



Approval body for construction products and types of construction

**Bautechnisches Prüfamt** 

An institution established by the Federal and Laender Governments



# **European Technical Assessment**

# ETA-05/0069 of 24 April 2020

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer Bolt Anchor FAZ II, FAZ II R, FAZ II HCR

Mechanical fastener for use in concrete

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

19 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601

ETA-05/0069 issued on 3 July 2017



# European Technical Assessment ETA-05/0069

Page 2 of 19 | 24 April 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



European Technical Assessment ETA-05/0069

Page 3 of 19 | 24 April 2020

English translation prepared by DIBt

# **Specific Part**

# 1 Technical description of the product

The fischer Bolt Anchor FAZ II is an anchor made of galvanised steel (FAZ II) or made of stainless steel (FAZ II R) or high corrosion resistant steel (FAZ II HCR) which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

# 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

# 3 Performance of the product and references to the methods used for its assessment

# 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                    | Performance   |
|-----------------------------------------------------------------------------|---------------|
| Characteristic resistance to tension load (static and quasi-static loading) | See Annex     |
| (Static and quasi-static loading)                                           | B 3, C 1      |
| Characteristic resistance to shear load                                     | See Annex     |
| (static and quasi-static loading)                                           | C 2           |
| Displacements                                                               | See Annex     |
| (static and quasi-static loading)                                           | C 5           |
| Characteristic resistance and displacements for seismic                     | See Annex     |
| performance categories C1 and C2                                            | C 4           |
| Durability                                                                  | See Annex B 1 |

#### 3.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance   |
|--------------------------|---------------|
| Reaction to fire         | Class A1      |
| Resistance to fire       | See Annex C 3 |

# 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1





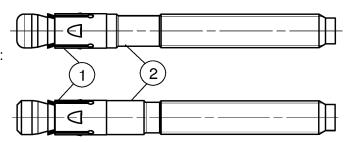
# **European Technical Assessment ETA-05/0069**

Page 4 of 19 | 24 April 2020

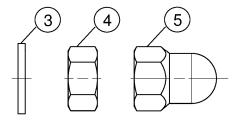
English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

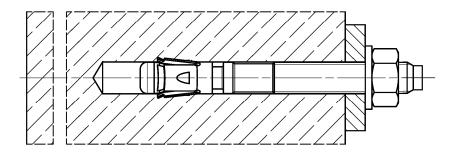
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

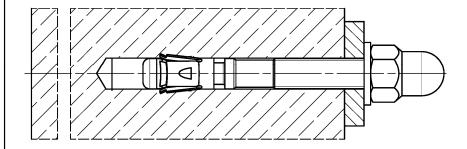

Issued in Berlin on 24 April 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department


beglaubigt: Baderschneider




Cone bolt manufactured by cold - forming:




Cone bolt manufactured by turning:

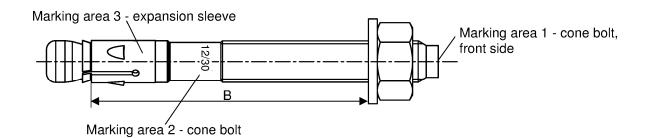


- ① Expansion sleeve
- ② Cone bolt (cold formed or turned)
- 3 Washer
- 4 Hexagon nut
- S fischer FAZ II dome nut





(Fig. not to scale)


fischer Bolt Anchor FAZ II, FAZ II R, FAZ II HCR

Product description Installed condition Annex A 1

Electronic copy of the ETA by DIBt: ETA-05/0069



# Product label and letter-code:



Product label, example:

| State | Thread size | Thread si

FAZ II: carbon steel, galvanized

FAZ II R: stainless steel

FAZ II HCR: high corrosion resistant steel

Table A2.1: Letter - code at marking area 1:

| (a) | (b)            | (c)                              | (d)                        | (A)                                                                                                       | (B)                                                                             | (C)                                                                                                                                                                                                       | (D)                                                                                                                                                                                                                                                   | (E)                                                                                                                                                                                                                                                                                               | (F)                                                                                                                                                                                                                                                                                                                                           | (G)                                                                                                                                                                                                                                                                                                                                                                                  | (H)                                                                                                                                                                                                                                                                                                                                                                                                                               | (l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|----------------|----------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5   | 10             | 15                               | 20                         | 5                                                                                                         | 10                                                                              | 15                                                                                                                                                                                                        | 20                                                                                                                                                                                                                                                    | 25                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                            | 35                                                                                                                                                                                                                                                                                                                                                                                   | 40                                                                                                                                                                                                                                                                                                                                                                                                                                | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -   |                |                                  |                            | 45                                                                                                        | 50                                                                              | 55                                                                                                                                                                                                        | 60                                                                                                                                                                                                                                                    | 65                                                                                                                                                                                                                                                                                                | 70                                                                                                                                                                                                                                                                                                                                            | 75                                                                                                                                                                                                                                                                                                                                                                                   | 80                                                                                                                                                                                                                                                                                                                                                                                                                                | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 40  | 45             |                                  | -                          | 50                                                                                                        | 55                                                                              | 60                                                                                                                                                                                                        | 65                                                                                                                                                                                                                                                    | 70                                                                                                                                                                                                                                                                                                | 75                                                                                                                                                                                                                                                                                                                                            | 80                                                                                                                                                                                                                                                                                                                                                                                   | 85                                                                                                                                                                                                                                                                                                                                                                                                                                | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 45  | 50             | 55                               | 60                         | 65                                                                                                        | 70                                                                              | 75                                                                                                                                                                                                        | 80                                                                                                                                                                                                                                                    | 85                                                                                                                                                                                                                                                                                                | 90                                                                                                                                                                                                                                                                                                                                            | 95                                                                                                                                                                                                                                                                                                                                                                                   | 100                                                                                                                                                                                                                                                                                                                                                                                                                               | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 55  | 60             | 65                               | 70                         | 75                                                                                                        | 80                                                                              | 85                                                                                                                                                                                                        | 90                                                                                                                                                                                                                                                    | 95                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                           | 105                                                                                                                                                                                                                                                                                                                                                                                  | 110                                                                                                                                                                                                                                                                                                                                                                                                                               | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 70  | 75             | 80                               | 85                         | 90                                                                                                        | 95                                                                              | 100                                                                                                                                                                                                       | 105                                                                                                                                                                                                                                                   | 110                                                                                                                                                                                                                                                                                               | 115                                                                                                                                                                                                                                                                                                                                           | 120                                                                                                                                                                                                                                                                                                                                                                                  | 125                                                                                                                                                                                                                                                                                                                                                                                                                               | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |                |                                  |                            |                                                                                                           | 110                                                                             | 115                                                                                                                                                                                                       | 120                                                                                                                                                                                                                                                   | 125                                                                                                                                                                                                                                                                                               | 130                                                                                                                                                                                                                                                                                                                                           | 135                                                                                                                                                                                                                                                                                                                                                                                  | 140                                                                                                                                                                                                                                                                                                                                                                                                                               | 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | -              | -                                |                            | 130                                                                                                       | 135                                                                             | 140                                                                                                                                                                                                       | 145                                                                                                                                                                                                                                                   | 150                                                                                                                                                                                                                                                                                               | 155                                                                                                                                                                                                                                                                                                                                           | 160                                                                                                                                                                                                                                                                                                                                                                                  | 165                                                                                                                                                                                                                                                                                                                                                                                                                               | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | 40<br>45<br>55 | 40 45<br>45 50<br>55 60<br>70 75 | 40 45 45 45 50 55 55 60 65 | 40     45     -       45     50     55     60       55     60     65     70       70     75     80     85 | - 45<br>40 45 - 50<br>45 50 55 60 65<br>55 60 65 70 75<br>70 75 80 85 90<br>105 | -     45     50       40     45     -     50     55       45     50     55     60     65     70       55     60     65     70     75     80       70     75     80     85     90     95       105     110 | -     45     50     55       40     45     -     50     55     60       45     50     55     60     65     70     75       55     60     65     70     75     80     85       70     75     80     85     90     95     100       105     110     115 | -     45     50     55     60       40     45     -     50     55     60     65       45     50     55     60     65     70     75     80       55     60     65     70     75     80     85     90       70     75     80     85     90     95     100     105       105     110     115     120 | -     45     50     55     60     65       40     45     -     50     55     60     65     70       45     50     55     60     65     70     75     80     85       55     60     65     70     75     80     85     90     95       70     75     80     85     90     95     100     105     110       105     110     115     120     125 | 45     50     55     60     65     70       40     45     -     50     55     60     65     70     75       45     50     55     60     65     70     75     80     85     90       55     60     65     70     75     80     85     90     95     100       70     75     80     85     90     95     100     105     110     115       105     110     115     120     125     130 | 45     50     55     60     65     70     75       40     45     -     50     55     60     65     70     75     80       45     50     55     60     65     70     75     80     85     90     95       55     60     65     70     75     80     85     90     95     100     105       70     75     80     85     90     95     100     105     110     115     120       105     110     115     120     125     130     135 | 45     50     55     60     65     70     75     80       40     45     -     50     55     60     65     70     75     80     85       45     50     55     60     65     70     75     80     85     90     95     100       55     60     65     70     75     80     85     90     95     100     105     110       70     75     80     85     90     95     100     105     110     115     120     125       105     110     115     120     125     130     135     140 | 40         45         50         55         60         65         70         75         80         85           40         45         -         50         55         60         65         70         75         80         85         90           45         50         55         60         65         70         75         80         85         90         95         100         105           55         60         65         70         75         80         85         90         95         100         105         110         115           70         75         80         85         90         95         100         105         110         115         120         125         130           105         110         115         120         125         130         135         140         145 |

