-02/0024

Page 4 of 34 | 2 January 2020

English translation prepared by DIBt

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD 330499-01-0601 according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

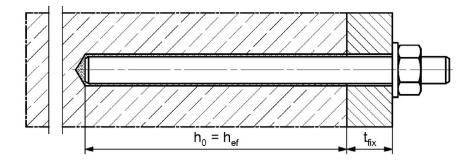
The system to be applied is: 1

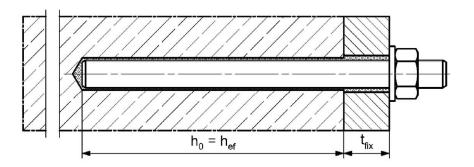
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

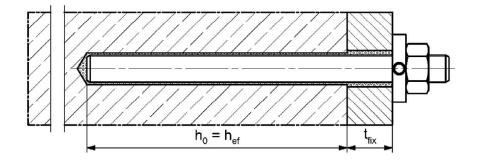
Issued in Berlin 2 January 2019 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department beglaubigt: Lange


Z21816.19 8.06.01-707/18


Installation conditions part 1

fischer anchor rod


Pre-positioned installation

Push through installation (annular gap filled with mortar)

Pre-positioned or push through installation with subsequently injected filling disk (annular gap filled with mortar)

Figures not to scale

 $h_0 = drill hole depth$

h_{ef} = effective embedment depth

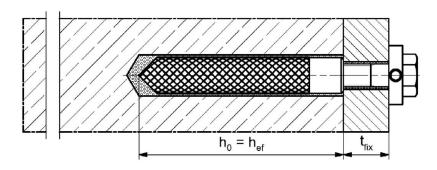
 t_{fix} = thickness of fixture

fischer injection system FIS V

Product description

Installation conditions part 1


Annex A 1


Installation conditions part 2

fischer internal threaded anchor RG MI

Pre-positioned installation

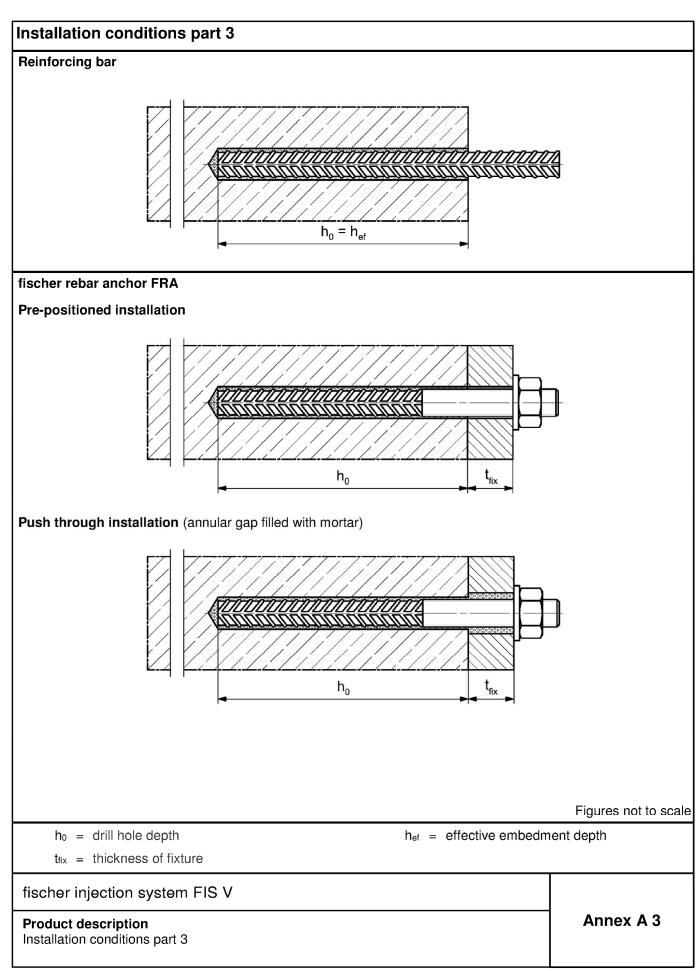
Pre-positioned installation with subsequently injected filling disk (annular gap filled with mortar)

Figures not to scale

 $h_0 = drill hole depth$

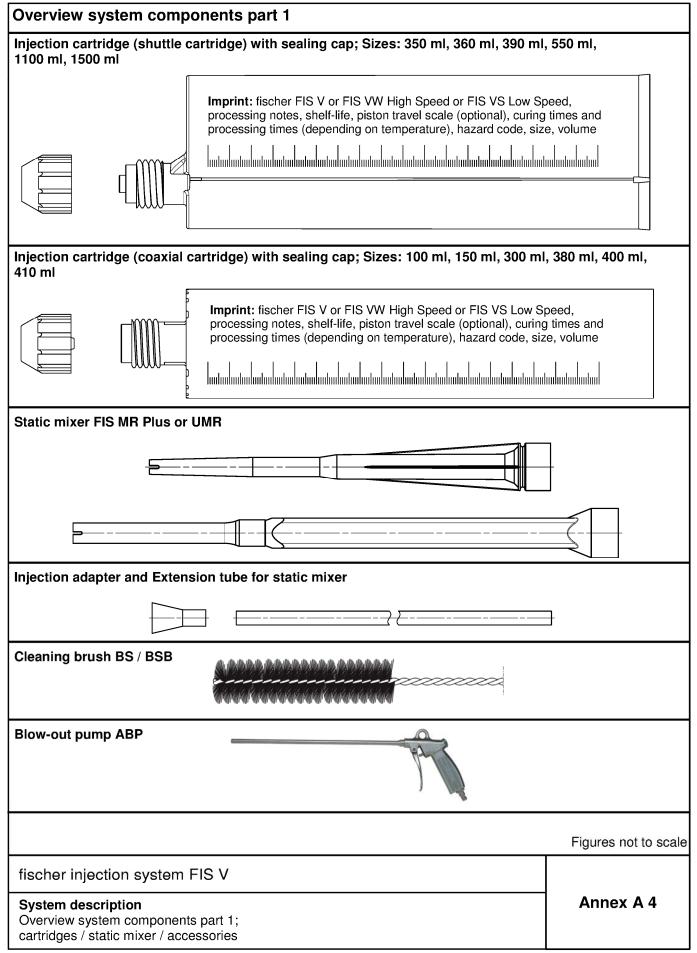
hef = effective embedment depth

 t_{fix} = thickness of fixture


fischer injection system FIS V

Product description

Installation conditions part 2


Annex A 2

Z88251.19

Overview system components part 2 fischer anchor rod Size: M6, M8, M10, M12, M16, M20, M24, M27, M30 fischer internal threaded anchor RG MI Size: M8, M10, M12, M16, M20 Screw / threaded rod / washer / hexagon nut fischer filling disk FFD with injection adapter Reinforcing bar Nominal diameter: $\phi 8$, $\phi 10$, $\phi 12$, $\phi 14$, $\phi 16$, $\phi 20$, $\phi 25$, $\phi 28$ fischer rebar anchor FRA Size: M12, M16, M20, M24 Figures not to scale fischer injection system FIS V Annex A 5 System description Overview system components part 2; steel components

