

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-02/0024 of 13 May 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer injection system FIS V

Bonded anchor for use in concrete

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

34 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601

ETA-02/0024 issued on 2 January 2020

European Technical Assessment ETA-02/0024

Page 2 of 34 | 13 May 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z36935.20 8.06.01-94/20

European Technical Assessment ETA-02/0024

Page 3 of 34 | 13 May 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "fischer injection system FIS V" is a bonded fastener consisting of a cartridge with injection mortar fischer FIS V, fischer FIS VW High Speed or fischer FIS VS Low Speed and a steel element according to Annex A5.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3 to B 6, C 1 to C 8
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 to C 4
Displacements under short-term and long-term loading	See Annex C 9 and C 10
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 11 to C 14

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z36935.20 8.06.01-94/20

European Technical Assessment ETA-02/0024

Page 4 of 34 | 13 May 2020

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

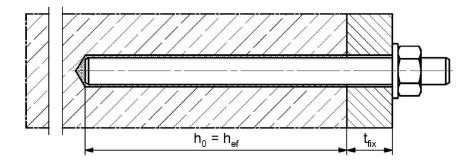
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

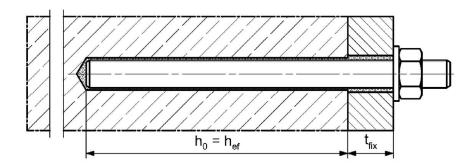
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 13 May 2020 by Deutsches Institut für Bautechnik

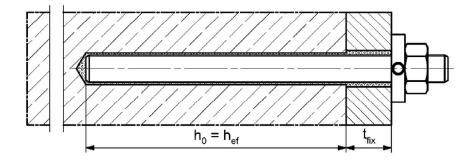
BD Dipl.-Ing. Andreas Kummerow Head of Department

*beglaubigt:*Baderschneider


Z36935.20 8.06.01-94/20


Installation conditions part 1

fischer anchor rod


Pre-positioned installation

Push through installation (annular gap filled with mortar)

Pre-positioned or push through installation with subsequently injected fischer filling disc (annular gap filled with mortar)

Figures not to scale

 $h_0 = drill hole depth$

h_{ef} = effective embedment depth

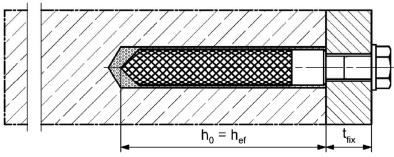
 t_{fix} = thickness of fixture

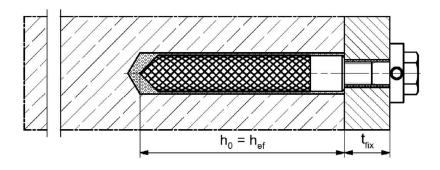
fischer injection system FIS V

Product description

Installation conditions part 1

Annex A 1


Electronic copy of the ETA by DIBt: ETA-02/0024


Installation conditions part 2

fischer internal threaded anchor RG MI

Pre-positioned installation

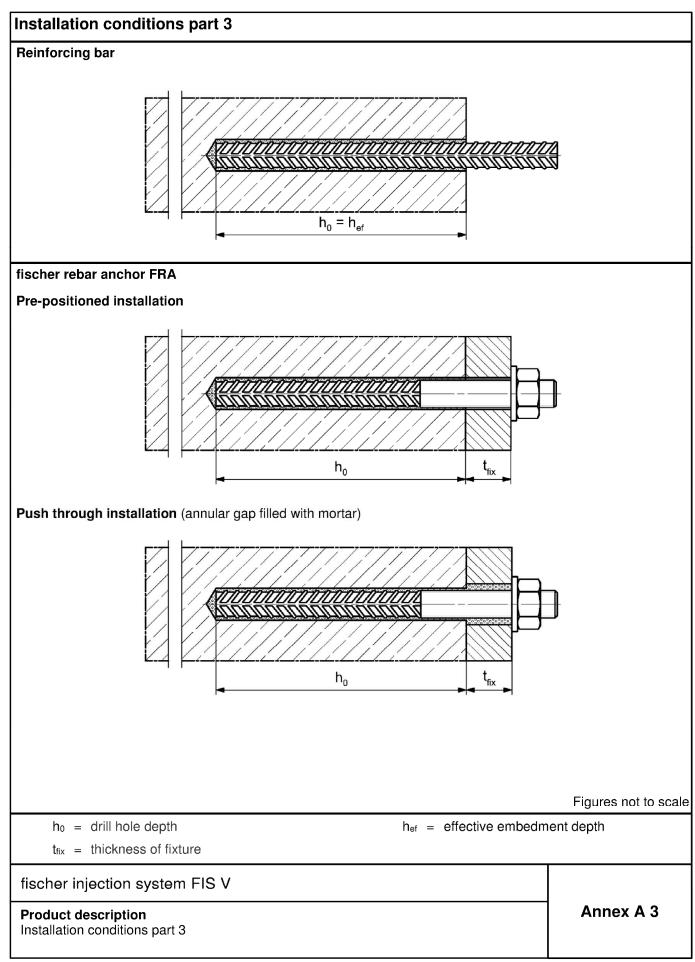
Pre-positioned installation with subsequently injected fischer filling disc (annular gap filled with mortar)

Figures not to scale

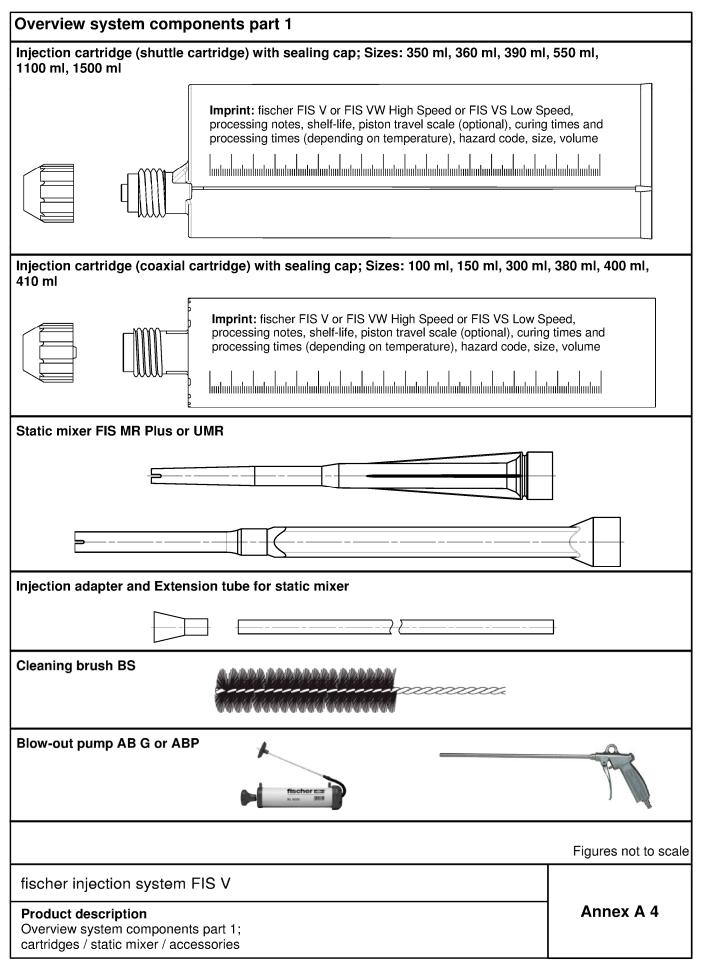
 $h_0 = drill hole depth$

h_{ef} = effective embedment depth

 t_{fix} = thickness of fixture


fischer injection system FIS V

Product description


Installation conditions part 2

Annex A 2

Overview system components part 2 fischer anchor rod Size: M6, M8, M10, M12, M16, M20, M24, M27, M30 fischer internal threaded anchor RG MI Size: M8, M10, M12, M16, M20 Screw / threaded rod / washer / hexagon nut fischer filling disc with injection adapter Reinforcing bar Nominal diameter: $\phi 8$, $\phi 10$, $\phi 12$, $\phi 14$, $\phi 16$, $\phi 20$, $\phi 25$, $\phi 28$ fischer rebar anchor FRA Size: M12, M16, M20, M24 Figures not to scale fischer injection system FIS V Annex A 5 **Product description** Overview system components part 2; steel components