| Marking               |     | (L) | (M) | (N) | (O) | (P) | (R) | (S) | (T) | (U) | (V) | (W) | (X) | (Y) | (Z) |
|-----------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Max. t <sub>fix</sub> |     | 60  | 70  | 80  | 90  | 100 | 120 | 140 | 160 | 180 | 200 | 250 | 300 | 350 | 400 |
|                       | M6  | 100 | 110 | 120 | 130 | 140 | 160 | 180 | 200 | 220 | 240 | 290 | 340 | 390 | 440 |
|                       | M8  | 105 | 115 | 125 | 135 | 145 | 165 | 185 | 205 | 225 | 245 | 295 | 345 | 395 | 445 |
|                       | M10 | 120 | 130 | 140 | 150 | 160 | 180 | 200 | 220 | 240 | 260 | 310 | 360 | 410 | 460 |
| B ≥ [mm]              | M12 | 130 | 140 | 150 | 160 | 170 | 190 | 210 | 230 | 250 | 270 | 320 | 370 | 420 | 470 |
|                       | M16 | 145 | 155 | 165 | 175 | 185 | 205 | 225 | 245 | 265 | 285 | 335 | 385 | 435 | 485 |
|                       | M20 | 160 | 170 | 180 | 190 | 200 | 220 | 240 | 260 | 280 | 300 | 350 | 400 | 450 | 500 |
|                       | M24 | 185 | 195 | 205 | 215 | 225 | 245 | 265 | 285 | 305 | 325 | 375 | 425 | 475 | 525 |

# Calculation existing her for installed fasteners:

existing  $h_{ef} = B_{(according to table A2.1)} - existing t_{fix}$ 

Thickness of the fixture t<sub>fix</sub> including thickness of fastener plate t and e.g. thickness of grout layer t<sub>grout</sub> or other non-structural layers

(Fig. not to scale)

fischer Bolt Anchor FAZ II, FAZ II R, FAZ II HCR

# **Product description**

Product label and letter code

Annex A 2



# **Product dimensions**

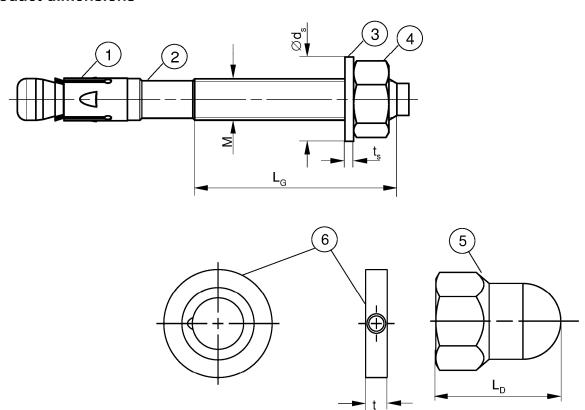



Table A3.1: Dimensions [mm]

| Part  | Designation                     |                  |        | FAZ II, FAZ II R, FAZ II HCR |     |     |     |     |     |     |  |
|-------|---------------------------------|------------------|--------|------------------------------|-----|-----|-----|-----|-----|-----|--|
| Fan   | Tart Designation                |                  |        |                              | M8  | M10 | M12 | M16 | M20 | M24 |  |
| 1     | Expansion sleeve                | Sheet<br>thickne | ss     | 8,0                          | 1,3 | 1,4 | 1,6 | 2,  | 4   | 3,0 |  |
| 2     | Cone bolt                       | Thread           | size M | 6                            | 8   | 10  | 12  | 16  | 20  | 24  |  |
|       | Corie boil                      | L <sub>G</sub>   |        | 10                           | 19  | 26  | 31  | 40  | 50  | 57  |  |
| 3     | Machar                          | ts               | ≥ [    | 1                            | ,4  | 1,8 | 2,3 | 2,  | 7   | 3,7 |  |
| ٥     | Washer                          | Ø ds             |        | 11                           | 15  | 19  | 23  | 29  | 36  | 43  |  |
| 4 & 5 | Hexagon nut /<br>fischer FAZ II | Wrench           | n size | 10                           | 13  | 17  | 19  | 24  | 30  | 36  |  |
| 5     | dome nut                        | L <sub>D</sub>   | ≥      |                              | -   | 22  | 27  | 33  |     |     |  |
| 6     | fischer<br>filling disc FFD     | t                | =      |                              | (   | 6   |     | 7   | 8   | 10  |  |