<u>Part</u>	Designation		Mate	erial			
1	Injection cartridge		Mortar, har	dener, filler			
	Steel grade	Steel, zinc plated	Stainle	ss steel ¹⁾	High corrosion resistant steel C ²⁾		
		Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5 μm,	ËN ISO 3 1.4401; 1.4	ss 50, 70 or 80 506-1:2009 404; 1.4578;	Property class 50 or 80 EN ISO 3506-1:2009 or property class 70 with		
2	Anchor rod	EN ISO 4042:1999 A2K or hot-dip galvanised \geq 40 μ m EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 > 12\%$	1.4062, 1.4 EN 1008 f _{uk} ≤ 100 A ₅ >	439; 1.4362; 662, 1.4462; 88-1:2014 ⁾ 00 N/mm ² 12%	f_{yk} = 560 N/mm ² 1.4565; 1.4529; EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12\%$		
		fracture elongation Fracture elongation for s	A ₅ > 8 %, for	elongation applications with nance category (
3	Washer ISO 7089:2000	zinc plated ≥ 5 μm, EN ISO 4042:1999 A2K or hot-dip galvanised ≥ 40 μm EN ISO 10684:2004	1.4401 1.4578 1.4439	; 1.4404; ;;1.4571; ; 1.4362; 38-1:2014	1.4565; 1.4529; EN 10088-1:2014		
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:1999 A2K or hot-dip galvanised ≥ 40 μm EN ISO 10684:2004	50, 7 EN ISO 3 1.4401; 1.4 1.4571; 1.4	rty class 0 or 80 506-1:2009 404; 1.4578; 439; 1.4362; 38-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014		
5	fischer internal threaded anchor RG MI	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:1999 A2K	EN ISO 3 1.4401; 1.4 1.4571; 1.4	/ class 70 506-1:2009 404; 1.4578; 439; 1.4362; 38-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014		
6	Commercial standard screw or anchor / threaded rod for fischer internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:1999 A2K A ₅ > 8 % fracture elongation	EN ISO 3 1.4401; 1.4 1.4571; 1.4 EN 1008	/ class 70 506-1:2009 404; 1.4578; 439; 1.4362; 88-1:2014 ⁾ ture elongation	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014 A ₅ > 8 % fracture elongation		
7	fischer filling disk FFD similar to DIN 6319-G	zinc plated ≥ 5 μm, EN ISO 4042:1999 A2K or hot-dip galvanised ≥ 40 μm EN ISO 10684:2004	1.4571; 1.4	404; 1.4578; 439; 1.4362; 38-1:2014	1.4565;1.4529; EN 10088-1:2014		
8	Reinforcing bar EN 1992-1-1:2004 and AC:2010, Annex C	Bars and de-coiled rods, class f_{yk} and k according to NDP or $f_{uk} = f_{tk} = k \cdot f_{yk}$		92-1-1:2004+AC	:2010		
9	fischer rebar anchor FRA	Rebar part: Bars and de-coiled rods class and k according to NDP or NC 1992-1-1:2004+AC:2010 $f_{uk} = f_{tk} = k \cdot f_{yk}$		1.4362, 1.4062	70 or 80 :2009 . 1.4571, 1.4578, 1.4439, EN 10088-1:2014 ¹⁾ EN 10088-1:2014 ²⁾		
		:2014 Corrosion resistance of :2014 Corrosion resistance of					
fisc	her injection system	FIS V					
	duct description				Annex A 6		

Specifications of intended use (part 1) Table B1.1: Overview use and performance categories Anchorages subject to FIS V with ... Anchor rod fischer internal Reinforcing bar fischer rebar threaded anchor anchor RG MI FRA **WARRANTAN AND THE STATE OF THE** Hammer drilling with standard drill all sizes bit Hammer drilling with hollow drill bit (fischer "FHD", Nominal drill bit diameter (do) Heller "Duster 12 mm to 35 mm Expert"; Bosch Speed Clean"; Hilti 'TE-CD, TE-YD") Tables: Tables: Tables: Tables: uncracked all sizes all sizes all sizes C1.1 C2.1 C3.1 C3.2 concrete Static and quasi C4.1 C4.1 C4.1 C4.1 all sizes static load, in C5.1 C6.1 C7.1 C8.1 cracked M8 to φ 10 to C9.1 C9.2 C10.1 C10.2 M30 φ 28 concrete Tables: M10 C11.1 Seismic C11) to C12.1 performance M30 C13.1 category (only hammer drilling with M12 Tables: standard / hollow M16 C11.1 C21) drill bits) M20 C12.1 M24 C14.1 dry or wet 11 all sizes concrete Use category water filled 12 M 12 to M 30 all sizes hole D3 (downward and horizontal and upwards (e.g. overhead) installation) Installation direction Installation $T_{i,min} =$ -10 °C to $T_{i,max} =$ +40 °C temperature Temperature (max. short term temperature +80 °C; -40 °C to +80 °C max. long term temperature +50 °C) range I In-service temperature Temperature (max. short term temperature +120 °C; -40 °C to +120 °C range II max. long term temperature +72 °C) 1) Not for FIS VW High Speed and FIS VS Low Speed fischer injection system FIS V Annex B 1 Intended use Specifications (part 1)

Specifications of intended use (part 2)

Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- For all other conditions according to EN1993-1-4:2015 corresponding to corrosion resistance classes to Annex A 6 table 6.1.

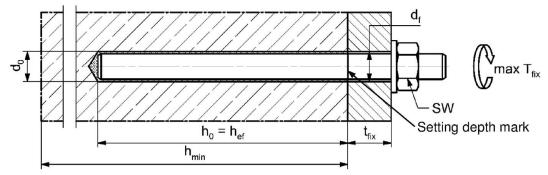
Design:

- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with:
 EN 1992-4:2018 and EOTA Technical Report TR 055.
 Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 Fastening in stand-off installation or with a grout layer under seismic action are not covered in this European Technical Assessment (ETA).

Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- In case of aborted hole: The hole shall be filled with mortar
- Anchorage depth should be marked and adhered to on installation
- Overhead installation is allowed

fischer injection system FIS V	
Intended use Specifications (part 2)	Annex B 2


Table B3.1:	Installation pa	ramete	rs for an	chor	rods							
Anchor rods			Thread	М6	М8	M10	M12	M16	M20	M24	M27	M30
Width across flats		SW		10	13	17	19	24	30	36	41	46
Nominal drill hole di	iameter	d ₀		8	10	12	14	18	24	28	30	35
Drill hole depth		h ₀						$h_0 = h_e$	f			
Effective		h _{ef, min}		50	60	60	70	80	90	96	108	120
embedment depth	h _{ef, max}		72	160	200	240	320	400	480	540	600	
Minimum spacing a edge distance	Smin = Cmin	[mm]	40	40	45	55	65	85	105	125	140	
Diameter of the clearance hole of	pre-positioned installation	df		7	9	12	14	18	22	26	30	33
the fixture	push through installation	df		9	12	14	16	20	26	30	33	40
Minimum thickness member	h _{min}		ŀ	1 _{ef} + 30) (≥100)		ŀ	n _{ef} + 2d	0		
Maximum torque moment for attachment of the fixture max			[Nm]	5	10	20	40	60	120	150	200	300

Marking (on random place) fischer anchor rod:

Property class 8.8, stainless steel, property class 80 and high corrosion resistant steel, property class 80: • Stainless steel A4, property class 50 and high corrosion resistant steel, property class 50: • Alternatively: Colour coding according to DIN 976-1

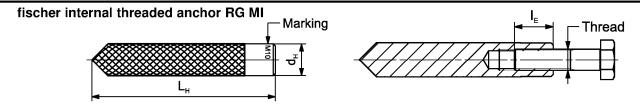
Installation conditions:

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled

- Materials, dimensions and mechanical properties according to Annex A 6, Table A6.1
- · Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- Setting depth is marked

Figures not to scale

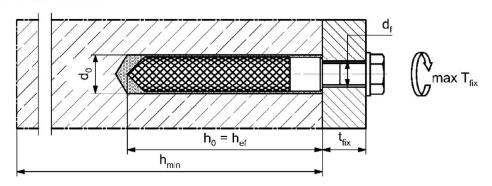
fischer injection system FIS V


Intended use
Installation parameters anchor rods

Annex B 3

Table B4.1: Installation parameters plus minimum spacing and minimum edge distance for fischer internal threaded anchors RG MI