Part	Designation		Mate	erial			
1	Injection cartridge		Mortar, hard	dener, filler			
		Steel		s steel R	High corrosion resistant steel HCR		
	Steel grade	zinc plated Corros		0088-1:2014 sistance class C III 993-1-4:2015	acc. to EN 10088-1:2014 Corrosion resistance class CRC V acc. to EN 1993-1-4:201		
2	Anchor rod	Property class 4.8, 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 μ m, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised \geq 40 μ m EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 > 12\%$ fracture elongation	$\begin{array}{lll} EN \ ISO \ 898-1:2013 \\ zinc \ plated \geq 5 \ \mu m, \\ SO \ 4042:2018/Zn5/An(A2K) \\ \text{or hot dip galvanised} \geq 40 \ \mu m \\ EN \ ISO \ 10684:2004 \\ f_{uk} \leq 1000 \ N/mm^2 \\ A_5 > 12\% \\ \end{array} \begin{array}{ll} EN \ ISO \ 3506-1:2009 \\ 1.4401; \ 1.4404; \ 1.4578; \\ 1.4571; \ 1.4439; \ 1.4362; \\ 1.4062, \ 1.4662, \ 1.4462; \\ EN \ 10008-1:2014 \\ f_{uk} \leq 1000 \ N/mm^2 \\ A_5 > 12\% \end{array}$				
		Fracture elongation for s		applications with ance category (
3	Washer ISO 7089:2000	zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4578 1.4439;	; 1.4404; ;1.4571; ;1.4362; 38-1:2014	1.4565; 1.4529; EN 10088-1:2014		
4	Hexagon nut	Property class 4, 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004	50, 70 EN ISO 35 1.4401; 1.4 1.4571; 1.4	ty class 0 or 80 506-1:2009 404; 1.4578; 439; 1.4362; 88-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014		
5	fischer internal threaded anchor RG MI	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K)	EN ISO 35 1.4401; 1.4 1.4571; 1.4	v class 70 506-1:2009 404; 1.4578; 439; 1.4362; 88-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014		
6	Commercial standard screw or threaded rod for fischer internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 μ m, ISO 4042:2018/Zn5/An(A2K) $A_5 > 8$ % fracture elongation	EN ISO 39 1.4401; 1.4 1.4571; 1.4 EN 1008	class 70 506-1:2009 404; 1.4578; 439; 1.4362; 88-1:2014 ture elongation	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014 $A_5 > 8$ % fracture elongation		
7	fischer filling disc similar to DIN 6319-G	zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4 1.4571; 1.4	404; 1.4578; 439; 1.4362; 88-1:2014	1.4565;1.4529; EN 10088-1:2014		
8	Reinforcing bar EN 1992-1-1:2004 and AC:2010, Annex C	Bars and de-coiled rods, class f_{yk} and k according to NDP or $f_{uk} = f_{tk} = k \cdot f_{yk}$		ng to EN 1992-	1-1/NA		
9	fischer rebar anchor FRA	Rebar part: Bars and de-coiled rods class B or C with f_{yk} and k according to NDP or NCL of EN 1992-1-1:2004+AC:2010 $f_{uk} = f_{tk} = k \cdot f_{yk}$ Threaded part: Property class 70 or 8 EN ISO 3506-1:2009 1.4401, 1.4404, 1.4571, 1.4578, 1.44 1.4362, 1.4062 acc. to EN 10088-1:: Corrosion resistance class CRC III acc. to EN 1993-1-4:2015 1.4565; 1.4529 acc. to EN 10088-1:: Corrosion resistance class CRC V acc. to EN 1993-1-4:2015					
fisc	her injection system	FIS V					
	duct description erials				Annex A 6		

Electronic copy of the ETA by DIBt: ETA-02/0024

Specifications of intended use (part 1) Table B1.1: Overview use and performance categories FIS V with ... Anchorages subject to Anchor rod fischer internal Reinforcing bar fischer rebar threaded anchor anchor RG MI FRA Hammer drilling with standard drill all sizes bit Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Nominal drill bit diameter (d₀) Expert"; Bosch 12 mm to 35 mm "Speed Clean"; Hilti "TE-CD, TE-YD"), DreBo D-Plus, DreBo D-Max Tables: Tables: Tables: Tables: uncracked all sizes all sizes all sizes C2.1 C3.2 C1.1 C3.1 concrete Static and quasi C4.1 C4.1 C4.1 all sizes C4.1 static load, in C5.1 C6.1 C7.1 C8.1 cracked M8 to φ 10 to _2) C9.1 C9.2 C10.1 C10.2 M30 ф 28 concrete Tables: M10 C11.1 Seismic C11) to C12.1 performance M30 C13.1 category (only _2) _2) _2) hammer drilling with M12 Tables: standard / hollow M16 C11.1 C21) drill bits) M20 C12.1 M24 C14.1 dry or wet 11 all sizes concrete Use category water filled 12 _2) _2) M 12 to M 30 all sizes hole Installation direction D3 (downward and horizontal and upwards (e.g. overhead) installation) Installation $T_{i,min} = -10$ °C to $T_{i,max} = +40$ °C temperature Temperature (max. short term temperature +80 °C; -40 °C to +80 °C max. long term temperature +50 °C) range I In-service temperature Temperature (max. short term temperature +120 °C; -40 °C to +120 °C range II max. long term temperature +72 °C) 1) Not for FIS VW High Speed and FIS VS Low Speed 2) No performance assessed fischer injection system FIS V Annex B 1 Intended use Specifications (part 1)

Specifications of intended use (part 2)

Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- For all other conditions according to EN1993-1-4:2015 corresponding to corrosion resistance classes to Annex A 6 table A6.1.

Design:

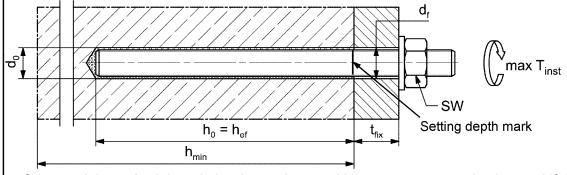
- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with:
 EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.

Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- Anchorage depth should be marked and adhered to on installation
- · Overhead installation is allowed

fischer injection system FIS V	
Intended use Specifications (part 2)	Annex B 2

Anchor rods Width across flats Nominal drill hole diam				Table B3.1: Installation parameters for anchor rods								
		Anchor rods			М8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diam		SW		10	13	17	19	24	30	36	41	46
	neter	d₀		8	10	12	14	18	24	28	30	35
Drill hole depth		h₀						$h_0 = h_{ef}$	f			
Effective		$h_{\text{ef, min}}$		50	60	60	70	80	90	96	108	120
embedment depth		h _{ef, max}		72	160	200	240	320	400	480	540	600
Minimum spacing and minimum edge distance		S _{min} = C _{min}	[mm]	40	40	45	55	65	85	105	125	140
II liamatar at tha	e-positioned nstallation	df		7	9	12	14	18	22	26	30	33
the fixture pu	ush through nstallation	df	-	9	12	14	16	20	26	30	33	40
Minimum thickness of concrete member h _{min}				h _{ef} + 30 (≥100)				h _{ef} + 2d ₀				
Maximum installation t	torque	max T _{inst}	[Nm]	5	10	20	40	60	120	150	200	300


Marking (on random place) fischer anchor rod:

Steel zinc plated PC¹) 8.8	• or +	Steel hot-dip PC ¹⁾ 8.8	•
High corrosion resistant steel HCR PC ¹⁾ 50	•	High corrosion resistant steel HCR PC ¹⁾ 70	-
High corrosion resistant steel HCR PC ¹⁾ 80	(Stainless steel R property class 50	~
Stainless steel R property class 80	*		

Alternatively: Colour coding according to DIN 976-1: 2016

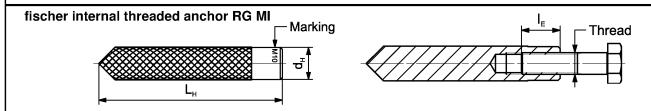
1) PC = property class

Installation conditions:

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled

- Materials, dimensions and mechanical properties according to Annex A 6, Table A6.1
- Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- · Setting depth is marked

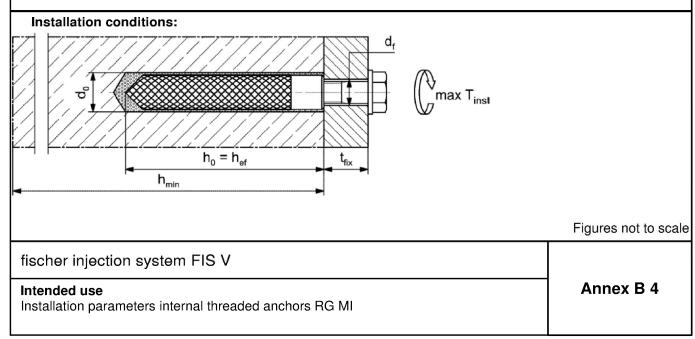
Figures not to scale


fischer injection system FIS V

Intended use
Installation parameters anchor rods

Annex B 3

Table B4.1: Installation parameters for fischer internal threaded anchors RG MI								
Internal threaded anchors R	G MI	Thread	М8	M10	M12	M16	M20	
Diameter of anchor	$d_{nom} = d_H$		12	16	18	22	28	
Nominal drill hole diameter	d ₀		14	18	20	24	32	
Drill hole depth	h ₀] [$h_0 = h_{\text{ef}} = L_{\text{H}}$				
Effective embedment depth $(h_{ef} = L_H)$	h _{ef}		90	90	125	160	200	
Minimum spacing and minimum edge distance	Smin = Cmin	[mm]	55	65	75	95	125	
Diameter of clearance hole in the fixture	df		9	12	14	18	22	
Minimum thickness of concrete member	h _{min}		120	125	165	205	260	
Maximum screw-in depth	I _{E,max}	1 [18	23	26	35	45	
Minimum screw-in depth	$I_{E,min}$		8	10	12	16	20	
Maximum installation torque	max T _{inst}	[Nm]	10	20	40	80	120	



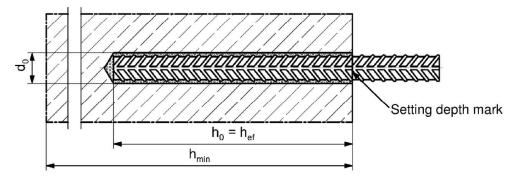
Marking: Anchor size e. g.: M10

Stainless steel → additional R; e.g.: M10 R

High corrosion resistant steel → additional HCR; e.g.: M10 HCR

Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 6, Table A6.1

Table B5.1: Installation	able B5.1: Installation parameters for reinforcing bars										
Nominal diameter of the bar	ф	8 ¹⁾	10 ¹⁾	12 ¹⁾	14	16	20	25	28		
Nominal drill hole diameter	Nominal drill hole diameter d ₀		10 12	12 14	14 16	18	20	25	30	35	
Drill hole depth	h_0			$h_0 = h_{ef}$							
Effective	$h_{\text{ef},\text{min}}$		60	60	70	75	80	90	100	112	
embedment depth	h _{ef,max}		160	200	240	280	320	400	500	560	
Minimum spacing and minimum edge distance	Smin = Cmin	[mm]	40	45	55	60	65	85	110	130	
Minimum thickness of concrete member	h _{min}		l	_{ef} + 30 ≥ 100)			h∈	ef + 2d ₀			


¹⁾ Both drill hole diameters can be used

Reinforcing bar

- The minimum value of related rib area f_{R,min} must fulfil the requirements of EN 1992-1-1:2004+AC:2010
- The rib height must be within the range: 0,05 · φ ≤ h_{rib} ≤ 0,07 · φ
 (φ = Nominal diameter of the bar, h_{rib} = rib height)

Installation conditions:

Figures not to scale

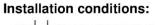
fischer injection system FIS V

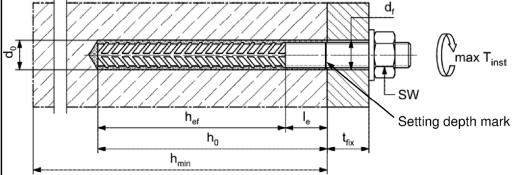
Intended use
Installation parameters reinforcing bars

Annex B 5

Rebar anchor F	RA	-	Thread	d M12 ¹⁾		M16	M20	M24	
Nominal diamete	er of the bar	ф		12	2	16	20	25	
Width across fla	ts	SW		19)	24	30	36	
Nominal drill hol	e diameter	d₀		14	16	20	25	30	
Drill hole depth		h₀				h _{ef}	+ le		
Effective embed	h _{ef,min}			70)	80	90	96	
Effective embedment depth $\frac{h_{\text{ef,m}}}{h_{\text{ef,m}}}$		h _{ef,max}		14	0	220	300	380	
Distance concre welded joint	te surface to	l _e	[]		100				
Minimum spacin minimum edge d		Smin = Cmin	[mm]	55	5	65	85	105	
Diameter of	pre-positioned anchorage	≤ d _f		14	1	18	22	26	
clearance hole - in the fixture	push through anchorage	≤ d _f		18	3	22	26	32	
Minimum thickne of concrete men		h _{min}		h ₀ + 30			h ₀ + 2d ₀		
Maximum install	ation torque	max T _{inst}	[Nm]	4()	60	120	150	

¹⁾ Both drill hole diameters can be used


fischer rebar anchor FRA


Thread Thread Marking

Marking frontal e. g:

FRA (for stainless steel);

✓ FRA HCR (for high corrosion resistant steel)

Figures not to scale

fischer injection system FIS V

Intended use

Installation parameters rebar anchor FRA

Annex B 6

Z40963.20

Electronic copy of the ETA by DIBt: ETA-02/0024

Electronic copy of the ETA by DIBt: ETA-02/0024

Table B7.1: Parameters of the **cleaning brush** BS (steel brush with steel bristles)

The size of the cleaning brush refers to the drill hole diameter

Nominal drill hole diameter	d₀		8	10	12	14	16	18	20	24	25	28	30	35
Steel brush diameter	d _b	[mm]	9	11	14	16	2	0	25	26	27	30	4	0