(Fig. not to scale)

fischer Bolt Anchor FAZ II, FAZ II R, FAZ II HCR

Product description
Dimensions

Annex A 3



| Table | Table A4.1: Materials FAZ II (ISO 4042:2018/Zn5/An(A2K))      |                                                            |  |  |  |  |  |  |  |
|-------|---------------------------------------------------------------|------------------------------------------------------------|--|--|--|--|--|--|--|
| Part  | Designation                                                   | Material                                                   |  |  |  |  |  |  |  |
| 1     | Expansion sleeve                                              | Cold strip, EN 10139:2016 or stainless steel EN 10088:2014 |  |  |  |  |  |  |  |
| 2     | Cone bolt                                                     | Cold form steel or free cutting steel                      |  |  |  |  |  |  |  |
| 3     | Washer Cold strip, EN 10139:2016                              |                                                            |  |  |  |  |  |  |  |
| 4     | 4 Hexagon nut Steel, property class min. 8, EN ISO 898-2:2012 |                                                            |  |  |  |  |  |  |  |

# Table A4.2: Materials FAZ II R

| Part | Designation      | Material                                                                    |  |  |  |  |
|------|------------------|-----------------------------------------------------------------------------|--|--|--|--|
| 1    | Expansion sleeve |                                                                             |  |  |  |  |
| 2    | Cone bolt        | Stainless steel EN 10088:2014                                               |  |  |  |  |
| 3    | Washer           |                                                                             |  |  |  |  |
| 4    | Hexagon nut      | Stainless steel EN 10088:2014;<br>ISO 3506-2:2018; property class – min. 70 |  |  |  |  |

# Table A4.3: Materials FAZ II HCR

| Part | Designation      | Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1    | Expansion sleeve | Stainless steel EN 10088:2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| 2    | Cone bolt        | Library and the state of the st |  |  |  |  |  |  |
| 3    | Washer           | High corrosion resistant steel EN 10088:2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| 4    | Hexagon nut      | High corrosion resistant steel EN 10088:2014;<br>ISO 3506-2:2018; property class – min. 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |

(Fig. not to scale)

| fischer Bolt Anchor FAZ II, FAZ II R, FAZ II HCR |           |
|--------------------------------------------------|-----------|
| Product description Materials                    | Annex A 4 |

English translation prepared by DIBt



#### Specifications of intended use Anchorages subject to: FAZ II, FAZ II R, FAZ II HCR Size **M6 M8** M20 M24 M10 M12 M16 Static and quasi-static loads Cracked and uncracked concrete Fire exposure C1 Seismic performance C21) category

#### Base materials:

- Compacted reinforced and unreinforced normal weight concrete without fibres (cracked and uncracked) according to EN 206-1:2013+A1:2016
- Strength classes C20/25 to C50/60 according to EN 206-1:2013+A1:2016

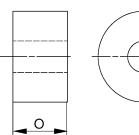
# **Use conditions (Environmental conditions):**

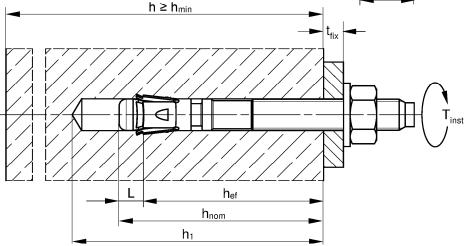
- Structures subject to dry internal conditions (FAZ II, FAZ II R, FAZ II HCR)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (FAZ II R, FAZ II HCR)
- Structures subject to external atmospheric exposure and permanently damp internal condition, if other particular aggressive conditions exist (FAZ II HCR)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used)

# Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The
  position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or
  to supports, etc.)
- Design of fastenings according to EN 1992-4:2018 and EOTA Technical Report TR 055
- For effective embedment depth h<sub>ef</sub> < 40 mm only statically indeterminate fixings (e.g. light-weight suspended ceilings with internal exposure) are covered by the ETA


| fischer Bolt Anchor FAZ II, FAZ II R, FAZ II HCR |           |
|--------------------------------------------------|-----------|
| Intended Use<br>Specifications                   | Annex B 1 |


<sup>1)</sup> FAZ II HCR: Only valid for cold-formed version (according to Annex A1)



| Table B2.1: Installation parameters                                                                      |                        |      |               |               |                      |                       |                |                  |                 |
|----------------------------------------------------------------------------------------------------------|------------------------|------|---------------|---------------|----------------------|-----------------------|----------------|------------------|-----------------|
| C:- c                                                                                                    |                        |      |               | CR            |                      |                       |                |                  |                 |
| Size                                                                                                     |                        |      | М6            | M8            | M10                  | M12                   | M16            | M20              | M24             |
| Nominal drill hole diameter                                                                              | $d_0 =$                | _    | 6             | 8             | 10                   | 12                    | 16             | 20               | 24              |
| Maximum bit diameter with hammer or hollow drilling                                                      | ما<br>ما               | [mm] | 6,40          | 8,45          | 10.45                | 12,5                  | 16,5           | 20,55            | 24,55           |
| Maximum bit diameter with diamond drilling                                                               | - d <sub>cut,max</sub> |      | -             | 8,15          | 10,45                | 12,25                 | 16,45          | 20,50            | 24,40           |
| Overall fastener embedment depth in the concrete                                                         | $h_{nom} \ge (L)$      | (L)  | 46,5<br>(6,5) | 44,5<br>(9,5) | 52,0<br>(12)         | 63,5<br>(13,5)        | 82,5<br>(17,5) | 120<br>(20)      | 148,5<br>(23,5) |
| Concrete                                                                                                 |                        | [mm] |               |               | Existin              | g h <sub>ef</sub> + L | $. = h_{nom}$  |                  |                 |
| Depth of drill hole to deepest point                                                                     | h₁ ≥                   | -    |               |               | h <sub>nom</sub> + 5 | ı                     |                | h <sub>nom</sub> | + 10            |
| Diameter of clearance hole in the fixture                                                                | $d_{f} \leq$           | [mm] | 7             | 9             | 12                   | 14                    | 18             | 22               | 26              |
| Required setting torque                                                                                  | T <sub>inst</sub> =    | [Nm] | 8             | 20            | 45                   | 60                    | 110            | 200              | 270             |
| Excess length after hammering-in the cone bolt (for fischer dome nut applications according to Annex B6) | O =                    | [mm] |               | -             | 12                   | 16                    | 20             |                  | -               |

Setting gauge FAZ II SL-H for anchor with fischer FAZ II dome nut:





Effective embedment depth hef

Thickness of the fixture

= Depth of drill hole to deepest point Thickness of the concrete member

 $h_{min} = Minimum thickness of concrete member$ 

h<sub>nom</sub> = Overall fastener embedment depth in the concrete

 $T_{inst} = Required setting torque$ 

(Fig. not to scale)

fischer Bolt Anchor FAZ II, FAZ II R, FAZ II HCR Annex B 2 **Intended Use** Installation parameters