Internal threaded anchors R	G MI	Thread	М8	M10	M12	M16	M20
Diameter of anchor	$d_{nom} = d_H$		12	16	18	22	28
Nominal drill hole diameter	d₀		14	18	20	24	32
Drill hole depth	h ₀] [$h_0 = h_{ef} = L_H$		
Effective embedment depth $(h_{ef} = L_H)$	h _{ef}		90	90	125	160	200
Minimum spacing and minimum edge distance	Smin = Cmin	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture	df		9	12	14	18	22
Minimum thickness of concrete member	h _{min}		120	125	165	205	260
Maximum screw-in depth	I _{E,max}] [18	23	26	35	45
Minimum screw-in depth	I _{E,min}] [8	10	12	16	20
Maximum torque moment for attachment of the fixture	max T _{fix}	[Nm]	10	20	40	80	120


Marking: Anchor size e. g.: M10

Stainless steel → additional A4; e.g.: M10 A4

High corrosion resistant steel → additional C; e.g.: M10 C

Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 6, Table A6.1

Installation conditions:

Figures not to scale

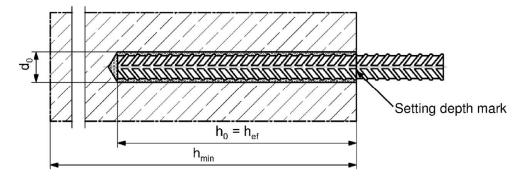
fischer injection system FIS V

Intended use

Installation parameters internal threaded anchors RG MI

Annex B 4

Table B5.1: Installation	param	eters f	or re	einfe	orci	ng	bar	s					
Nominal diameter of the bar													
Nominal drill hole diameter	d ₀		10	12	12	14	14	16	18	20	25	30	35
Drill hole depth	h ₀		$h_0 = h_{ef}$										
Effective	h _{ef,min}	[mm]	60)	60)	7	0	75	80	90	100	112
embedment depth	h _{ef,max}	[]	16	0	20	0	24	40	280	320	400	500	560
Minimum thickness of concrete member	h _{min}			-	ef + 3 : 100					h∈	ef + 2d ₀		


¹⁾ Both drill hole diameters can be used

Reinforcing bar

- The minimum value of related rib area f_{R,min} must fulfil the requirements of EN 1992-1-1:2004+AC:2010
- The rib height must be within the range: 0,05 · φ ≤ h_{rib} ≤ 0,07 · φ
 (φ = Nominal diameter of the bar, h_{rib} = rib height)

Installation conditions:

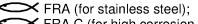
Figures not to scale

fischer injection system FIS V

Intended use Installation parameters reinforcing bars

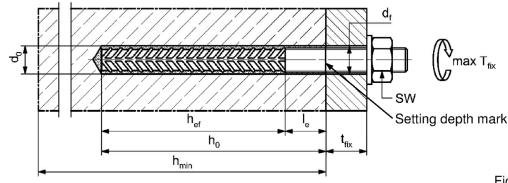
Annex B 5

Table B6.1: Installation parameters plus minimum spacing and minimum edge distance for fischer rebar anchor FRA


Rebar anchor FRA		Thread	M1:	2 ¹⁾	M16	M20	M24
Nominal diameter of the bar	ф	•	12	2	16	20	25
Width across flats	SW		19)	24	30	36
Nominal drill hole diameter	d₀		14	16	20	25	30
Drill hole depth	h ₀				h _{ef}	+ le	
Effective embedment depth	h _{ef,min}		70)	80	90	96
Enective embedment depth	h _{ef,max}		14	0	220	300	380
Distance concrete surface to welded joint	l _e	[]	100				
Minimum spacing and minimum edge distance	Smin = Cmin	[mm]	55	5	65	85	105
Diameter of anchorage	≤ d _f		14	1	18	22	26
clearance hole in the fixture push through anchorage	≤ d _f		18	3	22	26	32
Minimum thickness of concrete member	h _{min}		h ₀ + 30 (≥ 100)				
Maximum torque moment for attachment of the fixture	max T _{fix}	[Nm]	40)	60	120	150

¹⁾ Both drill hole diameters can be used

fischer rebar anchor FRA



Marking frontal e. g:

➤ FRA C (for high corrosion resistant steel)

Installation conditions:

Figures not to scale

fischer injection system FIS V

Intended use

Installation parameters rebar anchor FRA

Annex B 6

Electronic copy of the ETA by DIBt: ETA-02/0024

Table B7.1: Parameters of the cleaning brush BS / BSB (steel brush with steel bristles)

The size of the cleaning brush refers to the drill hole diameter

Nominal drill hole diameter	d₀	[mm]	8	10	12	14	16	18	20	24	25	28	30	35
Steel brush diameter	dь	[mm]	9	11	14	16	2	0	25	26	27	30	4	0

Table B7.2 Maximum processing time of the mortar and minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

Temperature at	Maxin	num processing t _{work}	g time	Minimum curing time 1) t _{cure}			
anchoring base [°C]	FIS VW High Speed	FIS V	FIS VS Low Speed	FIS VW High Speed	FIS V	FIS VS Low Speed	
-10 to -5 ²⁾	-	-	-	12 h	-	-	
-5 to -0 ²⁾	5 min	-	-	3 h	24 h	-	
±0 to +5 2)	5 min	13 min	-	3 h	3 h	6 h	
+5 to +10	3 min	9 min	20 min	50 min	90 min	3 h	
+10 to +20	1 min	5 min	10 min	30 min	60 min	2 h	
+20 to +30	-	4 min	6 min	-	45 min	60 min	
+30 to +40	-	2 min	4 min	-	35 min	30 min	

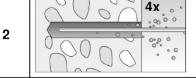
¹⁾ In wet concrete or water filled holes the curing times must be doubled

fischer injection system FIS V

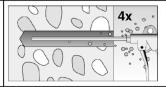
Intended use
Cleaning brush (steel brush)
Processing time and curing time

Annex B 7

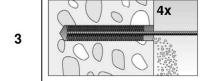
²⁾ Minimal cartridge temperature +5°C

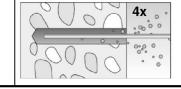


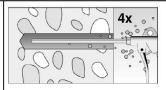
Installation instructions part 1


Drilling and cleaning the hole (hammer drilling with standard drill bit)

1


Drill the hole. Nominal drill hole diameter d_0 and drill hole depth h_0 see tables B3.1, B4.1, B5.1, B6.1

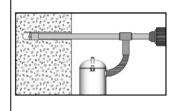

Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand


For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$

Brush the drill hole four times. For deep holes use an extension. Corresponding brushes see **table B7.1**

Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand

For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$


Go to step 5

4

Drilling and cleaning the hole (hammer drilling with hollow drill bit)

1

Check a suitable hollow drill (see **table B1.1**) for correct operation of the dust extraction

Use a suitable dust extraction system, e. g. fischer FVC 35 M or a comparable dust extraction system with equivalent performance data

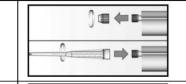
Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Nominal drill hole diameter d_0 and drill hole depth h_0 see tables B3.1, B4.1, B5.1, B6.1

Go to step 5

2

fischer injection system FIS V

Intended use


Installation instructions part 1

Annex B 8

Installation instructions part 2

Preparing the cartridge

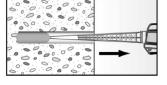
Remove the sealing cap

Screw on the static mixer (the spiral in the static mixer must be clearly visible)

5

Place the cartridge into the dispenser

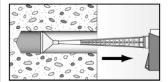
7



Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey

Go to step 8

Injection of the mortar


8

Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles

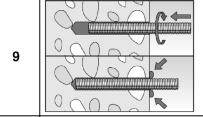
For drill hole depth ≥ 150 mm use an extension tube

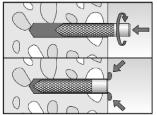
For overhead installation, deep holes ($h_0 > 250$ mm) or drill hole diameter ($d_0 \ge 40$ mm) use an injection adapter

Go to step 9

fischer injection system FIS V

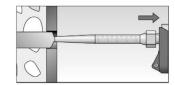
Intended use


Installation instructions part 2


Annex B 9

Installation instructions part 3

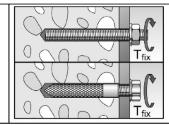
Installation of anchor rods or fischer internal threaded anchors RG MI



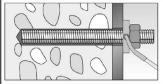
Only use clean and oil-free anchor elements. Mark the setting depth of the anchor. Push the anchor rod or fischer internal threaded RG MI anchor down to the bottom of the hole, turning it slightly while doing so.