Table B7.2Maximum processing time of the mortar and minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

Temperature at	Maxir	num processing twork	g time	Minimum curing time 1) t _{cure}				
anchoring base [°C]	FIS VW High Speed	FIS V	FIS VS Low Speed	FIS VW High Speed	FIS V	FIS VS Low Speed		
-10 to -5 ²⁾	-	-	-	12 h	-	-		
> -5 to 0 ²⁾	5 min	-	-	3 h	24 h	-		
> 0 to 5 ²⁾	5 min	13 min	-	3 h	3 h	6 h		
> 5 to 10	3 min	9 min	20 min	50 min	90 min	3 h		
> 10 to 20	1 min	5 min	10 min	30 min	60 min	2 h		
> 20 to 30	-	4 min	6 min	-	45 min	60 min		
> 30 to 40	-	2 min	4 min	-	35 min	30 min		

¹⁾ In wet concrete or water filled holes the curing times must be doubled

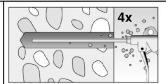
fischer injection system FIS V

Intended use
Cleaning brush (steel brush)
Processing time and curing time

Annex B 7

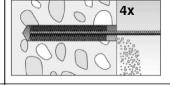
²⁾ Minimal cartridge temperature +5°C

Installation instructions part 1


Drilling and cleaning the hole (hammer drilling with standard drill bit)

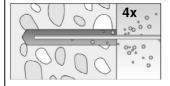
1

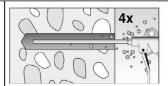
Drill the hole. Nominal drill hole diameter d_0 and drill hole depth h_0 see tables B3.1, B4.1, B5.1, B6.1


2

Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand

For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$


3


4x

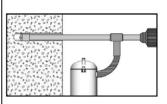
Brush the drill hole four times. For deep holes use an extension. Corresponding brushes see **table B7.1**

4

Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand

For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$

Go to step 5


Drilling and cleaning the hole (hammer drilling with hollow drill bit)

1

Check a suitable hollow drill (see **table B1.1**) for correct operation of the dust extraction

2

Use a suitable dust extraction system, e. g. fischer FVC 35 M or a comparable dust extraction system with equivalent performance data

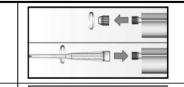
Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Nominal drill hole diameter d_0 and drill hole depth h_0 see tables B3.1, B4.1, B5.1, B6.1

Go to step 5

fischer injection system FIS V

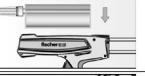
Intended use

Installation instructions part 1


Annex B 8

Installation instructions part 2

Preparing the cartridge



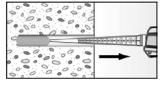
Remove the sealing cap

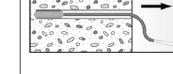
Screw on the static mixer (the spiral in the static mixer must be clearly visible)

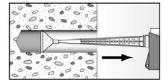
5

Place the cartridge into the dispenser

7




Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey


Go to step 8

Injection of the mortar

8

Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles

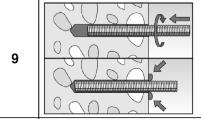
For drill hole depth ≥ 150 mm use an extension tube

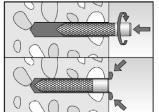
For overhead installation, deep holes ($h_0 > 250$ mm) or drill hole diameter ($d_0 \ge 40$ mm) use an injection adapter

Go to step 9

fischer injection system FIS V

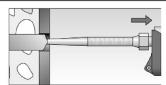
Intended use


Installation instructions part 2


Annex B 9

Installation instructions part 3

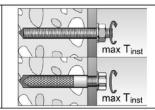
Installation of anchor rods or fischer internal threaded anchors RG MI



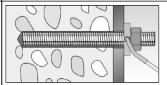
Only use clean and oil-free metal parts. Mark the setting depth of the metal part. Push the anchor rod or fischer internal threaded RG MI anchor down to the bottom of the hole, turning it slightly while doing so.

After inserting the metal parts, excess mortar must be emerged around the anchor element.

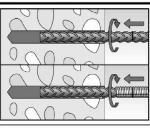
For overhead installations support the metal part with wedges (e. g. fischer centering wedges) or fischer overhead clips.


For push through installation fill the annular gap with mortar

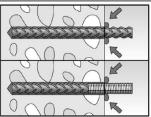
10


Wait for the specified curing time t_{cure} see table B7.2

11


Mounting the fixture max T_{inst} see tables B3.1 and B4.1

Option


After the minimum curing time is reached, the gap between metal part and fixture (annular clearance) may be filled with mortar via the fischer filling disc. Compressive strength \geq 50 N/mm² (e.g. fischer injection mortars FIS HB, FIS SB, FIS V, FIS EM Plus). ATTENTION: Using fischer filling disc reduces t_{fix} (usable length of the anchor)

Installation reinforcing bars and fischer rebar anchor FRA

Only use clean and oil-free reinforcing bars or fischer FRA. Mark the setting depth. Turn while using force to push the reinforcement bar or the fischer FRA into the filled hole up to the setting depth mark

9

When the setting depth mark is reached, excess mortar must be emerged from the mouth of the drill hole.

10

Wait for the specified curing time t_{cure} see **table B7.2**

11

Mounting the fixture max T_{inst} see **table B6.1**

fischer injection system FIS V

Intended use

Installation instructions part 3

Annex B 10

Z40964.20

English translation prepared by DIBt

Table C1.1:	Characteristic values for steel failure under tension / shear load of fischer
	anchor rods and standard threaded rods

anchor rods and standard threaded rods															
Anch	or rod / standard threa	ded rod			М6	M8	M10	M12	M16	M20	M24	M27	M30		
Beari	ng capacity under tens	ion load	d, ste	el fail	ure 3)	-			-		-	-			
S			4.8		8	15(13)	23(21)	33	63	98	141	184	224		
istic N _{Rk,s}	Steel zinc plated	 	5.8		10	19(17)	29(27)	43	79	123	177	230	281		
		ropert	8.8	[kN]	16	29(27)	47(43)	68	126	196	282	368	449		
Characteristic resistance N _{Rk} ,	Stainless steel R and	Property class	50	[KIN]	10	19	29	43	79	123	177	230	281		
Cha	high corrosion	"	70		14	26	41	59	110	172	247	322	393		
	resistant steer non		80		16	30	47	68	126	196	282	368	449		
Partia	al factors 1)	.													
			4.8						1,50						
턍	Steel zinc plated		5.8		1,50										
Partial factor		Property class	8.8	[-]					1,50						
rtia ×	Stairtiess steet in and	_ E 등	50		2,86										
<u>ا</u> مّ	high corrosion resistant steel HCR	_	70		1,50 ²⁾ / 1,87										
		80		2)	1,60										
	ng capacity under shea	ar load,	steel	failu	re ³⁾										
witho	ut lever arm								ı		1				
ic R,s		Property class	4.8		4	9(8)	14(13)	20	38	59	85	110	135		
rist V°	Steel zinc plated		5.8	[kN]	6	 	17(16)	25	47	74	106	138	168		
Characteristic resistance Vork			8.8		8		23(21)	34	63	98	141	184	225		
nara sta	Stainless steel R and	Pro	50		5	9	15	21	39	61	89	115	141		
	high corrosion resistant steel HCR		70 80		7 8	13 15	20 23	30 34	55 63	86 98	124 141	161 184	197 225		
Ductili	ity factor		0 <u></u>	[-]	0	13	23	34		90	141	104	223		
	ever arm		κ/	-	1,0										
-	ever allii		4.8		6	15(12)	30(27)	52	133	259	448	665	899		
Charact. sistance M ^o Rk,s	Steel zinc plated		5.8		7		37(33)	65	166	324	560	833	1123		
Charact.	Otool 2ino piatoa	erty ss			12		60(53)	105	266	519	896	1333	1797		
nar.	Stainless steel R and	Property class	8.8 50	[Nm]	7	19	37	65	166	324	560	833	1123		
	high corrosion	<u>~</u> _	70		10	26	52	92	232	454	784	1167	1573		
§	resistant steel HCR		80		12	30	60	105	266	519	896	1333	1797		
Partia	al factors 1)	I .					1					l .			
			4.8						1.25						
[량	Steel zinc plated		5.8 8.8						1.25						
ial fa		Property class	8.8	[-]	1.25										
Partial factor	Otalinoco otooi it ana	E	50		2.38										
P _B	high corrosion resistant steel HCR	_	70					1.3	25 ²⁾ / 1.	56					
l	TOOISIAITI SIGGI HOLI		80						1.33						