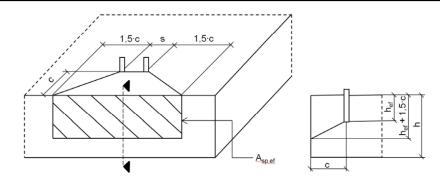
**Table B3.1:** Minimum thickness of concrete members, minimum spacing and minimum edge distance

| Cina                                 |                       |        | FAZ II, FAZ II R, FAZ II HCR |                       |                          |            |         |                                        |                        |  |
|--------------------------------------|-----------------------|--------|------------------------------|-----------------------|--------------------------|------------|---------|----------------------------------------|------------------------|--|
| Size                                 |                       |        | М6                           | M8                    | M10                      | M12        | M16     | M20                                    | M24                    |  |
| Minimum edge distance                |                       |        |                              |                       |                          |            |         | -                                      |                        |  |
| Uncracked concrete                   | ———— Cmin             |        | 45                           | 40                    | 45                       | 55         | 65      | 95                                     | 135                    |  |
| Cracked concrete                     | — Cmin                | 43     | 40                           | 45                    | 33                       | 05         | 85      | 100                                    |                        |  |
| Corresponding spacing                | s                     | [mm]   |                              |                       | acco                     | rding to A | nnex B4 |                                        |                        |  |
| Minimum thickness of concrete member | h <sub>min</sub>      | . ,    | 80                           |                       |                          | 100        | 140     | 160                                    | 200                    |  |
| Thickness of concrete member         | h ≥                   |        |                              | max. {h <sub>mi</sub> | n; h <sub>1</sub> 1) + 3 | 0}         | max. {  | h <sub>min</sub> ; h <sub>1</sub> 1) + | · 2 · d <sub>o</sub> } |  |
| Minimum spacing                      |                       |        |                              |                       |                          |            |         |                                        |                        |  |
| Uncracked concrete                   | <b>C</b> .            |        | 35                           | 40                    | 40                       | 50         | 65      | 95                                     | 100                    |  |
| Cracked concrete                     | — Smin                |        | 33                           | 35                    | 40                       | 30         | 05      | 95                                     | 100                    |  |
| Corresponding edge distance          | С                     | [mm]   | according to Annex B4        |                       |                          |            |         |                                        |                        |  |
| Minimum thickness of concrete member | h <sub>min</sub>      |        |                              | 80                    |                          | 100        | 140     | 160                                    | 200                    |  |
| Thickness of concrete member         | h ≥                   |        |                              | max. {h <sub>mi</sub> | n; h <sub>1</sub> 1) + 3 | 0}         | max. {  | h <sub>min</sub> ; h <sub>1</sub> 1) + | 2 · d <sub>o</sub> }   |  |
| Minimal splitting area               |                       |        |                              |                       |                          |            |         |                                        |                        |  |
| Uncracked concrete                   | ^                     | [·1000 | 5,1                          | 18                    | 37                       | 54         | 67      | 100                                    | 117,5                  |  |
| Cracked concrete                     | — A <sub>sp,req</sub> | mm²]   | 1,5                          | 12                    | 27                       | 40         | 50      | 77                                     | 87,5                   |  |

<sup>1)</sup> h<sub>1</sub> according to Annex B2

Splitting failure applied for minimum edge distance and spacing in dependence of the hef

For the calculation of minimum spacing and minimum edge distance of anchors in combination with different embedment depths and thicknesses of concrete members the following equation shall be fulfilled:


$$A_{sp,req} < A_{sp,ef}$$

 $A_{sp,req}$  = required splitting area  $A_{sp,ef}$  = effective splitting area (according to Annex B4)

| fischer Bolt Anchor FAZ II, FAZ II R, FAZ II HCR                            |           |
|-----------------------------------------------------------------------------|-----------|
| Intended Use Minimum thickness of member, minimum spacing and edge distance | Annex B 3 |




**Table B4.1**: Effective splitting area  $A_{sp,ef}$  with member thickness  $h > h_{ef} + 1,5 \cdot c$  and  $h \ge h_{min}$ 



| Single anchor and   group of anchors with s > 3 · c | $A_{\text{sp,ef}} = (6 \cdot c) \cdot (h_{\text{ef}} + 1.5 \cdot c)$ | [mm²] | with c ≥ c <sub>min</sub>                          |
|-----------------------------------------------------|----------------------------------------------------------------------|-------|----------------------------------------------------|
| Group of anchors with s ≤ 3 · c                     | $A_{sp,ef} = (3 \cdot c + s) \cdot (h_{ef} + 1,5 \cdot c)$           | [mm²] | with c ≥ c <sub>min</sub> and s ≥ s <sub>min</sub> |

**Table B4.2**: Effective splitting area  $A_{sp,ef}$  with member thickness  $h \le h_{ef} + 1,5 \cdot c$  and  $h \ge h_{min}$ 



| Single anchor and group of anchors with $s > 3 \cdot c$ | $A_{sp,ef} = 6 \cdot c \cdot existing h$       | [mm²] | with c ≥ c <sub>min</sub>                |
|---------------------------------------------------------|------------------------------------------------|-------|------------------------------------------|
| Group of anchors with s ≤ 3 · c                         | $A_{sp,ef} = (3 \cdot c + s) \cdot existing h$ | [mm²] | with $c \ge c_{min}$ and $s \ge s_{min}$ |

Edge distance and axial spacing shall be rounded to at least 5 mm

(Fig. not to scale)

| fischer Bolt Anchor FAZ II, FAZ II R, FAZ II HCR                              |           |
|-------------------------------------------------------------------------------|-----------|
| Intended Use Minimum thickness of member, minimum spacings and edge distances | Annex B 4 |

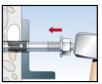


# Installation instructions:

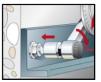
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Use of the anchor only as supplied by the manufacturer without exchanging the components of the anchor Exception: fischer FAZ II dome nut.
- Checking before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- Check of concrete being well compacted, e.g. without significant voids
- Hammer, hollow or diamond drilling according to Annex B5
- Drill hole created perpendicular +/- 5° to concrete surface, positioning without damaging the reinforcement
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application
- · It must be ensured that in case of fire local spalling of the concrete cover does not occur
- · Fastenings in stand-off installation or with a grout layer under seismic action are not covered
- In case of seismic applications the fastener shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure

# Installation instructions: Drilling and cleaning the hole

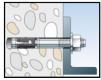
Types of drills and cleaning


| Hammer drill                                                                 | \$400000000 <del></del> | 1: Drill the hole                         | 2: Clean the hole |
|------------------------------------------------------------------------------|-------------------------|-------------------------------------------|-------------------|
| Hollow drill                                                                 | Ī                       | 1: Drill the hole with automatic cleaning | -                 |
| Diamond drill,<br>for non seismic<br>applications<br>only and ≥ drill<br>Ø 8 |                         | 1: Drill the hole                         | 2: Clean the hole |

| fischer Bolt Anchor FAZ II, FAZ II R, FAZ II HCR |           |
|--------------------------------------------------|-----------|
| Intended Use Installation instructions           | Annex B 5 |




# Installation instructions: Installation of the anchor


# **HEXAGON NUT:**



3: Set the fastener

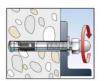


4: Apply Tinst



5: Installed fastener

# fischer FAZ II DOME NUT:


Option 1: Push through installation with setting gauge SL-H:



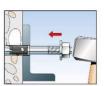
3: Set the fastener using setting gauge



4: Check offset



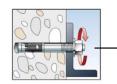
5: Turn on the washer and fischer FAZ II dome nut




6: Apply Tinst



7: Installed fastener


Option 2: Push through installation with hexagon nut:



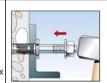
3: Set the fastener



4: check setting position: Visible one turn of a thread



4.1: Remove nut


fischer FILLING DISC FFD optional for seismic C2 application or minimizing the annular gap:

Optional

The gap between bolt and fixture may be filled with mortar (compressive strength  $\geq$  50 N/mm<sup>2</sup> e.g. FIS SB) after step 7 (for eliminating the annular gap).