After inserting the anchor element, excess mortar must be emerged around the anchor element.

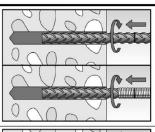
For overhead installations support the anchor rod with wedges (e. g. fischer centering wedges) or fischer overhead clips.


For push through installation fill the annular gap with mortar

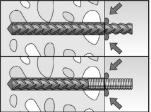
10


Wait for the specified curing time t_{cure} see **table B7.2**

11


Mounting the fixture max T_{fix} see tables B3.1 and B4.1

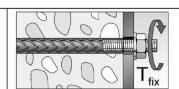
Option


After the minimum curing time is reached, the gap between anchor and fixture (annular clearance) may be filled with mortar via the fischer filling disc FFD. Compressive strength \geq 50 N/mm² (e.g. fischer injection mortars FIS HB, FIS SB, FIS V, FIS EM Plus). ATTENTION: Using fischer filling disk FFD reduces t_{fix} (usable length of the anchor)

Installation reinforcing bars and fischer rebar anchor FRA

Only use clean and oil-free reinforcing bars or fischer FRA. Mark the setting depth. Turn while using force to push the reinforcement bar or the fischer FRA into the filled hole up to the setting depth mark

9


When the setting depth mark is reached, excess mortar must be emerged from the mouth of the drill hole.

10

Wait for the specified curing time t_{cure} see **table B7.2**

11

Mounting the fixture max T_{fix} see **table B6.1**

fischer injection system FIS V

Intended use

Installation instructions part 3

Annex B 10

Z88251.19

Table		ntial chara load of fi s										sile /	
Ancho	r rod / standard th	readed rod			М6	M8	M10	M12	M16	M20	M24	M27	M30
Bearin	g capacity under t	ensile load	, stee	el failu	ıre								
S	<u> </u>		5.8		10	19(17)	29(27)	43	79	123	177	230	281
rstic N _F	Steel zinc plated		8.8		16	29(27)	47(43)	68	126	196	282	368	449
Characterstic esistance N _{RK}	Otaliala a ata al A 4	Property	50	[kN]	10	19	29	43	79	123	177	230	281
haraista	Stainless steel A4 and high corrosion	class	70		14	26	41	59	110	172	247	322	393
O Se l	resistant steel C		80		16	30	47	68	126	196	282	368	449
Partial	factors 1)												
			5.8						1,50				
ctor	Steel zinc plated		8.8						1,50				
Partial factor	Stainless steel A4	Property class	50	[-]					2,86				
artig	and high corrosion	Class	70					1,	50 ²⁾ / 1,	87			
Ф 1	resistant steel C		80						1,60				
Bearin	g capacity under s	hear load,	steel	failu	re								
withou	ıt lever arm												
ο̈́	Steel zinc plated		5.8		5	9(8)	15(13)	21	39	61	89	115	14
Operacterstic Steel zinc plated Stainless steel A4 and high corrosion resistant steel C	Property	8.8		8	15(13)	23(21)	34	63	98	141	184	22	
Character esistance	Stainless steel A4	class	50	[kN]	5	9	15	21	39	61	89	115	14
Sha sista	and high corrosion		70		7	13	20	30	55	86	124	161	197
Ψ.	resistant steel C		80		8	15	23	34	63	98	141	184	225
	y factor		k ₇	[-]					1,0				
	ever arm					1,0(1,0)	07(00)		400	204	500		
P. R.	Steel zinc plated		5.8		7	 ` '	37(33)	65	166	324	560	833	112
aract. nce M ^o Rk,s		Property	8.8	FN 1 7	12		60(53)	105	266	519	896	1333	179
~ ≒ `	Stainless steel A4	class		[Nm]		19	37	65	166	324	560	833	112
	and high corrosion resistant steel C		70 80		10	26	52	92	232	454	784	1167	157 179
	factors 1)		- 00		12	30	60	105	266	519	896	1333	179
artia	i lactors		5.8						1,25				
ctor	Steel zinc plated		8.8						1,25				
al fac	01.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Property	50	[-]					2,38				
= ~	Stainless steel A4 and high corrosion	class	70	, ,				1.3	25 ²⁾ / 1,	 56			
ا مُ	resistant steel C		80					- ,-	1,33				
	absence of other na				teel C,	with f _{yk}	/ f _{uk} ≥ 0	,8 and <i>i</i>	A ₅ > 12	% (e.g.	fischer	anchor	

fischer injection system FIS V

Performance

Essential characteristics for the steel bearing capacity of fischer anchor rods and standard threaded rods

Annex C₁

³⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot dip galvanised standard threaded rods according to EN ISO 10684:2004+AC:2009

Electronic copy of the ETA by DIBt: ETA-02/0024

1,56

Table C2.1:						el bearing anchors RC		nder tensile	e / shear	
fischer internal	threade	ed anchors	RG MI		М8	M10	M12	M16	M20	
Bearing capacit	y unde	r tensile loa	ad, stee	el failu	ıre					
		Property	5.8		19	29	43	79	123	
Charact. resistance with	NI	class	8.8	1	29	47	68	108	179	
resistance with screw	$N_{Rk,s}$	Property	A4	[kN]	26	41	59	110	172	
		class 70	С		26	41	59	110	172	
Partial factors ¹⁾										
		Property	5.8				1,50			
Partial factors		class	8.8	r 1			1,50			
Farilal lactors	γMs,N	Property	A4	[-]			1,87			
		class 70	С				1,87			
Bearing capacit	y unde	r shear load	d, steel	failu	re					
Without lever ar	m									
		Property	5.8		9,2	14,5	21,1	39,2	62,0	
Charact. resistance with	$V^0_{Rk,s}$	class	8.8	[kN]	14,6	23,2	33,7	54,0	90,0	
screw	V RK,s	Property	_A4	נייאן	12,8	20,3	29,5	54,8	86,0	
		class 70	С		12,8	20,3	29,5	54,8	86,0	
Ductility factor			k_7	[-]			1,0			
With lever arm						_				
		Property	5.8		20	39	68	173	337	
Charact. resistance with	M ⁰ Rk,s	class	8.8	[Nm]	30	60	105	266	519	
screw	IVI*RK,S	Property	A4	וויייון	26	52	92	232	454	
		class 70	С		26	52	92	232	454	
Partial factors ¹⁾										
		Property	5.8				1,25			
Partial factors	^	class	8.8	[[1,25					
ا ماناها اهدادان	γMs,V	Property	A4	[-]			1,56			

¹⁾ In absence of other national regulations

class 70

С

fischer injection system FIS V	
Performance Essential characteristics for the steel bearing capacity of fischer internal threaded anchor RG MI	Annex C 2