¹⁾ In absence of other national regulations

fischer injection system FIS V

Performances

Characteristic values for steel failure under tension / shear load of fischer anchor rods and standard threaded rods

Annex C 1

Z40964.20

²⁾ Only admissible for high corrosion resist. steel HCR, with f_{yk} / $f_{uk} \ge 0.8$ and $A_5 > 12$ % (e.g. fischer anchor rods)

³⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot dip galvanised standard threaded rods according to EN ISO 10684:2004+AC:2009

Table C2.1:					or steel fa ed anchor	ilure under s RG MI	tension / sl	hear load o	f				
fischer internal	threade	ed anchors	RG MI		M8	M10	M12	M16	M20				
Bearing capacit	y unde	r tension lo	ad, ste	el fail	ure								
		Property	5.8		19	29	43	79	123				
Charact.	N.I.	class	8.8	[L.N.17	29	47	68	108	179				
resistance with screw	$N_{Rk,s}$	Property	R	[kN]	26	41	59	110	172				
00.011		class 70 HCR 26 41						110	172				
Partial factors1)													
		Property	5.8				1,50						
Partial factors	•••	class	8.8	[-]	1,50								
Farilai laciors	γMs,N	Property		[-]			1,87						
		class 70	HCR				1,87						
Bearing capacit	y unde	r shear loa	d, steel	failu	'e								
Without lever ar	m												
		Property	5.8		9,2	14,5	21,1	39,2	62,0				
Charact. resistance with	V^0 Rk,s	class	8.8	[kN]	14,6	23,2	33,7	54,0	90,0				
screw	V HK,S	Property	R	נגואן	12,8	20,3	29,5	54,8	86,0				
		class 70	, porty		12,8	20,3	29,5	54,8	86,0				
Ductility factor			k ₇	[-]			1,0						
With lever arm								1					
		Property	5.8		20	39	68	173	337				
Charact. resistance with	M ⁰ Rk,s	class	8.8	[Nm]	30	60	105	266	519				
screw	IVI HK,S	Property	R	ונייייין	26	52	92	232	454				
class 70		class 70	HCR		26	52	92	232	454				
Partial factors ¹⁾													
		Property	5.8				1,25						
Partial factors	7/M- V	class	8.8	[_]	1,25								
i artial lactors	γMs,V	Property	R	[-]	1,56								
	class 70 HCR 1,56												

1) [ln	absence	of	otr	ıer	na	tional	regu	lations
------	----	---------	----	-----	-----	----	--------	------	---------

fischer injection system FIS V	
Performances	Annex C 2
Characteristic values for steel failure under tension / shear load of fischer internal	
threaded anchor RG MI	

Characteristic resistance

 $1,2\cdot W_{el}\cdot f_{uk^1)}$

Table C3.1: Characteristic versions reinforcing bars		or stee	el failui	r e unde	r tensio	on / she	ear load	d of	
Nominal diameter of the bar	ф	8	10	12	14	16	20	25	28
Bearing capacity under tension load,	steel fai	lure		-				-	-
Characteristic resistance N _{Rk}	s [kN]				As ·	f uk ¹⁾			
Bearing capacity under shear load, st	eel failu	re							
Without lever arm									
Characteristic resistance V ⁰ RI	,s [kN]				0,5 · A	(s · f _{uk} 1)			
Ductility factor k ₇	[-]	1,0							
With lever arm									

M⁰Rk,s [Nm] 1) fuk or fyk respectively must be taken from the specifications of the reinforcing bar

Table C3.2: Characteristic values for steel failure under tension / shear load of fischer rebar anchors FRA

fischer rebar anchor FRA			M12	M16	M20	M24
Bearing capacity under tens	ion load, ste	el failur	е			
Characteristic resistance	$N_{Rk,s}$	[kN]	63	111	173	270
Partial factor ¹⁾				•	•	
Partial factor	γMs,N	[-]		1	,4	
Bearing capacity under shea	ır load, stee	failure				
Without lever arm						
Characteristic resistance	V^0 Rk,s	[kN]	30	55	86	124
Ductility factor	k ₇	[-]		1	,0	
With lever arm						
Characteristic resistance	M ⁰ Rk,s	[Nm]	92	233	454	785
Partial factor ¹⁾		· '		•	•	•
Partial factor	γMs,V	[-]		1,	,56	

¹⁾ In absence of other national regulations

Electronic copy of the ETA by DIBt: ETA-02/0024

fischer injection system FIS V Annex C 3 **Performances** Characteristic values for steel failure under tension / shear load of reinforcing bars and fischer rebar anchors FRA

English translation prepared by DIBt

Table C4.1:	Characteristi	c val	ues fo	or con	crete	failur	e unde	er tens	sion / s	shear I	oad				
Size							1	All size	es						
Tension load															
Installation facto	or	γinst	[-]		S	See ann	ex C 5	to C 8	and C	13 to C1	4				
Factors for the	compressive strer	igth of	concr	ete > C	20/25										
_	C25/30							1,05							
_	C30/37			1,10											
Increasing _	C35/45	Ψс	[-]	1,15											
factor for τ _{Rk} -	C40/50	10	"					1,19							
-	C45/55							1,22							
	C50/60							1,26							
Splitting failure								4.0.1							
	$\frac{h / h_{ef} \ge 2.0}{2.0 \text{ for } / h_{ef}}$						4.6	1,0 h _{et}							
Edge distance _	$\frac{2.0 > h / h_{ef} > 1.3}{h / h < 4.3}$	C _{cr,sp}	[mm]				4,6	6 h _{ef} - 1	-						
Spacing	h / h _{ef} ≤ 1,3	<u> </u>	-					2,26 h							
Spacing Concrete cone	failure	S _{cr,sp}						2 C _{cr,sp})						
Uncracked cond		k _{ucr,N}						11.0							
Cracked concre		k _{cr,N}	[-]	11,0 7,7											
Edge distance	10	Ccr,N		1.5 het											
Spacing		S _{cr,N}	[mm]	mm] 2 C _{Cr,N}											
	stained tension load			<u>'</u>											
Temperature rai		-	[-]		50 °C	C / 80 °				′2 °C / 1	20 °C				
Factor						0,74				0,8					
Shear load			[-]			-,				,					
Installation facto	or	γinst	[-]					1,0							
Concrete pry-o		7						-,-							
Factor for pry-ou		k ₈	[-]					2,0							
Concrete edge	failure														
Effective length shear loading	of fastener in	lf	[mm]			≤ 24 mi > 24 m				0 mm)					
Calculation dia	meters														
Size				M6	M8	M10	M12	M16	M20	M24	M27	M30			
fischer anchor ro standard thread		d _{nom}		6	8	10	12	16	20	24	27	30			
fischer internal threade	d anchors RG MI	d _{nom}	[mm]	_1)	12	16	18	22	28	_1)	_1)	_1)			
fischer rebar an	chor FRA	d _{nom}		_1)	_1)	_1)	12	16	20	25	_1)	_1)			
Size (nominal di	ameter of the bar)		ф	8	10	12	1	4	16	20	25	28			
Reinforcing bar		d _{nom}	[mm]	8	10	12	1	4	16	20	25	28			
1) Anchor type	e not part of the asse	essme	nt												
fischer injec	tion system FIS \	/													
	Performances Characteristic values for concrete failure under tension / shear load									Annex C 4					