The filling disc is additional to the standard washer.

The thickness of the filling disc must be considered for definition of t<sub>fix</sub> Countersunk of the filling disc in direction to the anchor plate.





fischer Bolt Anchor FAZ II, FAZ II R, FAZ II HCR

**Intended Use** 

Installation instructions

Annex B 6

min  $\{N^0_{Rk,c}; N_{Rk,p}\}^{3)}$ 

| 0:                                                     |                     |         | FAZ II, FAZ II R, FAZ II HCR |                      |             |                        |                        |                         |                       |                           |
|--------------------------------------------------------|---------------------|---------|------------------------------|----------------------|-------------|------------------------|------------------------|-------------------------|-----------------------|---------------------------|
| Size                                                   |                     |         | М6                           | M8                   | 3           | M10                    | M12                    | M16                     | M20                   | M24                       |
| Steel failure                                          |                     |         |                              |                      |             |                        |                        |                         |                       |                           |
| Characteristic resistance FAZ II                       | $N_{Rk,s}$          | [kN]    | 7,6                          | 16,                  | 6           | 28,3                   | 43,2                   | 67,0                    | 123,3                 | 176,7                     |
| FAZ II R/HCR                                           | INRK,S              | [KIN]   | 11,4                         | 17,                  | 0           | 29,0                   | 44,3                   | 70,6                    | 124,9                 | 183,6                     |
| Partial factor for steel failure                       | $\gamma$ Ms $^{1)}$ | [-]     |                              |                      |             |                        | 1,5                    |                         |                       |                           |
| Pullout failure                                        |                     |         |                              |                      |             |                        |                        |                         |                       |                           |
| Effective embedment depth for                          | h <sub>ef</sub>     | [mm]    | 40                           | 35 -                 | 45          | 40 -                   | 50 -                   | 65 -                    | 100                   | 125                       |
| calculation                                            | 1161                | []      |                              | < 45                 |             | 60                     | 70                     | 85                      | 100                   |                           |
| Characteristic resistance in cracked concrete C20/25   | NI.                 | [[]     | 1,5                          | 5,5                  | 8           | 13                     | 20                     | 27,0                    | 34,4                  | 48,1                      |
| Characteristic resistance in uncracked concrete C20/25 | $N_{Rk,p}$          | [kN]    | 10,5                         | 14                   |             | 20                     | 22                     | 38,6                    | 49,2                  | 68,8                      |
|                                                        |                     | C25/30  |                              | 1,12                 |             |                        |                        |                         |                       |                           |
|                                                        | -                   | C30/37  |                              | 1,22                 |             |                        |                        |                         |                       |                           |
| Increasing factors for N <sub>Rk,p</sub> for           | -                   | C35/45  |                              | 1,32                 |             |                        |                        |                         |                       |                           |
| cracked and uncracked concrete                         | Ψc -                | C40/50  | 1,41                         |                      |             |                        |                        |                         |                       |                           |
|                                                        |                     | C45/55  | 1,50                         |                      |             |                        |                        |                         |                       |                           |
|                                                        |                     | C50/60  | 1,58                         |                      |             |                        |                        |                         |                       |                           |
| Installation factor                                    | γinst               | [-]     |                              |                      |             |                        | 1,0                    |                         |                       |                           |
| Concrete cone and splitting failure                    |                     |         |                              |                      |             |                        |                        |                         |                       |                           |
| Factor for uncracked concrete                          | <b>k</b> ucr,N      | [-]     |                              |                      |             |                        | 11,0 <sup>2)</sup>     |                         |                       |                           |
| Factor for cracked concrete                            | k <sub>cr,N</sub>   | [-]     |                              |                      |             |                        | 7,72)                  |                         |                       |                           |
| Characteristic spacing                                 | S <sub>cr,N</sub>   | [mm]    |                              |                      |             |                        | 3 · h <sub>ef</sub>    |                         |                       |                           |
| Characteristic edge distance                           | Ccr,N               | []      | 1,5 · h <sub>ef</sub>        |                      |             |                        |                        |                         |                       |                           |
| Spacing                                                | S <sub>cr,sp</sub>  |         |                              |                      |             |                        | 2 · c <sub>cr,sp</sub> |                         |                       |                           |
| Edge distance for h = 80                               |                     |         |                              | 2,4·ł                | <b>1</b> ef | 2·h <sub>ef</sub>      | -                      |                         |                       |                           |
| Edge distance for h = 100                              |                     |         |                              |                      |             | 2,4·h <sub>ef</sub>    | 2·h <sub>ef</sub>      |                         | -                     |                           |
| Edge distance for h = 120                              | •                   | [mm]    | 40                           |                      |             |                        | 2,1·h <sub>ef</sub>    |                         |                       |                           |
| Edge distance for h = 140                              | C <sub>cr,sp</sub>  |         | 40                           | 40 2·h <sub>ef</sub> |             | 1 0.h ·                |                        |                         |                       | =                         |
| Edge distance for h = 160                              |                     |         |                              |                      |             | 1,9·h <sub>ef</sub> 1, | 1,5·h <sub>ef</sub>    | $2 \cdot h_{\text{ef}}$ | 2,4·h <sub>ef</sub>   | -                         |
| Edge distance for h = 200                              |                     |         |                              |                      |             |                        |                        |                         | د, <del>۹</del> illet | $2,2 \cdot h_{\text{ef}}$ |
| 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                 | N 10                | FL A 17 | I                            |                      |             |                        | N 10 N                 | 10)                     |                       |                           |

Characteristic resistance to splitting

Electronic copy of the ETA by DIBt: ETA-05/0069

| fischer Bolt Anchor FAZ II, FAZ II R, FAZ II HCR                     |           |
|----------------------------------------------------------------------|-----------|
| Performances Characteristic values of resistance under tension loads | Annex C 1 |

 $N^0_{Rk,sp}$  [kN]

In absence of other national regulations
 Based on concrete strength as cylinder strength
 N<sup>0</sup><sub>Rk,c</sub> according to EN 1992-4:2018