I .	ntial characteri of reinforcing			steel	bearin	g capa	city un	der ten	sile / s	near
Nominal diameter of the	bar	ф	8	10	12	14	16	20	25	28
Bearing capacity under	tensile load, stee	el failu	ire		-					
Characterstic resistance	N _{Rk,s}	[kN]				As ·	f uk ¹⁾			
Bearing capacity under	shear load, steel	failur	e e							
Without lever arm										
Characterstic resistance	V^0 Rk,s	[kN]				0,5 · A	s · f _{uk} 1)			
Ductility factor	k ₇	[-]				1	,0			
With lever arm		•								
Characteristic resistance	M^0 Rk,s	[Nm]				1,2 · W	√ _{el} · f _{uk} 1)			

¹⁾ fuk or fyk respectively must be taken from the specifications of the reinforcing bar

Table C3.2: Essential characteristics for the **steel bearing capacity** under tensile / shear load of **fischer rebar anchors FRA**

fischer rebar anchor FRA			M12	M16	M20	M24
Bearing capacity under tens	ile load, stee	el failu	ıre	-	-	-
Characterstic resistance	$N_{Rk,s}$	[kN]	63	111	173	270
Partial factor ¹⁾						
Partial factor	γMs,N	[-]		1	,4	
Bearing capacity under shea	r load, stee	failu	re			
Without lever arm						
Characterstic resistance	V^0 Rk,s	[kN]	30	55	86	124
Ductility factor	k ₇	[-]		1	,0	
With lever arm						
Characteristic resistance	M^0 _{Rk,s}	[Nm]	92	233	454	785
Partial factor ¹⁾				•	•	
Partial factor	γ̃Ms,V	[-]		1,	56	

¹⁾ In absence of other national regulations

fischer injection system FIS V

Performance
Essential characteristics for the steel bearing capacity of reinforcing bars and fischer rebar anchors FRA

Annex C 3

						-	All size	es						
 9	k _{ucr,N}						11,0							
	k _{cr,N}	[-]					7,7							
mpressive strer	gth of	concr	ete > C	20/25										
C25/30							1,05							
C30/37		-					1,10							
C35/45							1,15							
C40/50	Ψ_{c}	[-]	1,19											
C45/55		-	1,22											
C50/60				1,26										
h / h _{ef} ≥ 2,0							1,0 h∈	ef						
	C _{cr,sp}					4,6	h _{ef} - 1	,8 h						
h / h _{ef} ≤ 1,3	•	[mm]												
<u> </u>	S _{cr,sp}						-							
ure		1												
	Ccr,N						1,5 h∈	ef						
	Scr,N	[[mm]												
ed tension load														
		[-]		50 °C	C / 80 °C				72 °C /	120 °C				
	Ψ0 ₉₁₁₈													
					,				•					
	Vinst	[-]					1.0							
 ailure	7						, -							
	k ₈	[-]					2.0							
							_,-							
				(Conditio	ns acc	ordina	to 199	2-4:201	8:				
,		[-]												
ters														
			M6	M8	M10	M12	M16	M20	M24	M27	МЗ			
			_	٥	10	12	16	20	24	27	30			
and rods	d_{nom}		6	8	_									
	d _{nom}	[mm]	-	12	16	18	22	28	-	-	-			
rods		[mm]	- -			18	22 16	28	- 25	-	-			
rods nchors RG MI	d _{nom}	[mm]	- - 8	12	16		16		- 25	- - 25	- 28			
	$\begin{array}{c} \text{C30/37} \\ \text{C35/45} \\ \text{C40/50} \\ \text{C45/55} \\ \text{C50/60} \\ \\ \hline \text{h / h}_{\text{ef}} \geq 2.0 \\ \hline \text{,0 > h / h}_{\text{ef}} > 1.3 \\ \end{array}$		$ \begin{array}{c c} \hline C30/37 \\ \hline C35/45 \\ \hline C40/50 \\ \hline C45/55 \\ \hline C50/60 \\ \end{array} \begin{array}{c c} \Psi_c \\ \hline C45/55 \\ \hline C50/60 \\ \end{array} \begin{array}{c c} \\ \hline P_c \\ \hline C45/55 \\ \hline C50/60 \\ \end{array} \end{array} \begin{array}{c c} \\ \hline P_c \\ \hline $	$\begin{array}{c c} \hline C30/37 \\ \hline C35/45 \\ \hline C40/50 \\ \hline C45/55 \\ \hline C50/60 \\ \hline \\ \hline \\ h / h_{ef} \geq 2,0 \\ \hline \\ h / h_{ef} \leq 1,3 \\ \hline \\ Scr,sp \\ \hline \\ \hline \\ Iure \\ \hline \\ ed tension load \\ \hline \\ \hline \\ y_{inst} \\ \hline \\ [-] \\ \hline \\ \hline \\ failure \\ \hline \\ ailure \\ \hline \\ \\ \hline \\ K_8 \\ [-] \\ \hline \\ \hline \\ Iure \\ \hline \\ $	$\begin{array}{c c} \hline C30/37 \\ \hline C35/45 \\ \hline C40/50 \\ \hline C45/55 \\ \hline C50/60 \\ \hline \\ \hline \\ h \ / \ h_{ef} \ge 2,0 \\ \hline 0,0 > h \ / \ h_{ef} > 1,3 \\ \hline h \ / \ h_{ef} \le 1,3 \\ \hline \\ S_{cr,sp} \\ \hline \\ \hline \\ \hline \\ ed \ tension \ load \\ \hline \\ $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								

stand	itial charad ard thread cked or c	ded rod	s in ha	ammer				ner an	chor r	ods a	nd
Anchor rod / standard the	readed rod		М6	М8	M10	M12	M16	M20	M24	M27	M30
Combined pullout and co	ncrete con	e failure									
Calculation diameter	d	[mm]	6	8	10	12	16	20	24	27	30
Uncracked concrete		-			-					-	
Characteristic bond resis	stance in un	cracked (concre	te C20/	25						
Hammer-drilling with stand	ard drill bit c	r hollow d	rill bit (d	dry or w	et conc	<u>rete)</u>					
Tem- I: 50 °C / 80 °			9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
perature II: 72 °C / 120	°C TRk,ucr	[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Hammer-drilling with stand	ard drill bit c	r hollow d	rill bit (\	vater fil	led hole	<u>) 1)</u>	l	l	l		
Tem- I: 50 °C / 80 °			_	_	-	9,5	8,5	8,0	7,5	7,0	7,0
perature II: 72 °C / 120	°C TRk,ucr	Rk,ucr [N/mm²]		_	-	7,5	7,0	6,5	6,0	6,0	6,0
Installation factors							<u> </u>				
Dry or wet concrete			1,0								
Water filled hole	—— γinst	[-]		-		1,2 1)					
Cracked concrete	·										
Characteristic bond resis	stance in cra	acked cor	ncrete (C20/25							
Hammer-drilling with stand	ard drill bit c	<u>r hollow d</u>	rill bit (d	dry or w	et conc	rete)					
Tem- I: 50 °C / 80 °	_	[N 1 / 2]	-	5,5	6,0	6,0	6,0	5,5	4,5	4,0	4,0
perature II: 72 °C / 120	°C TRk,cr	[N/mm ²]	-	4,5	5,0	6,0	6,0	5,0	4,0	3,5	3,5
Hammer-drilling with stand	ard drill bit c	r hollow d	rill bit (v	water fil	led hole	<u>)1)</u>			•	•	
Tem- I: 50 °C / 80 °		[N.17]	-	-	-	5,0	5,0	4,5	4,0	3,5	3,5
range II: 72 °C / 120	°C TRk,cr	[N/mm ²]	-	-	-	4,0	4,0	4,0	3,5	3,0	3,0
Installation factors		•							ı	ı	-
Dry or wet concrete		r 1					1,0				
Water filled hole	—— γinst	nst [-]		-				1,2	2 1)		

¹⁾ Only with coaxial cartridges: 380ml, 400 ml, 410 ml

fischer injection system FIS V

Performance
Essential characteristics of tensile resistance for fischer anchor rod and standard threaded rods