Table C5.1:	Charac	cteristi	ic values	s for com	bined	pull-o	ut and	l concr	ete fa	ilure fo	r fiscl	her
				ndard the		d rods	s in ha	mmer	drilled	l holes	;	
												Τ

	uncracke	ea or c	гаскеа (concr	ete							
Anchor re	od / standard thread	led rod		М6	M8	M10	M12	M16	M20	M24	M27	M30
Combine	d pullout and concr	ete con	e failure									
Calculatio	n diameter	d	[mm]	6	8	10	12	16	20	24	27	30
Uncracke	ed concrete											
Characte	ristic bond resistan	ce in un	cracked (concre	te C20/	25						
Hammer-d	drilling with standard	<u>drill bit o</u>	r hollow d	rill bit (d	dry or w	et conc	rete)					
Tem-	I: 50 °C / 80 °C		FN 1/21	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
perature range	II: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Hammer-	drilling with standard	drill bit c	r hollow d	rill bit (v	water fil	led hole) (1)	ı				
Tem-	I: 50 °C / 80 °C		0-	_2)	_2)	_2)	9,5	8,5	8,0	7,5	7,0	7,0
perature range	II: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	_2)	_2)	_2)	7,5	7,0	6,5	6,0	6,0	6,0
	on factors								<u> </u>			
Dry or we	t concrete							1,0				
Water fille	d hole	γinst	[-]	_2)	_2)	_2)			1,2	2 1)		
Cracked	concrete											
Characte	ristic bond resistan	ce in cr	acked cor	ncrete	C20/25							
Hammer-d	drilling with standard	<u>drill bit o</u>	r hollow d	rill bit (d	dry or w	et conc	rete)					
Tem-	I: 50 °C / 80 °C		FN 17 21	_2)	5,5	6,0	6,0	6,0	5,5	4,5	4,0	4,0
perature range	II: 72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]	_2)	4,5	5,0	6,0	6,0	5,0	4,0	3,5	3,5
Hammer-d	drilling with standard	drill bit o	r hollow d	rill bit (v	water fil	led hole) (1)					
Tem-	I: 50 °C / 80 °C			_2)	_2)	_2)	5,0	5,0	4,5	4,0	3,5	3,5
perature range	II: 72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]	_2)	_2)	_2)	4,0	4,0	4,0	3,5	3,0	3,0
H	on factors		ı									
Dry or wet	concrete	γinst	[]	1,0								
Water filled	d hole	[-]	-2) -2) -2) 1,2 ¹⁾									

¹⁾ Only with coaxial cartridges: 380ml, 400 ml, 410 ml

fischer injection system FIS V

Performances

Characteristic values for combined pull-out and concrete failure for fischer anchor rod and standard threaded rods

Annex C 5

²⁾ No performance assessed

Table C6.1: Characteristic values for combined pull-out and concrete failure for fischer internal threaded anchors RG MI in hammer drilled holes; uncracked concrete

Internal threaded	anchor RG	МІ		М8	M10	M12	M16	M20					
Combined pullou	it and concr	ete con	e failure										
Calculation diame	ter	d	[mm]	12	16	18	22	28					
Uncracked concr	Uncracked concrete												
Characteristic bond resistance in uncracked concrete C20/25													
Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete)													
	°C / 80 °C	$ au_{Rk,ucr}$	[N/mm ²]	10,5	10,0	9,5	9,0	8,5					
range II: 72	°C / 120 °C			9,0	8,0	8,0	7,5	7,0					
Hammer-drilling w	ith standard	<u>drill bit o</u>	r hollow c	Irill bit (water	filled hole) ¹⁾								
I .	°C / 80 °C	_	[N/mm²]	10,0	9,0	9,0	8,5	8,0					
range II: 72	°C / 120 °C	₹Rk,ucr	[[14/11111]	7,5	6,5	6,5	6,0	6,0					
Installation factors													
Dry or wet concrete				1,0									
Water filled hole		γinst	[-]	1,21)									

¹⁾ Only with coaxial cartridges: 380 ml, 400 ml, 410 ml

fischer injection system FIS V	
Performances Charactersitic values for combined pull-out and concrete failure for fischer internal threaded anchors RG MI	Annex C 6

Table C7.1: Characteristic values for combined pull-out and concrete failure for reinforcing bars in hammer drilled holes; uncracked or cracked concrete										
Nominal diameter of the bar		ф	8	10	12	14	16	20	25	28
Combined pullout and concr	ete con	e failure								
Calculation diameter	d	[mm]	8	10	12	14	16	20	25	28
Uncracked concrete										
Characteristic bond resistan	ce in ur	cracked	concret	e C20/25	5					
Hammer-drilling with standard	drill bit c	r hollow d	rill bit (d	ry or wet	concret	<u>e)</u>				
Tem- I: 50 °C / 80 °C		[N 1 / 27]	11,0	11,0	11,0	10,0	10,0	9,5	9,0	8,5
perature II: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	9,5	9,5	9,0	8,5	8,5	8,0	7,5	7,0
Installation factor										
Dry or wet concrete	γinst	[-]				1	,0			
Cracked concrete										
Characteristic bond resistan	ce in cr	acked cor	ncrete C	20/25						
Hammer-drilling with standard	drill bit c	r hollow d	rill bit (d	ry or wet	concret	<u>e)</u>				
Tem- I: 50 °C / 80 °C		FN 1 / 27	_1)	3,0	5,0	5,0	5,0	4,5	4,0	4,0
range II: 72 °C / 120 °C	τ _{Rk,cr}	[N/mm ²]	_1)	3,0	4,5	4,5	4,5	4,0	3,5	3,5
Installation factor										
Dry or wet concrete	γinst	[-]				1	,0			

1)	No	performance	assessed
----	----	-------------	----------

fischer injection system FIS V	
Performances Characteristic values for combined pull-out and concrete failure for reinforcing bars	Annex C 7

Installation factors

Dry or wet concrete

1,0

Table C	r		chors I				ncrete failure cked or crack	
fischer re	ebar ancho	r FRA			M12	M16	M20	M24
Combine	d pullout a	and concr	ete con	e failure				
Calculatio	n diameter	•	d	[mm]	12	16	20	25
Uncracke	ed concret	е						
Characte	ristic bond	d resistan	ce in un	cracked	concrete C20/25	•		
Hammer-	drilling with	standard	<u>drill bit o</u>	r hollow o	Irill bit (dry or wet	concrete)		
Tem-	I: 50 °C	/ 80 °C		[N]/ma.ma.21	11,0	10,0	9,5	9,5
perature range	II: 72 °C	/ 120 °C	$ au_{Rk,ucr}$	[N/mm²]	9,0	8,5	8,0	7,5
Installatio	on factors							
Dry or we	t concrete		γinst	[-]		1	,0	
Cracked	concrete							
Characte	ristic bond	d resistan	ce in cra	acked co	ncrete C20/25			
Hammer-	drilling with	standard	drill bit o	r hollow o	Irill bit (dry or wet	concrete)		
Tem-	I: 50 °C	/ 80 °C	_	[N]/mm ² 1	5,0	5,0	4,5	4,0
perature range	II: 72 °C	/ 120 °C	$ au_{Rk,cr}$	[N/mm²]	4,5	4,5	4,0	3,5