Deutsches Institut für Bautechnik

English translation prepared by DIBt

| Table C2.1: Characteristic        | c values of <b>shea</b> i | r resist              | tance | under                        | static       | and q        | uasi-si         | tatic a      | ction |       |
|-----------------------------------|---------------------------|-----------------------|-------|------------------------------|--------------|--------------|-----------------|--------------|-------|-------|
| Size                              |                           |                       |       | FAZ II, FAZ II R, FAZ II HCR |              |              |                 |              |       |       |
| 0120                              |                           |                       |       |                              | M8           | M10          | M12             | M16          | M20   | M24   |
| Steel failure without lever an    | m                         |                       |       |                              |              |              | -               |              |       |       |
| Characteristic resistance         | FAZ II D/I IOD            | $V^0_Rk,s$            | [kN]  | 5,9                          | 13,6         | 21,4         | 30,6            | 55,0         | 81,4  | 110,1 |
|                                   | FAZ II R/HCR              |                       |       | 8,8                          | 16,8         | 26,5         | 38,3            | 69,8         | 106,3 | 148,5 |
| Partial factor for steel failure  |                           | γMs <sup>1)</sup>     | [-]   |                              |              |              | 1,25            |              |       |       |
| Factor for ductility              |                           | <b>k</b> <sub>7</sub> | r 1   |                              |              |              | 1,0             |              |       |       |
| Steel failure with lever arm a    | nd Concrete pryou         | t failure             | •     |                              |              |              |                 |              |       |       |
| Effective embedment depth for     | calculation               | $h_{\text{ef}}$       | [mm]  | 40                           | 45           | 60           | 70              | 85           | 100   | 125   |
| Characteristic bending resistance | FAZ II                    | M <sup>0</sup> Rk,s   | [Nm]  | 11,4                         | 26           | 52           | 92              | 233          | 513   | 865   |
|                                   | FAZ II R/HCR              |                       |       | 10,7                         | 29           | 59           | 100             | 256          | 519   | 898   |
| Factor for pryout failure         |                           | k <sub>8</sub>        | [-]   | 2,6                          | 2,8          | 3            | ,2              | 3,0          | 2,6   | 2,4   |
| Effective embedment depth for     | calculation               | h <sub>ef</sub>       | [mm]  |                              | 35 -<br>< 45 | 40 -<br>< 60 | 50 -<br>< 70    | 65 -<br>< 85 |       |       |
| Characteristic bending            | FAZ II                    |                       |       | _                            | 20           | 44           | 92              | 184          | 1     | _     |
| resistance                        | FAZ II R/HCR              | M <sup>0</sup> Rk,s   | [INM] |                              | 21           | 45           | 100             | 193          |       |       |
| Factor for pryout failure         |                           | k <sub>8</sub>        | [-]   |                              | 2,5          | 2,6          | 3,1             | 3,2          |       |       |
| Partial factor for steel failure  |                           | γMs <sup>1)</sup>     |       |                              |              |              | 1,25            |              |       |       |
| Factor for ductility              |                           | k <sub>7</sub>        | [-]   | 1,0                          |              |              |                 |              |       |       |
| Concrete edge failure             |                           |                       |       |                              |              |              |                 |              |       |       |
| Effective embedment depth for     | calculation               | l <sub>f</sub> =      | [mm]  |                              |              |              | h <sub>ef</sub> |              |       |       |
| Outside diameter of a fastener    |                           | $d_{nom}$             | _     | 6                            | 8            | 10           | 12              | 16           | 20    | 24    |

<sup>1)</sup> In absence of other national regulations

| fischer Bolt Anchor FAZ II, FAZ II R, FAZ II HCR                   |           |
|--------------------------------------------------------------------|-----------|
| Performances Characteristic values of resistance under shear loads | Annex C 2 |



| Table C3.1: Characteristic values of tension resistance under fire exposure |                             |                              |      |                                                                                    |                        |                                       |                                     |              |      |      |
|-----------------------------------------------------------------------------|-----------------------------|------------------------------|------|------------------------------------------------------------------------------------|------------------------|---------------------------------------|-------------------------------------|--------------|------|------|
| 0:                                                                          |                             | FAZ II, FAZ II R, FAZ II HCR |      |                                                                                    |                        |                                       |                                     |              |      |      |
| Size                                                                        |                             |                              |      | М6                                                                                 | M8                     | M10                                   | M12                                 | M16          | M20  | M24  |
|                                                                             |                             | h <sub>ef</sub> ≥            | [mm] | 40                                                                                 | 35 / 45                | 40 / 60                               | 50 / 70                             | 65 / 85      | 100  | 125  |
| Ola a na ata niatia                                                         | _                           | R30                          |      | $0,6^{1)} / 0,9^{2)}$                                                              | 1,4                    | 2,8                                   | 5,0                                 | 9,4          | 14,7 | 21,1 |
| Characteristic                                                              | NI= =                       | R60                          |      | $0,4^{1)} / 0,9^{2)}$                                                              | 1,2                    | 2,3                                   | 4,1                                 | 7,7          | 12,0 | 17,3 |
| resistance<br>steel failure                                                 | $N_{Rk,s,fi}$ -             | R90                          |      | $0,3^{1)} / 0,9^{2)}$                                                              | 0,9                    | 1,9                                   | 3,2                                 | 6,0          | 9,4  | 13,5 |
| Steer failure                                                               | _                           | R120                         |      | $0,2^{1)} / 0,7^{2)}$                                                              | 0,8                    | 1,6                                   | 2,8                                 | 5,2          | 8,1  | 11,6 |
| Characteristic resistance                                                   | N <sub>Rk,c,fi</sub>        | R30 -<br>R90                 | [kN] | 7,7 · h <sub>ef</sub> <sup>1,5</sup> · (20) <sup>0,5</sup> · h <sub>ef</sub> / 200 |                        |                                       |                                     |              |      |      |
| Concrete cone failure                                                       | _                           | R120                         |      |                                                                                    | 7,7 · he               | f <sup>1,5</sup> · (20) <sup>0,</sup> | <sup>5</sup> · h <sub>ef</sub> / 20 | 0 / 1000 · 0 | ,8   |      |
| Characteristic resistance                                                   | -<br>N <sub>Rk,p,fi</sub> - | R30<br>R60                   |      | 0,4                                                                                | 0,9 / 2,0              | 2,2 / 3,3                             | 3,0 / 5,0                           | 4,5 / 6,8    | 8,6  | 12,0 |
| pullout failure                                                             | -                           | R90<br>R120                  |      | 0,3                                                                                | 0,5 / 2,0<br>0,3 / 1,6 | 1,7 / 2,6                             | 2,4 / 4,0                           | 3,6 / 5,4    | 6,9  | 9,6  |