Annex C 5

			of tensile mer drilled h				readed						
Internal threaded anchor RC	λМΙ		М8	M10	M12	M16	M20						
Combined pullout and conc	Combined pullout and concrete cone failure												
Calculation diameter	d	[mm]	12	16	18	22	28						
Uncracked concrete													
Characteristic bond resistar	nce in un	cracked	concrete C20)/25									
Hammer-drilling with standard	drill bit c	r hollow d	Irill bit (dry or	wet concrete)									
Tem- I: 50 °C / 80 °C		[N/mm²]	10,5	10,0	9,5	9,0	8,5						
range II: 72 °C / 120 °C	- τRk,ucr	[[N/]]]	9,0	8,0	8,0	7,5	7,0						
Hammer-drilling with standard	drill bit c	r hollow d	Irill bit (water 1	filled hole)1)									
Tem- I: 50 °C / 80 °C		[N1/mm2]	10,0	9,0	9,0	8,5	8,0						
range II: 72 °C / 120 °C	TRk,ucr	[N/mm²]	7,5	6,5	6,5	6,0	6,0						
Installation factors													
Dry or wet concrete		r 1			1,0								
Water filled hole	- γinst	[-]		·	1,2 ¹⁾	·							

¹⁾ Only with coaxial cartridges: 380 ml, 400 ml, 410 ml

fischer injection system FIS V	
Performance Essential characteristics of tensile resistance for fischer internal threaded anchors RG MI	Annex C 6

fischer injection system FIS V

Essential characteristics of tensile resistance for reinforcing bars

Performance

Table C7.1:	Essential hammer o								ing ba	rs in	
Nominal diamete	r of the bar		ф	8	10	12	14	16	20	25	28
Combined pullou	it and concre	ete con									
Calculation diame	ter	d	[mm]	8	10	12	14	16	20	25	28
Uncracked conc	rete							•			
Characteristic bo	nd resistan	ce in un	cracked o	concrete	e C20/25	;					
Hammer-drilling w	rith standard	drill bit c	r hollow d	rill bit (d	ry or wet	concret	<u>e)</u>				
	°C / 80 °C		[N 1/22 22 27	11,0	11,0	11,0	10,0	10,0	9,5	9,0	8,5
perature II: 72	°C / 120 °C	TRk,ucr	[N/mm²]	9,5	9,5	9,0	8,5	8,5	8,0	7,5	7,0
Installation facto	r						l				
Dry or wet concre	te	γinst	[-]				1	,0			
Cracked concret	e										
Characteristic bo	nd resistan	ce in cr	acked cor	ncrete C	20/25						
Hammer-drilling w	rith standard	drill bit c	r hollow d	rill bit (d	ry or wet	concret	<u>e)</u>				
	°C / 80 °C		FN.17 07	-	3,0	5,0	5,0	5,0	4,5	4,0	4,0
perature II: 72	°C / 120 °C	τ _{Rk,cr}	[N/mm ²]	-	3,0	4,5	4,5	4,5	4,0	3,5	3,5
Installation facto	r						<u> </u>		l .	l	
Dry or wet concre	te	γinst	[-]				1	,0			

Z88251.19 8.06.01-707/18

Annex C 7

fischer rebar anchor F	RA		M12	M16	M20	M24		
Combined pullout and	concrete con	e failure						
Calculation diameter	d	[mm]	12	16	20	25		
Uncracked concrete								
Characteristic bond re	sistance in ur	cracked o	concrete C20/25	j				
Hammer-drilling with sta	andard drill bit o	r hollow di	rill bit (dry or wet	concrete)		1		
Tem- I: 50 °C / 8 perature		 [N/mm²]	11,0	10,0	9,5	9,5		
range II: 72 °C / 1	20 °C τ _{Rk,ucr}	[14/111111-]	9,0	8,5	8,0	7,5		
Installation factors								
Dry or wet concrete	γinst	[-]	1,0					
Cracked concrete	•	•						
Characteristic bond re	sistance in cr	acked con	crete C20/25					
Hammer-drilling with sta	andard drill bit o	r hollow di	rill bit (dry or wet	concrete)				
Tem- I: 50 °C / 8		[N 1/22 22 27]	5,0	5,0	4,5	4,0		
perature II: 72 °C / 1	20 °C τ _{Rk,ucr}	[N/mm ²]	4,5	4,5	4,0	3,5		
Installation factors								
Dry or wet concrete	γinst	[-]		1	0,0			

	1
fischer injection system FIS V	
Performance Essential characteristics of tensile resistance for fischer rebar anchors FRA	Annex C 8

Table (C9.1: Dis	placeme	ents for a	anchor r	ods								
Anchor	rod	М6	М8	M10	M12	M16	M20	M24	M27	M30			
Displace	ement-Factors	for tensil	e load ¹⁾										
Uncrack	ed concrete; T	emperatu	ire range	I, II									
δ _{N0-Factor}	[mm/(N/mm²)]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12			
δn∞-Factor][[[]]]]/([N/[[]]]]- 	0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14			
Cracked concrete; Temperature range I, II													
δ _{N0-Factor}	[mm/(N/mm²)]	-	0,12	0,12	0,12	0,13	0,13	0,13	0,14	0,15			
δ _{N0-Factor}][mm/(N/mm²)]	-	0,25	0,27	0,30	0,30	0,30	0,35	0,35	0,40			
Displace	ement-Factors	for shear	load ²⁾		-		-			-			
Uncrack	ed or cracked	concrete	; Tempera	ture rang	e I, II								
δvo-Factor	[mm/kN]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07			
δv∞-Factor	[IIIII/KIN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09			

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed}: Design value of the applied tensile stress)

2) Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

(V_{Ed}: Design value of the applied shear force)

Table C9.2: Displacements for fischer internal threaded anchors RG MI

ent-Factors	for tensile load ¹⁾	-											
Displacement-Factors for tensile load ¹⁾													
d concrete; T	emperature rang	e I, II											
mm//NI/mm2\1	0,10	0,11	0,12	0,13	0,14								
11111/(14/111111-)][0,13	0,14	0,15	0,16	0,18								
ent-Factors	for shear load ²⁾		-										
d concrete; T	emperature rang	e I, II											
[mm/kNI]	0,12	0,12	0,12	0,12	0,12								
[IIIIII/KIN]	0,14	0,14	0,14	0,14	0,14								
1		ent-Factors for shear load ²⁾ concrete; Temperature rang [mm/kN]	0,13 0,14 ent-Factors for shear load ²⁾ concrete; Temperature range I, II [mm/kN] 0,12 0,12	0,13 0,14 0,15 ent-Factors for shear load ²⁾ concrete; Temperature range I, II [mm/kN] 0,12 0,12 0,12	0,13								

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{Ed}$: Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

fischer injection system FIS V

Performance

Displacements for anchor rods and fischer internal threaded anchors RG MI

Annex C 9

Nominal of the ba	diameter ar Φ	8	10	12	14	14 16		25	28			
Displacement-Factors for tensile load ¹⁾												
Uncracked concrete; Temperature range I, II												
δ N0-Factor	[mm//N1/mm2)]	0,09	0,09	0,10	0,10	0,10	0,10	0,10	0,11			
δN∞-Factor	[mm/(N/mm²)]	0,10	0,10	0,12	0,12	0,12	0,12	0,13	0,13			
Cracked	concrete; Ten	nperature i	ange I, II									
δ _{N0-Factor}	[mm mm //N1/mm mm 2\]	-	0,12	0,13	0,13	0,13	0,13	0,13	0,14			
δ _{N∞-Factor}	[mm/(N/mm²)]	-	0,27	0,30	0,30	0,30	0,30	0,35	0,37			
Displace	ment-Factors	for shear l	oad ²⁾									
Uncracked or cracked concrete; Temperature range I, II												
δ vo-Factor	[mm/kN]]	0,11	0,11	0,10	0,10	0,10	0,09	0,09	0,08			
δv∞-Factor	[mm/kN]	0,12	0,12	0,11	0,11	0,11	0,10	0,10	0,09			