[-]

 γ inst

fischer injection system FIS V	
Performances Characteristic values for combined pull-out and concrete failure for fischer rebar anchors FRA	Annex C 8

Table (Table C9.1: Displacements for anchor rods												
Anchor rod M6 M8 M10 M12 M16 M20 M24 M27													
Displacement-Factors for tension load ¹⁾													
Uncracked concrete; Temperature range I, II													
δ N0-Factor	[mm/(N/mm²)]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12			
δN∞-Factor	-[[[[[[]]/([N/[[[[]]-)]	0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14			
Cracked	concrete; Ten	nperature	range I, I	I									
δ _{N0} -Factor	[mm/(N/mm²)]	_3)	0,12	0,12	0,12	0,13	0,13	0,13	0,14	0,15			
δ _{N0} -Factor	-[[[]]]]/([N/[]]]]-	_3)	0,25	0,27	0,30	0,30	0,30	0,35	0,35	0,40			
Displace	ement-Factors	for shear	load ²⁾										
Uncrack	ed or cracked	concrete	; Tempera	ture rang	e I, II								
δvo-Factor	[mm/kN]]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07			
δv∞-Factor	[mm/kN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09			

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta v_0 = \delta v_{0\text{-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{\text{V}\infty} = \delta_{\text{V}\infty\text{-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

Table C9.2: Displacements for fischer internal threaded anchors RG MI

Internal t anchor F		M8	M10	M12	M16	M20							
Displace	Displacement-Factors for tension load ¹⁾												
Uncrack	ed concrete; T	emperature rang	e I, II										
δ _{N0-Factor}	[mm/(N/mm²)]	0,10	0,11	0,12	0,13	0,14							
δn∞-Factor	[[[[[[]]/([N/[[[[]]-)]	0,13	0,14	0,15	0,16	0,18							
Displace	ment-Factors	for shear load ²⁾											
Uncrack	ed concrete; T	emperature rang	e I, II										
δvo-Factor	[mm/kN]	0,12	0,12	0,12	0,12	0,12							
δv∞-Factor	[mm/kN]	0,14	0,14	0,14	0,14	0,14							

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{Ed}$: Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

fischer injection system FIS V

Performances

Displacements for anchor rods and fischer internal threaded anchors RG MI

Annex C 9

³⁾ No performance assessed

Manaina	diameter.											
of the ba	l diameter ar Φ	8	10	12	14	16	20	25	28			
Displacement-Factors for tension load ¹⁾												
Uncrack	ed concrete; T	emperatur	e range I, I	I								
δ N0-Factor	[mm/(N/mm²)]	0,09	0,09	0,10	0,10	0,10	0,10	0,10	0,11			
δ _{N∞-Factor}	7[mm/(N/mm-)]	0,10	0,10	0,12	0,12	0,12	0,12	0,13	0,13			
Cracked	concrete; Ten	nperature i	ange I, II									
δ N0-Factor	[mm//NI/mm2)]	_3)	0,12	0,13	0,13	0,13	0,13	0,13	0,14			
δ _{N∞-Factor}	[mm/(N/mm²)]	_3)	0,27	0,30	0,30	0,30	0,30	0,35	0,37			
Displace	ement-Factors	for shear l	oad ²⁾									
Uncracked or cracked concrete; Temperature range I, II												
δ vo-Factor	[mm/kN]	0,11	0,11	0,10	0,10	0,10	0,09	0,09	0,08			
δv∞-Factor	[mm/kN]	0,12	0,12	0,11	0,11	0,11	0,10	0,10	0,09			

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

(V_{Ed}: Design value of the applied shear force)

Table C10.2: Displacements for fischer rebar anchors FRA

fischer rebar anchor FRA		M12	M16	M20	M24							
Displace	Displacement-Factors for tension load ¹⁾											
Uncracked concrete; Temperature range I, II												
δ _{N0-Factor}	[mama//N1/mama2\]	0,10	0,10	0,10	0,10							
δ _{N∞-Factor}	[mm/(N/mm²)]	0,12	0,12	0,12	0,13							
Cracked	concrete; Ten	nperature range I, II										
δ _{N0-Factor}	[mm/(N/mm²)]	0,12	0,13	0,13	0,13							
δ _{N∞-Factor}	[[[[[[]]	0,30	0,30	0,30	0,35							
Displace	ement-Factors	for shear load ²⁾										
Uncracked or cracked concrete; Temperature range I, II												
δvo-Factor	[mm/kN]	0,10	0,10	0,09	0,09							
δv∞-Factor	[mm/kN]	0,11	0,11	0,10	0,10							

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed}: Design value of the applied tensile stress)

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{\text{V}\infty} = \delta_{\text{V}\infty\text{-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

fischer injection system FIS V

Performances

Displacements for reinforcing bars and fischer rebar anchors FRA

Annex C 10

 $[\]delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

²⁾ Calculation of effective displacement:

³⁾ No performance assessed

²⁾ Calculation of effective displacement:

Table C11.1: Characteristic values for steel failure under tension / shear load of fischer anchor rods and standard threaded rods under seismic action performance category C1 or C2

	periornal		.cgc	,, y <u> </u>	. 01 02						
Anchor	rod / standard thread	ed rod			M10	M12	M16	M20	M24	M27	M30
Bearing	capacity under tension	on load	l, ste	el fai	lure ¹⁾						
fischer a	anchor rods and stand	dard th	read	led ro	ds, perfo	rmance	category	C1 ²⁾			
U	Ctool wine plated		5.8		29(27)	43	79	123	177	230	281
risti 100 -	Steel zinc plated	£ ″	8.8		47(43)	68	126	196	282	368	449
Characteristic resistance NRK,S,C1	Stainless steel R and	Property class	50	[kN]	29	43	79	123	177	230	281
hara resi	high corrosion	F	70		41	59	110	172	247	322	393
0	resistant steel HCR		80		47	68	126	196	282	368	449
fischer a	anchor rods and stand	dard th	read	led ro	ds, perfo	rmance	category	C2 ²⁾	•	•	
U	Ota al —ima miata d		5.8		_4)	39	72	108	_4)	_4)	_4)
risti Ce	Characteristic of the steel st	ي ⊊ ا	8.8		_4)	61	116	173	_4)	_4)	_4)
aracteris eistance N _{Rk,s,C2}	Stainless steel R and	Property class	50	[kN]	_4)	39	72	108	_4)	_4)	_4)
hara reis	high corrosion	1 P. 0	70		_4)	53	101	152	_4)	_4)	_4)
O	resistant steel HCR		80		_4)	61	116	173	_4)	_4)	_4)
Bearing	capacity under shear	load,	steel	failu	re withou	it lever a	rm ¹⁾				
fischer a	anchor rods, performa	ance ca	atego	ory C	1 ²⁾						
v	Steel zinc plated		5.8		17(16)	25	47	74	106	138	168
eristi nce		oper class	8.8	[kN]	23(21)	34	63	98	141	184	225
Characteristic resistance VRk,s, C1	Stainless steel R and		50		15	21	39	61	89	115	141
hara resi V _F	3		70		20	30	55	86	124	161	197
0	resistant steel HCR		80		23	34	63	98	141	184	225
Standar	d threaded rods, perfe	orman	ce ca	tego	ry C1 ²⁾						
. <u>S</u>	Steel zinc plated		5.8		12(11)	17	33	52	74	97	118
Characteristic resistance VRk,s, c1	·	s it	8.8		16(14)	24	44	69	99	129	158
naracte esistar V _{Rk,s, (}	Stainless steel R and	Property class	50	[kN]	11	15	27	43	62	81	99
har res		ا ج ۲	70		14	21	39	60	87	113	138
	resistant steel HCR		80		16	24	44	69	99	129	158
fischer a	anchor rods and stand	dard th					category	C2		I	
e stic	Steel zinc plated		5.8	-	_4)	14	27	43	_4)	_4)	_4)
naracteristi esistance V _{Rk,s, C2}	·	Property class	8.8		_4)	22	44	69	_4)	_4)	_4)
naracte esistar V _{Rk,s, u}	Stainless steel R and	ropert	50	[kN]	_4)	14	27	43	_4)	_4)	_4)
Characteristic resistance VRk,s, C2	high corrosion resistant steel HCR	ا دّ ۲	70		_4) _4)	20	39	60	_4)	_4)	_4) _4)
<u> </u>			80	F 7	_4)	22	44	69 0.5 (4.0) ³		_4)	- 4)
ractor to	or the annular gap	$lpha_{\sf gap}$		[-]				0,5 (1,0) ³	,		

¹⁾ Partial factors for performance category C1 or C2 see table C12.1; for fischer anchor rods FIS A / RGM the factor for steel ductility is 1,0

fischer injection system FIS V

Performances

Characteristic values for steel failure under tension / shear load for fischer anchor rods and standard threaded rods under seismic action (performance category C1 / C2)

Annex C 11

²⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot dip galvanised standard threaded rods according to EN ISO 10684:2004+AC:2009.

³⁾ Values in brackets are valid for filled annular gaps between the anchor rod and the through-hole in the attachment. It is necessary to use the fischer filling disc according to Annex A 1

⁴⁾ No performance assessed

Table C12.1: Partial factors for fischer anchor rods, standard threaded rods under seismic action performance category C1 or C2

Anch	or rod / standard threa		M10	M12	M16	M20	M24	M27	M30		
Tens	ion load, steel failure1)										
	Steel zinc plated	S	5.8					1,50			
Partial factor	·	Property class	8.8					1,50			
ial fa	Stainless steel R and	erty	50	[-]				2,86			
Part	high corrosion	rop	70		1,50 ²⁾ / 1,87						
	resistant steel HCR	ш	80		1,60						
Shea	r load, steel failure ¹⁾				-						
	Steel zinc plated	S	5.8					1,25			
actor	·	Property class	8.8		1,25						
ial fa	Stainless steel R and high corrosion		50	[-]	2,38						
Part			70		1,25 ²⁾ / 1,56						
	resistant steel HCR	4	80					1,33			

¹⁾ In absence of other national regulations

fischer injection system FIS V

Performances
Partial factors under seismic action (performance category C1 and C2) for fischer anchor rods and standard threaded rods

Annex C 12

²⁾ Only admissible for high corrosion resistant steel HCR, with f_{yk} / $f_{uk} \ge 0.8$ and $A_5 > 12$ % (e.g. fischer anchor rods)

Table C13.1: Characteristic values for combined pull-out and concrete failure for fischer anchor rods and standard threaded rods in hammer drilled holes under seismic action performance category C1

Anchor r	od / standard thread	ed rod		M10	M12	M16	M20	M24	M27	M30		
Characte	Characteristic bond resistance, combined pullout and concrete cone failure											
Hammer-	drilling with standar	d drill k	oit or holl	ow drill b	it (dry or	wet con	crete)					
Tem-	I: 50 °C / 80 °C		[N]/wa wa 21	4,5	5,5	5,5	5,5	4,5	4,0	4,0		
perature range	II: 72 °C / 120 °C	τ _{Rk,C1}	[N/mm ²]	4,0	4,5	4,5	4,5	4,0	3,5	3,5		
Hammer-	drilling with standar	d drill k	oit or holl	ow drill b	it (water	filled hol	e ¹⁾)					
Tem-	I: 50 °C / 80 °C		[N/mm ²]	_2)	5,0	5,0	4,5	4,0	3,5	3,5		
perature range	II: 72 °C / 120 °C	τ _{Rk,C1}		_2)	4,0	4,0	4,0	3,5	3,0	3,0		
Installati	on factors											
Dry or wet	t concrete		r 1	1,0								
Water fille	d hole	γinst	[-]	_2)			1,2	2 ¹⁾				

¹⁾ Only with coaxial cartridges: 380ml, 400 ml, 410 ml

fischer injection system FIS V

Performances

Characteristic values for combined pull-out and concrete failure under seismic action (performance category C1) for fischer anchor rods and standard threaded rods

Annex C 13

²⁾ No performance assessed

Table C14.1: Characteristic values for combined pull-out and concrete failure for fischer anchor rods and standard threaded rods in hammer drilled holes under seismic action performance category C2

Anchor rod / standard thread	ed rod		M12	M16	M20	
Characteristic bond resistand	e, coml	bined pu	llout and concrete co	ne failure		
Hammer-drilling with standar	d drill b	it or holl	ow drill bit (dry or we	et concrete)		
Tem- I: 50 °C / 80 °C	_	[N/mm ²]	1,5	1,3	2,1	
perature II: 72 °C / 120 °C	τ _{Rk,C2}	[14/111111-]	1,3	1,2	1,9	
Hammer-drilling with standar	d drill b	it or holl	ow drill bit (water fille	ed hole ³⁾)		
Tem- 1: 50 °C / 80 °C	_	Rk,C2 [N/mm²]	1,3	1,1	1,8	
perature II: 72 °C / 120 °C	τ _{Rk,C2}		1,1	1,0	1,6	
Installation factors						
Dry or wet concrete			1,0			
Water filled hole	γinst	[-]	_4)	1,2 ³⁾		
Displacement-Factors for ten	sion loa	ad ¹⁾				
δN,C2 (DLS)-Factor	[mm//	(N/mm²)]	0,20	0,13	0,21	
δ _{N,C2} (ULS)-Factor		(14/1111112)]	0,38	0,18	0,24	
Displacement-Factors for she	ar load	2)				
δv,C2 (DLS)-Factor		m/kN]	0,18	0,10	0,07	
δ V,C2 (ULS)-Factor	""	III/KINJ	0,25	0,14	0,11	

1) Calculation of effective displacement:

 $\delta_{\text{N,C2 (DLS)}} = \delta_{\text{N,C2 (DLS)-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N,C2 (ULS)}} = \delta_{\text{N,C2 (ULS)-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

 $\delta_{\text{V,C2 (DLS)}} = \delta_{\text{V,C2 (DLS)-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{\text{V,C2 (ULS)}} = \delta_{\text{V,C2 (ULS)-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

fischer injection system FIS V

Performances

Characteristic values for combined pull-out and concrete failure under seismic action (performance category C2) for fischer anchor rods and standard threaded rods

Annex C 14

²⁾ Calculation of effective displacement:

³⁾ Only with coaxial cartridges: 380ml, 400 ml, 410 ml

⁴⁾ No performance assessed