Table C3.2: Characteristic values of shear resistance under fire exposure

| Size                         |                   |     | F                     | ₹30                            | R60                   |                                |  |
|------------------------------|-------------------|-----|-----------------------|--------------------------------|-----------------------|--------------------------------|--|
| FAZ II, FAZ II R, FAZ II HCR |                   |     | $V_{Rk,s,fi,30}$ [kN] | M <sup>0</sup> Rk,s,fi,30 [Nm] | $V_{Rk,s,fi,60}$ [kN] | M <sup>0</sup> Rk,s,fi,60 [Nm] |  |
| M6                           |                   | 40  | $0,6^{1)}/0,9^{2)}$   | $0,5^{1)} / 0,2^{2)}$          | $0,4^{1)}/0,9^{2)}$   | 0,31) / 0,12)                  |  |
| M8                           |                   | 35  | 1,8                   | 1,4                            | 1,6                   | 1,2                            |  |
| M10                          |                   | 40  | •                     | 3,6                            | 2,9                   | 3,0                            |  |
| M12                          | h <sub>ef</sub> ≥ | 50  | 6,3                   | 7,8                            | 4,9                   | 6,4                            |  |
| M16                          |                   | 65  | 11,7                  | 19,9                           | 9,1                   | 16,3                           |  |
| M20                          |                   | 100 | 18,2                  | 39,0                           | 14,2                  | 31,8                           |  |
| M24                          |                   | 125 | 26,3                  | 67,3                           | 20,5                  | 55,0                           |  |

| Size                         |                   |     | F                     | 190                                       | R120                   |                          |  |  |
|------------------------------|-------------------|-----|-----------------------|-------------------------------------------|------------------------|--------------------------|--|--|
| FAZ II, FAZ II R, FAZ II HCR |                   |     | $V_{Rk,s,fi,90}$ [kN] | M <sup>0</sup> <sub>Rk,s,fi,90</sub> [Nm] | $V_{Rk,s,fi,120}$ [kN] | $M^0_{Rk,s,fi,120}$ [Nm] |  |  |
| М6                           |                   | 40  | $0,3^{1)}/0,9^{2)}$   | $0,2^{1)}/0,1^{2)}$                       | $0,2^{1)}/0,7^{2)}$    | $0,2^{1)}/0,1^{2)}$      |  |  |
| M8                           |                   | 35  | 1,3                   | 1,0                                       | 1,2                    | 0,8                      |  |  |
| M10                          |                   | 40  | 2,2                   | 2,4                                       | 1,9                    | 2,1                      |  |  |
| M12                          | h <sub>ef</sub> ≥ | 50  | 3,5                   | 5,0                                       | 2,8                    | 4,3                      |  |  |
| M16                          |                   | 65  | 6,6                   | 12,6                                      | 5,3                    | 11,0                     |  |  |
| M20                          |                   | 100 | 10,3                  | 24,6                                      | 8,3                    | 21,4                     |  |  |
| M24                          |                   | 125 | 14,8                  | 42,6                                      | 11,9                   | 37,0                     |  |  |

Concrete pryout failure according to EN 1992-4:2018

**Table C3.3:** Minimum spacings and minimum edge distances of anchors under **fire exposure** for **tension** and **shear** load

| Cino                              |     | FAZ II, FAZ II R, FAZ II HCR                                                               |     |     |     |     |     |  |  |  |
|-----------------------------------|-----|--------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|--|--|--|
| Size                              | M6  | M8                                                                                         | M10 | M12 | M16 | M20 | M24 |  |  |  |
| Spacing s <sub>min</sub>          |     | Annex B3                                                                                   |     |     |     |     |     |  |  |  |
| Edge distance c <sub>min</sub> [r | mm] | $c_{min} = 2 \cdot h_{ef},$ for fire exposure from more than one side $c_{min} \ge 300$ mm |     |     |     |     |     |  |  |  |

1) FAZ II

<sup>2)</sup> FAZ II R / HCR

fischer Bolt Anchor FAZ II, FAZ II R, FAZ II HCR

# **Performances**

Characteristic values of resistance under fire exposure

Annex C 3



| Table C4.1: Characteristic values of tension and shear resistance under seismic action |
|----------------------------------------------------------------------------------------|
| category C1                                                                            |

| 0'                                                            |                      |      |     | F    | AZ II, FA  | Z II R, F  | AZ II HC   | R     |       |
|---------------------------------------------------------------|----------------------|------|-----|------|------------|------------|------------|-------|-------|
| Size                                                          |                      |      | М6  | М8   | M10        | M12        | M16        | M20   | M24   |
| Length of anchor                                              | L <sub>max</sub>     |      |     | 167  | 186        | 221        | 285        | 394   | 477   |
| Effective embedment depth                                     | h <sub>ef</sub>      | [mm] | 1   | 45   | 40 -<br>60 | 50 -<br>70 | 65 -<br>85 | 100   | 125   |
| With filling of the annular gap                               | $lpha_{\sf gap}$     | [-]  | 1,0 |      |            |            |            |       |       |
| Steel failure                                                 |                      |      |     |      |            |            |            |       |       |
| Characteristic resistance tension load C1                     | $N_{Rk,s,C1}$        | [kN] |     | 16,0 | 27,0       | 41,0       | 66,0       | 111,0 | 150,0 |
| Partial factor for steel failure                              | γMs,C1 <sup>1)</sup> | [-]  | •   |      |            | 1,         | ,5         |       |       |
| Pullout failure                                               |                      |      |     |      |            |            |            |       |       |
| Characteristic resistance tension load in cracked concrete C1 | $N_{\text{Rk,p,C1}}$ | [kN] |     | 4,6  | 8,0        | 16,0       | 28,2       | 36,0  | 50,3  |
| Installation factor                                           | γinst                | [-]  |     | 1,0  |            |            |            |       |       |
| Steel failure without lever arm                               |                      |      |     |      |            |            |            |       |       |
| Characteristic resistance shear load C1                       | $V_{Rk,s,C1}$        | [kN] |     | 11   | 17         | 27         | 47         | 56    | 69    |
| Partial factor for steel failure                              | γMs,C1 <sup>1)</sup> | [-]  | -   |      |            | 1,         | 25         |       |       |
|                                                               |                      |      |     |      |            |            |            |       |       |

<sup>1)</sup> In absence of other national regulations

Table C4.2: Characteristic values of tension and shear resistance under seismic action category C2

| Cizo                                        | Size                 |      |    | FAZ II, FAZ II R, FAZ II HCR <sup>1)</sup> |       |       |       |      |     |  |  |
|---------------------------------------------|----------------------|------|----|--------------------------------------------|-------|-------|-------|------|-----|--|--|
| JIZE                                        |                      |      | М6 | M8                                         | M10   | M12   | M16   | M20  | M24 |  |  |
| Length of anchor                            | L <sub>max</sub>     | [mm] |    | -                                          | 186   | 221   | 285   | 394  | -   |  |  |
| With filling of the annular gap             | $lpha_{	extsf{gap}}$ | [-]  |    |                                            |       | 1,0   |       |      |     |  |  |
| Steel failure                               |                      |      |    |                                            |       |       |       |      |     |  |  |
| Characteristic resistance tension load C2   | $N_{\text{Rk,s,C2}}$ | [kN] |    |                                            | 27    | 41    | 66    | 111  |     |  |  |
| Partial factor for steel failure            | γMs,C2 <sup>2)</sup> | [-]  |    | -                                          |       | 1     | ,5    |      | -   |  |  |
| Pullout failure                             |                      |      |    |                                            |       |       |       |      |     |  |  |
|                                             | hef                  | [mm] |    |                                            | 60    | 70    | 85    | 100  |     |  |  |
| Characteristic resistance tension load in   | $N_{Rk,p,C2}$        | [kN] |    |                                            | 5,1   | 7,4   | 21,5  | 30,7 | -   |  |  |
| cracked concrete C2                         | h <sub>ef</sub>      | [mm] |    | -                                          | 40-59 | 50-69 | 65-84 |      |     |  |  |
|                                             | N <sub>Rk,p,C2</sub> | [kN] |    |                                            | 2,7   | 4,4   | 16,4  |      | -   |  |  |
| Installation factor                         | γinst                | [-]  |    |                                            |       | 1,0   |       |      |     |  |  |
| Steel failure without lever arm             |                      |      |    |                                            |       |       |       |      |     |  |  |
|                                             | h <sub>ef</sub>      | [mm] |    |                                            | 60    | 70    | 85    | 100  |     |  |  |
| Characteristic registers as also at load CO | V <sub>Rk,s,C2</sub> | [kN] |    |                                            | 10,0  | 17,4  | 27,5  | 39,9 | -   |  |  |
| Characteristic resistance shear load C2     | h <sub>ef</sub>      | [mm] |    | _                                          | 40-59 | 50-69 | 65-84 |      |     |  |  |
|                                             | V <sub>Rk,s,C2</sub> | [kN] |    |                                            | 7,0   | 12,7  | 22,0  |      | -   |  |  |
| Partial factor for steel failure            | γMs,C2 <sup>2)</sup> | [-]  |    |                                            |       | 1,25  |       |      |     |  |  |

<sup>1)</sup> FAZ II HCR: Only valid for cold-formed version (according to Annex A1)

<sup>2)</sup> In absence of other national regulations

| fischer Bolt Anchor FAZ II, FAZ II R, FAZ II HCR                                                    |           |
|-----------------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of resistance under tension and shear loads under seismic action | Annex C 4 |



| Table C5.1: Dis | splacements under | rstatic and c | quasi static | <b>tension</b> loads |
|-----------------|-------------------|---------------|--------------|----------------------|
|-----------------|-------------------|---------------|--------------|----------------------|

| Cino                                                 | Size                     |                 |      | FAZ II, FAZ II R, FAZ II HCR |      |      |      |      |      |  |  |  |
|------------------------------------------------------|--------------------------|-----------------|------|------------------------------|------|------|------|------|------|--|--|--|
| Size                                                 |                          |                 |      | M8                           | M10  | M12  | M16  | M20  | M24  |  |  |  |
| Displacement – factor for tensile load <sup>1)</sup> |                          |                 |      |                              |      |      |      |      |      |  |  |  |
| δ <sub>N0</sub> - factor                             | — in cracked concrete    | [100 mg /LeN I] | 0,13 | 0,22                         | 0,12 | 0,09 | 0,08 | 0,07 | 0,05 |  |  |  |
| δN∞ - factor                                         |                          |                 | 1,00 | 0,78                         | 0,40 | 0,19 | 0,0  | 09   | 0,07 |  |  |  |
| δ <sub>N0</sub> - factor                             | in uncracked concrete    | [mm/kN]         |      | 0,07                         | 0,05 | 0,0  | 06   | 0,05 | 0,04 |  |  |  |
| δN∞ - factor                                         | - III uncracked concrete |                 | 0,24 | 0,29                         | 0,21 | 0,14 | 0,10 | 0,06 | 0,05 |  |  |  |

Table C5.2: Displacements under static and quasi static shear loads

| Cino                 | Size                                                      |         |                      | FAZ II |      |      |      |      |      |  |
|----------------------|-----------------------------------------------------------|---------|----------------------|--------|------|------|------|------|------|--|
| Size                 |                                                           |         |                      | M8     | M10  | M12  | M16  | M20  | M24  |  |
| Displacement - facto | or for shear load <sup>2)</sup>                           |         |                      |        |      |      |      |      |      |  |
| δvo – factor         |                                                           |         | 0,6                  | 0,35   | 0,37 | 0,27 | 0,10 | 0,09 | 0,07 |  |
| δv∞ - factor         |                                                           | [mm/kN] | 0,9                  | 0,52   | 0,55 | 0,40 | 0,14 | 0,15 | 0,11 |  |
|                      | <ul> <li>in cracked and<br/>uncracked concrete</li> </ul> |         | FAZ II R, FAZ II HCR |        |      |      |      |      |      |  |
| $\delta$ V0 - factor | uncracked concrete                                        |         | 0,6                  | 0,23   | 0,19 | 0,18 | 0,10 | 0,11 | 0,07 |  |
| δv∞ - factor         |                                                           |         | 0,9                  | 0,27   | 0,22 | 0,16 | 0,11 | 0,05 | 0,09 |  |

<sup>1)</sup> Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0}-\text{factor}} \cdot N_{\text{ED}}$ 

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\,\text{--factor}} \, \cdot \, N_{\text{ED}}$ 

(N<sub>ED</sub>: Design value of the applied tension force)

<sup>2)</sup> Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0\,\text{--factor}} \, \cdot \, V_{ED}$ 

 $\delta_{V\infty} = \delta_{V\infty \, - \, factor} \, \cdot \, V_{ED}$ 

(V<sub>ED</sub>: Design value of the applied shear force)

Table C5.3: Displacements under tension loads for category C2 for all embedment depths

| Size             |                             |      | FAZ II, FAZ II R, FAZ II HCR |    |      |      |      |      |     |  |  |
|------------------|-----------------------------|------|------------------------------|----|------|------|------|------|-----|--|--|
| Size             |                             |      | M6                           | M8 | M10  | M12  | M16  | M20  | M24 |  |  |
| Displacement DLS | $\delta_{\text{N,C2(DLS)}}$ | [mm] |                              |    |      | 4    | ,4   | 5,6  |     |  |  |
| Displacement ULS | δn,c2 (ULS)                 | [mm] | -                            |    | 11,5 | 13,0 | 12,3 | 14,4 | _   |  |  |

Table C5.4: Displacements under shear loads for category C2 for all embedment depths

| Size             |             |      | FAZ II, FAZ II R, FAZ II HCR |    |     |     |      |      |              |  |
|------------------|-------------|------|------------------------------|----|-----|-----|------|------|--------------|--|
| Size             | ze          |      | М6                           | M8 | M10 | M12 | M16  | M20  | M24          |  |
| Displacement DLS | δv,c2 (DLS) | [mm] |                              |    | 4,1 | 4,7 | 5,5  | 4,8  |              |  |
| Displacement ULS | δv,c2 (ULS) | [mm] |                              | -  | 6,2 | 7,8 | 10,1 | 11,2 | <del>-</del> |  |

fischer Bolt Anchor FAZ II, FAZ II R, FAZ II HCR

#### **Performances**

Displacements under tension and shear loads

Annex C 5