1) Calculation of effective displacement:

2) Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

(τ_{Ed}: Design value of the applied tensile stress)

(V_{Ed}: Design value of the applied shear force)

Table C10.2: Displacements for fischer rebar anchors FRA

fischer r FRA	ebar anchor	M12	M16	M20	M24						
Displacement-Factors for tensile load ¹⁾											
Uncrack	ed concrete; T	emperature range I, I	I								
δ N0-Factor	[mm/(N/mm²)]	0,10	0,10	0,10	0,10						
δ _{N∞-Factor}	_[[[[[[]]/([N/[[[]]-)]]	0,12	0,12	0,12	0,13						
Cracked	l concrete; Ten	nperature range I, II									
δ N0-Factor	[mm/(N/mm²)]	0,12	0,13	0,13	0,13						
δ _{N∞-Factor}	_[[[[[[]]/([N/[[[[]]-)]]	0,30	0,30	0,30	0,35						
Displace	ement-Factors	for shear load ²⁾									
Uncrack	ed or cracked	concrete; Temperatu	re range I, II								
δvo-Factor	[10.000 /LeN I]	0,10	0,10	0,09	0,09						
Sv _{m-} Eactor	[mm/kN]	0.11	0.11	0.10	0.10						

1) Calculation of effective displacement:

2) Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{\text{Ed}}$

(τ_{Ed}: Design value of the applied tensile stress)

 $(V_{\text{Ed}} \text{: Design value of the applied shear force})$

fischer injection system FIS V

Performance

Displacements for reinforcing bars and fischer rebar anchors FRA

Annex C 10

Table C11.1: Essential characteristics²⁾ for the **steel bearing capacity** under tensile / shear load of **fischer anchor rods** and **standard threaded rods** under seismic action performance category **C1 or C2**

Stainless steel A4 and high corrosion resistant steel C Steel zinc plated Stainless steel A4 and high corrosion resistant steel C Stainless steel A4 and high corrosion resistant stee	seismic action performance category C1 or C2										
Steel zinc plated Property Steel zinc plated Steel zinc plated Property Steel zin	Anchor rod / standard threaded rod M10 M12 M16 M20 M24 M27 M30										
Steel zinc plated Property Steel zinc plated Steel zinc plated Property Steel zinc plated S	Bearing capacity under t	ensile load,	, stee	l failu	ure ¹⁾						
Stainless steel A4 and high corrosion of the standard threaded rods, performance category C2 Stainless steel A4 and high corrosion of the standard threaded rods, performance category C3 Stainless steel A4 and high corrosion of the standard threaded rods, performance category C4 Stainless steel A4 and high corrosion of the standard threaded rods, performance category C5 Steel zinc plated of the standard threaded rods, performance category C6 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc pla	fischer anchor rods and standard threaded rods, performance category C1										
Stainless steel A4 and high corrosion of the standard threaded rods, performance category C2 Stainless steel A4 and high corrosion of the standard threaded rods, performance category C3 Stainless steel A4 and high corrosion of the standard threaded rods, performance category C4 Stainless steel A4 and high corrosion of the standard threaded rods, performance category C5 Steel zinc plated of the standard threaded rods, performance category C6 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc pla	e Steel zinc plated	_	5.8		29(27)	43	79	123	177	230	281
Stainless steel A4 and high corrosion of the standard threaded rods, performance category C2 Stainless steel A4 and high corrosion of the standard threaded rods, performance category C3 Stainless steel A4 and high corrosion of the standard threaded rods, performance category C4 Stainless steel A4 and high corrosion of the standard threaded rods, performance category C5 Steel zinc plated of the standard threaded rods, performance category C6 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc plated of the standard threaded rods, performance category C7 Steel zinc pla	Stic		8.8		47(43)	68	126	196	282	368	449
Stainless steel A4 and high corrosion or esistant steel C Stainless steel A4 and high corrosion or esistant steel C Stainless steel A4 and high corrosion or esistant steel C Stainless steel A4 and high corrosion or esistant steel C Stainless steel A4 and high corrosion or esistant steel C Stainless steel A4 and high corrosion or esistant steel C Stainless steel A4 and high corrosion or esistant steel C Stainless steel A4 and high corrosion or esistant steel C Stainless steel A4 and high corrosion resistant steel C	1 A /		50	[kN]	29	43	79	123	177	230	281
Stainless steel A4 and high corrosion or esistant steel C Stainless steel A4 and high corrosion or esistant steel C Stainless steel A4 and high corrosion or esistant steel C Stainless steel A4 and high corrosion or esistant steel C Stainless steel A4 and high corrosion or esistant steel C Stainless steel A4 and high corrosion or esistant steel C Stainless steel A4 and high corrosion or esistant steel C Stainless steel A4 and high corrosion or esistant steel C Stainless steel A4 and high corrosion resistant steel C	and high corrosion		70		41	59	110	172	247	322	393
Stainless steel A4	는 등 resistant steel C		80		47	68	126	196	282	368	449
Stainless steel A4 and high corrosion resistant steel C Stainless stee	fischer anchor rods and standard threaded rods, performance category C2										
Stainless steel A4 and high corrosion resistant steel C Stainless stee	b \$ Steel zinc plated		5.8		-	39	72	108	-	-	-
Stainless steel A4 and high corrosion resistant steel C Stainless stee	stic hated		8.8	, [-	61	116	173	-	-	-
Stainless steel A4 and high corrosion resistant steel C Stainless stee	ອີວິ ອີວິ Stainless steel A4		50	[kN]	-	39	72	108	-	-	-
Stainless steel A4 and high corrosion resistant steel C Stainless steel A4 and high corrosion resistant steel C Stainless steel A4 and high corrosion resistant steel C Stainless steel A4 and high corrosion resistant steel C Stainless steel A4 and high corrosion resistant steel C Stainless steel A4 and high corrosion resistant steel C Stainless steel A4 and high corrosion resistant steel C Stainless steel A4 and high corrosion resistant steel C Stainless steel A4 and high corrosion resistant steel C Stainless steel A4 and high corrosion resistant steel C Stainless steel A4 and high corrosion resistant steel C Stainless steel A4 and high corrosion resistant steel C Stainless steel A4 and high corrosion resistant steel C Stainless steel A4 and high corrosion resistant steel C Stainless steel A4 and high corrosion resistant steel C Stainless steel A4 and high corrosion resistant steel C Steel zinc plated Stainless steel A4 and high corrosion resistant steel C Steel zinc plated Stainless steel A4 and high corrosion resistant steel C Steel zinc plated Stainless steel A4 and high corrosion resistant steel C Steel zinc plated St	and high corrosion		70		-	53	101	152	-	-	-
Steel zinc plated Property Steel zinc plated Steel zinc plated Property Steel zinc plated Steel zinc plated Property Steel zinc plated Steel zi	진 is resistant steel C		80		-	61	116	173	-	-	-
Stainless steel A4 and high corrosion resistant steel C Property class Steel zinc plated Stainless steel A4 and high corrosion resistant steel C Property class Steel zinc plated Stainless steel A4 and high corrosion resistant steel C	Bearing capacity under shear load, steel failure without lever arm ¹⁾										
To Standard threaded rods, performance category C1 Steel zinc plated Property class Stainless steel A4 And high corrosion resistant steel C To Steel zinc plated Property class To Steel zinc plated To Steel zinc plated To Steel zinc plated To Stainless steel A4 To To To To To To To T		ormance ca	atego	ry C1	1						
To Standard threaded rods, performance category C1 Steel zinc plated Property class Stainless steel A4 And high corrosion resistant steel C To Steel zinc plated Property class To Steel zinc plated To Steel zinc plated To Steel zinc plated To Stainless steel A4 To To To To To To To T	6 Ctool zinc plated		5.8		15(13)	21	39	61	89	115	141
To Standard threaded rods, performance category C1 Steel zinc plated Property class Stainless steel A4 And high corrosion resistant steel C To Steel zinc plated Property class To Steel zinc plated To Steel zinc plated To Steel zinc plated To Stainless steel A4 To To To To To To To T	Stice Sinc blated		8.8		23(21)	34	63	98	141	184	225
To Standard threaded rods, performance category C1 Steel zinc plated Property class Stainless steel A4 And high corrosion resistant steel C To Steel zinc plated Property class To Steel zinc plated To Steel zinc plated To Steel zinc plated To Stainless steel A4 To To To To To To To T	Stainless steel A4		50	[kN]	15	21	39	61	89	115	141
Standard threaded rods, performance category C1 Steel zinc plated Stainless steel A4 and high corrosion resistant steel C Steel zinc plated Stainless steel A4 Stainless steel C Stainless steel	and high corrosion	olass.	70	- H	20	30	55	86	124	161	197
Standard threaded rods, performance category C1 Steel zinc plated Stainless steel A4 and high corrosion resistant steel C Steel zinc plated Property class Steel zinc plated Stainless steel A4 and high corrosion resistant steel C Stainless steel A4 Stainless steel A4 Stainless steel C	등 . resistant steel C		80		23	34	63	98	141	184	225
Stainless steel A4 Class To To To To To To To	Standard threaded rods,	performand	се са	tegor	y C1						
Stainless steel A4 Class To To To To To To To	⊕ Steel zinc plated		5.8		11(9)	15	27	43	62	81	99
Stainless steel A4 Class To To To To To To To	Stic Plated		8.8		16(14)	24	44	69	99	129	158
fischer anchor rods and standard threaded rods, performance category C2 1			50	[kN]	11	15	27	43	62	81	99
fischer anchor rods and standard threaded rods, performance category C2 1	and high corrosion		70		14	21	39	60	87	113	138
Steel zinc plated 5.8	ਨ ਲੂੰ resistant steel C		80		16	24	44	69	99	129	158
	fischer anchor rods and	standard th	read	ed ro	ds, perfo	rmance o	category	C2			
	CS deal zinc plated		5.8		-	14	27	43	-	-	-
	ation of the street of the str		8.8		-	22	44	69	-	-	-
	່ອັ່> Stainless steel A4		50	[kN]	-	14	27	43	-	-	-
등 ig resistant steel C 80 - 22 44 69	1 W C)		70		-	20	39	60		-	-
	등 is resistant steel C		80		-	22	44	69	-	-	-

¹⁾ Partial factors for performance category C1 or C2 see table C12.1; for fischer anchor rods FIS A / RGM the factor for steel ductility is 1,0

fischer injection system FIS V

Performance

Essential characteristics for the steel bearing capacity for fischer anchor rods and standard threaded rods under seismic action (performance category C1 / C2)

Annex C 11

²⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot dip galvanised standard threaded rods according to EN ISO 10684:2004+AC:2009.

Table C12.1: Partial factors for fischer anchor rods, standard threaded rods under seismic action performance category C1 or C2

Anch	or rod / standard the	M10	M12	M16	M20	M24	M27	M30				
Tens	ile load, steel failure	1)										
Ζ	Steel zinc plated		5.8			1,50						
Partial factor y _{Ms,N}			8.8					1,50				
fact	Stainless steel A4 and high corrosion resistant steel C	Property class	50	[-]		2,86						
artial			70		1,50 ²⁾ / 1,87							
Ğ			80					1,60				
Shea	r load, steel failure ¹⁾											
>,	Steel zinc plated		5.8					1,25				
Jr yms			8.8	_				1,25				
facto	Stainless steel A4	Property class	50		2,38							
Partial factor y _{Ms,v}	and high corrosion		70		1,25 ²⁾ / 1,56							
	resistant steel C		80		1,33							

¹⁾ In absence of other national regulations

fischer injection system FIS V

Performance

Partial factors under seismic action (performance category C1 and C2) for fischer anchor rods and standard threaded rods

Annex C 12

²⁾ Only admissible for high corrosion resistant steel C, with f_{yk} / $f_{uk} \ge 0.8$ and $A_5 > 12$ % (e.g. fischer anchor rods)

Table C13.1: Essential characteristics of **resistance** for **fischer anchor rods** and **standard threaded rods** in hammer drilled holes under seismic action performance category **C1**

Anchor re	od / standard threaded rod	M10	M12	M16	M20	M24	M27	M30		
Characte	Characteristic bond resistance, combined pullout and concrete cone failure									
Hammer-	Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete)									
Tem-	I: 50 °C / 80 °C	[NI/mm2]	4,5	5,5	5,5	5,5	4,5	4,0	4,0	
perature range	II: 72 °C / 120 °C	[N/mm ²]	4,0	4,5	4,5	4,5	4,0	3,5	3,5	
Hammer-	Hammer-drilling with standard drill bit or hollow drill bit (water filled hole 1))									
Tem- perature range	I: 50 °C / 80 °C	[N]/mm2]	_	5,0	5,0	4,5	4,0	3,5	3,5	
	II: 72 °C / 120 °C	[N/mm ²]	-	4,0	4,0	4,0	3,5	3,0	3,0	

¹⁾ Only with coaxial cartridges: 380ml, 400 ml, 410 ml

fischer injection system FIS V

Performance

Essential characteristics under seismic action (performance category C1) for fischer anchor rods and standard threaded rods

Annex C 13

Electronic copy of the ETA by DIBt: ETA-02/0024

Deutsches Institut für Bautechnik

Table C14.1: Essential characteristics of resistance for fischer anchor rods and standard threaded rods in hammer drilled holes under seismic action performance category C2

Anchor re	od /	standard threaded	d rod		M12	M16	M20				
Characte	Characteristic bond resistance, combined pullout and concrete cone failure										
Hammer-	Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete)										
Tem-	ature			NI/mm21	1,5	1,3	2,1				
range			Rk,eq,C2 [I	[N/mm²]	1,3	1,2	1,9				
Hammer-	drill	ing with standard	drill bit	t or holl	ow drill bit (water fille	ed hole ³⁾)					
Tem-	l:	50 °C / 80 °C	[N1/mm2]	1,3	1,1	1,8					
perature range	II:	72 °C / 120 °C	Rk,eq,C2	[N/mm²]	1,1	1,0	1,6				
Displacer	men	t-Factors for tensi	le load	1)							
δN,(DLS)-Fact	or		[mm//N	\l/mm2\1	0,20	0,13	0,21				
$\delta_{\text{N,(ULS)-Fact}}$	δN,(ULS)-Factor		[mm/(N/mm²)]		0,38	0,18	0,24				
Displacement-Factors for shear load ²⁾											
δ V,(DLS)-Factor			[mm	n/kN]	0,18	0,10	0,07				
δv,(ULS)-Facto	δv,(ULS)-Factor			1/1/11	0,25	0,14	0,11				

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N,(DLS)}} = \delta_{\text{N,(DLS)-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N,(ULS)}} = \delta_{\text{N,(ULS)-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

 $\delta_{V,(\text{DLS})} = \delta_{V,(\text{DLS})\text{-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{\text{V,(ULS)}} = \delta_{\text{V,(ULS)-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

3) Only with coaxial cartridges: 380ml, 400 ml, 410 ml

fischer injection system FIS V

Performance

Essential characteristics under seismic action (performance category C2) for fischer anchor rods and standard threaded rods

Annex C 14

²⁾ Calculation of effective displacement: