

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-06/0047 of 3 December 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Hilti push-in anchor HKD

Mechanical fastener for non-structural applications in concrete

Hilti Aktiengesellschaft 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

20 pages including 3 annexes which form an integral part of this assessment

EAD 330747-00-0601 Edition 06/2018

ETA-06/0047 issued on 8 February 2016

European Technical Assessment ETA-06/0047

Page 2 of 20 | 3 December 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-06/0047

Page 3 of 20 | 3 December 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Hilti push-in anchor HKD is a fastener made of galvanized or stainless steel which is placed into a drilled hole and anchored by deformation-controlled expansion.

The fastener consists of an anchor body and an internal plug.

The fixture shall be anchored with a fastening screw or threaded rod according to Annex B2.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C4

3.2 Safety in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance for all load directions and modes of failure for simplified design	See Annex C1 to C3

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330747-00-0601, the applicable European legal act is: [97/161/EC].

The system to be applied is: 2+

European Technical Assessment ETA-06/0047

Page 4 of 20 | 3 December 2020

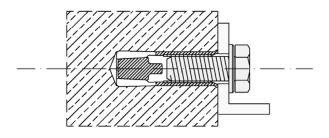
English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

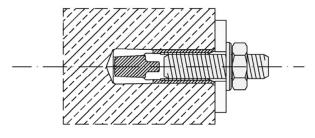
Issued in Berlin on 3 December 2020 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:*Lange



Installed condition

Multiple use for non-structural applications only


Figure A1:

Hilti push-in anchor HKD with screw

Figure A2:

Hilti push-in anchor HKD with threaded rod, washer and nut

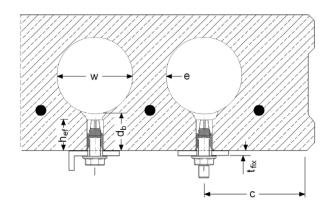
Figure A3:

Hilti push-in anchor HKD in precast prestressed hollow core slabs (w/e ≤ 4,2)

w core width

e web thickness

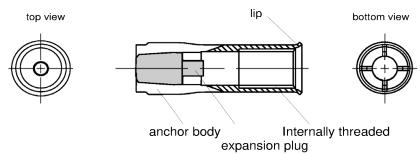
d_b bottom flange thickness


≥ 35 mm for M6x25 and M8x25

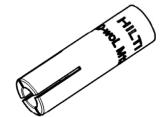
≥ 40 mm for M10x25

hef embedment depth

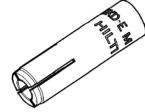
thickness of fixture


c edge distance

Hilti push-in anchor HKD	
Product description	Annex A1
Installed condition	



Product description: Hilti push-in anchor HKD multiple use for non-structural applications only



Marking:

HKD

HKD-woL

HKD-S / HKD-SR

HKD-E / HKD-ER

HKD-E

<u>HKD</u>	HKD-woL
HKD M6 x 25	HKD-woL M6 x 25
HKD M8 x 25	HKD-woL M8 x 25
HKD M8 x 30	HKD-woL M8 x 30
HKD M8 x 40	HKD-woL M8 x 40
HKD M10 x 25	HKD-woL M10 x 25
HKD M10 x 30	HKD-woL M10 x 30
HKD M10 x 40	HKD-woL M10 x 40
HKD M12 x 25	HKD-woL M12 x 25
HKD M12 x 50	HKD-woL M12 x 50
HKD M16 x 65	HKD-woL M16 x 65

HKD-S
HKD-S
HKD-SF
HKD-SF
HKD-SF

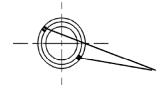
HKD-S M6 x 30 ø8	HK
HKD-S M8 x 30 ø 10	HK
HKD-S M8 x 40 ø 10	HK
HKD-S M10 x 30 ø 12	HK
HKD-S M10 x 40 ø12	HK
HKD-S M12 x 50 ø 15	HK
IKD-SB	HK

HKD-E	M6 x 30 ø8
HKD-E	M8 x 30 ø 10
HKD-E	M8 x 40 ø 10
HKD-E	$M10 \times 30 \varnothing 12$
HKD-E	M10 x 40 ø 12
HKD-E	M12 x 50 ø 15

M6 x 30 ø8
M8 x 30 ø 10
M10 x 40 ø 12
M12 x 50 ø 15

HKD-ER HKD-ER M6 x 30 ø 8 HKD-ER M8 x 30 ø 8 HKD-ER M10 x 40 ø 12 HKD-ER M12 x 50 ø 15

Hilti push-in anchor HKD	
Product description Anchor types / Marking	Annex A2


Identification after installation

Each anchor can be identified with setting tool after installation

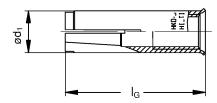
Table A1: Identification HKD and HKD-woL

Size	Setting tool	Top view
HKD M6x25	HSD-G M6 x 25	
HKD M8x25	HSD-G M8 x 25/30	
HKD M8x30	HSD-G M8 x 25/30	
HKD M8x40	HSD-G M8 x 40	
HKD M10x25	HSD-G M10 x 25/30	
HKD M10x30	HSD-G M10 x 25/30	
HKD M10x40	HSD-G M10 x 40	
HKD M12x25	HSD-G M12 x 25	
HKD M12x50	HSD-G M12 x 50	
HKD M16x65	HSD-G M16 x 65	

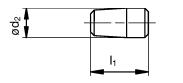
Identification HKD-E(R) and HKD-S(R)

additional marking on end-face for M8x40 and M10x40

Annex A3



Anchor materials and anchor dimensions


Table A2: Materials

Designation	Material	
HKD; HKD-woL		
Anchor body	cold formed steel – galvanized to ≥ 5 μm	
expansion plug	cold formed steel	
HKD-S; HKD-E		
Anchor body	Steel Fe/Zn5 (galvanized ≥ 5 μm)	
expansion plug	cold formed steel	
HKD-SR; HKD-ER		
Anchor body	Stainless steel of corrosion resistance class III according to EN1993-1-4:2006+A1:2015	
expansion plug	1.4401, 1.4404 or 1.4571 according to EN 10088-1:2014	

Anchor body

Expansion plug

Table A3: Dimensions

Anchor size			M6x25	M6x30	M8x25	M8x30	M8x40	M10x25	M10x30	M10x40	M12x25	M12x50	M16x65
Anchor length	lg	[mm]	25	30	25	30	40	25	30	40	25	50	65
Anchor diameter	Ød₁	[mm]	7,9	8	9,95	9,95	9,95	11,9	11,8	11,95	14,9	14,9	19,75
Plug diameter	Ød ₂	[mm]	5,1	5	6,35	6,5	6,35	8,1	8,2	8,2	9,7	10,3	13,8
Plug length	l ₁	[mm]	10	15	7	12	16	7	12	16	7,2	20	29

Hilti push-in anchor HKD	
Product description Anchor materials and anchor dimensions	Annex A4

Specifications of intended use

Multiple use for non-structural applications only

Anchorages subject to:

- Static and quasi-static loading.
- The anchor is to be used only for multiple use for non-structural applications, the definition of multiple use according to the member states is given in EN 1992-4:2018, 7.3 and CEN/TR 17079.

Base material:

- Compacted, reinforced or unreinforced normal weight concrete without fibers in accordance with EN 206:2013+A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016.
- Cracked and uncracked concrete.
- Fire resistance: M6 to M16.

Table B1: Specifications of intended use

Anchorages subject to:	HKD / HKD-woL / HKD-E(R) and HKD-S(R) with					
	Threaded rods or screws					
Hammer drilling	✓					
Static and quasi static loading in cracked and uncracked concrete	M6 to M16 Table: C1, C2, C3 und C4					
Fire resistance	M6 to M16 Table: C5 und C6					

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel or stainless steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions, if no particular aggressive conditions exist (stainless steel).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages under static or quasi-static loading are designed in accordance with: EN 1992-4:2018.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The anchor may only be set once.
- Overhead installation is admissible.

Hilti push-in anchor HKD	
Intended use	Annex B1
Specifications	

Table B2: Installation parameters

HKD			M6x25	M6x30	M8x25 ¹⁾	M8x30	M8x40	M10x25 ¹⁾	M10x30 ¹⁾	M10x40	M12x25 ¹⁾	M12x50	M16x65
Diameter of drill bit	d₀	[mm]	8	8	10	10	10	12	12	12	15	15	20
Thread diameter	d	[mm]	6	6	8	8	8	10	10	10	12	12	16
drill hole depth	h ₁	[mm]	27	32	27	33	43	27	33	43	27	54	70
Effective embedment depth	h _{ef}	[mm]	25	30	25	30	40	25	30	40	25	50	65
Maximum screwing depth	I _{s,max}	[mm]	12	12,5	11,5	14,5	17,5	12	12,7	18	12	23,5	30,5
Minimum screwing depth	I _{s,min}	[mm]	6	6	8	8	8	10	10	10	12	12	16
Maximum torque moment	Tinst	[Nm]	≤ 4	≤ 4	≤8	≤8	≤8	≤ 15	≤ 15	≤ 15	≤ 35	≤ 35	≤ 60
Maximum diameter of clearance hole in the fixture	d f	[mm]	7	7	9	9	9	12	12	12	14	14	18

¹⁾ with anchor size M8x25, M10x25, M10x30 and M12x25 only threaded rod are to be used

Requirements for fastening screw or threaded rod:

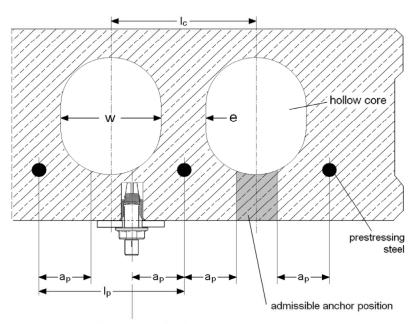
For anchors made of galvanized steel (HKD, HKD-woL, HKD-E and HKD-S) fastening screws or threaded rods of steel grade 4.6 / 5.6 / 5.8 or 8.8 according to EN ISO 898-1:2013 shall be specified. For anchors made of stainless steel (HKD-ER and HKD-SR) fastening screw or threaded rod of steel grade 70 according EN ISO 3506:2020 shall be specified.

Minimum screw depth I_{s,min}:

The length of the screw shall be determined depending on thickness of fixture tfix, admissible tolerances and available thread length ls,max as well as minimum screw depth ls,min according table B2

Hilti push-in anchor HKD	
Intended use	Annex B2
Installation parameters	

Admissible anchor positions in precast pre-stressed hollow core slabs (w/e \leq 4,2)


core distance:

l_c≥ 100 mm

pre-stressing steel distance:

l_p ≥ 100 mm

distance between anchor position and pre-stressing steel: $a_p \ge 50 \text{ mm}$

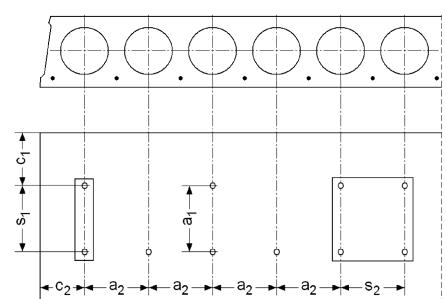
Minimum spacing and edge distance of anchors and distance between anchor groups in precast pre-stressed hollow core slabs

c₁, c₂ edge distance

s₁, s₂ anchor spacing

a₁, a₂ distances between

anchor groups


Minimum edge distance

 $c_{\text{min}} \geq 200 \ mm$

Minimum anchor spacing

 $s_{\text{min}} \geq 400 \text{ mm}$

Minimum distance between anchor groups $a_{min} \ge 400 \text{ mm}$

The maximum shear load of an anchor group is restricted to max. V = 25 kN.

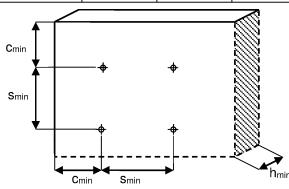

Hilti push-in anchor HKD	
Intended use Installation data for precast pre-stressed hollow core slabs	Annex B3

Table B3: Minimum spacing and minimum edge distance

HKD-S(R), HKD-E(R)			M6x30 M8x30 M10x30	M8x40 M10x40	M12x50
Minimum spacing and r	ninimuı	n edge distaı	псе		
Minimum thickness of concrete member	h _{min}	[mm]	100	100	100
Minimum spacing	Smin	[mm]	60	80	125
Minimum edge distance	Cmin	[mm]	105	140	175
Minimum thickness of o	concrete	e member			
Minimum thickness of concrete member	h _{min}	[mm]	80	80	
Minimum spacing	Smin	[mm]	200	200	
Minimum edge distance	Cmin	[mm]	150	150	

HKD, HKD-woL			M6x25 M8x25 M10x25 M12x25	M8x30 M10x30	M8x40 M10x40	M12x50	M16x65
Minimum spacing and	minimum edge di	sta	nce				
Minimum thickness of concrete member	h _{min} [m	ım]	100	100	100	100	120
Minimum spacing	s _{min} [m	ım]	80	60	80	125	130
	for c ≥ [m	ım]	140	105	140	175	230
Minimum adaa diatanaa	c _{min} [m	ım]	100	80	140	175	230
Minimum edge distance	for s≥ [m	ım]	150	120	80	125	130
Minimum thickness of	concrete member	•					
Minimum thickness of concrete member	h _{min} [m	ım]	80	80	80	-	
Minimum spacing	s _{min} [m	ım]	200	200	200	-	-
Minimum edge distance	C _{min} [m	ım]	150	150	150	-	-

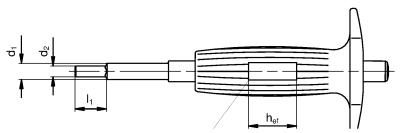
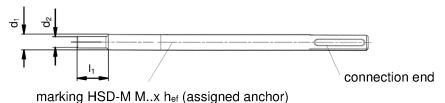

Hilti push-in anchor HKD	
Intended use Minimum spacing and minimum edge distance	Annex B4
I says distance	

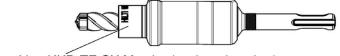
Table B4: Dimensions of the setting tools

Setting tool HSD / HSG			M6x25 M6x30	M8x25 M8x30	M8x40	M10x25 M10x30	M10x40	M12x25	M12x50	M16x65
Diameter	d ₁	[mm]	7,5	9,5	9,5	11,5	11,5	14,5	14,5	18
Diameter	d ₂	[mm]	5	6,5	6,5	8	8	10,2	10,2	13,5
Length	l ₁	[mm]	15	18	28	18	24	18	30	36

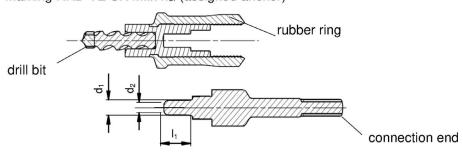
Manual setting tool HSD-G M.. x hef (e.g. HSD-G M8 x 30)


manual setting tool

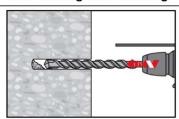
Marking from setting tool

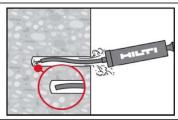

Installation control with

anchor gauge with marking M..x hef (assigned anchor) the recess length corresponds to the anchor length hef


Machine setting tool HSD-M M.. x hef (e.g. HSD-M M8 x 30)

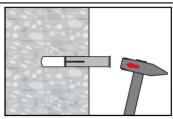
Machine setting tool HKD-TE CX M.. x hef (z.B. HKD-TE-CX M8 x 30)


marking HKD-TE CX M..x hef (assigned anchor)

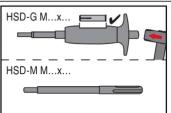

Hilti push-in anchor HKD	
Intended use	Annex B5
Setting tools	

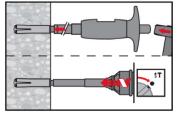
Installation instructions

Hole drilling and cleaning

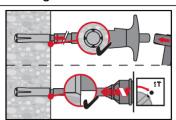


Make a cylindrical hole.



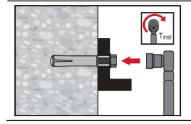

Clean the drill hole.

Fastener setting


Install the anchor by hammering.

Choose the setting tool; and confirm the size of setting tool according to the size of the anchor.

Setting check



HSD-G M...x...: Hammer on the top of setting tool until the 4 marks are visible on the lips of the anchor.

 $\mathsf{HSD}\text{-}\mathsf{M}\ \mathsf{M}...\mathsf{x}...$: set the anchor until the setting tool touches the rim of the anchor.

Loading the anchor

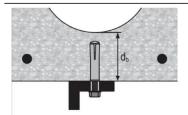
Electronic copy of the ETA by DIBt: ETA-06/0047

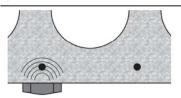
Apply the torque (check the values for T_{inst}) using torque wrench.

Hilti push-in anchor HKD

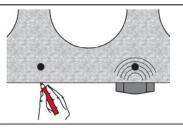
Intended use

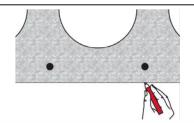
Installation instructions


Annex B6

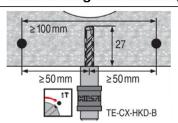

Installation instructions

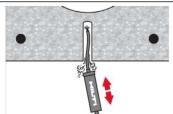
Installation with the stop drill bit HKD-TE CX only


Positioning the anchor



Verify the bottom flange thickness of the hollow core slab according Table C3.


Detect the position of reinforcement.



Detect the position of reinforcement and mark.

Hole drilling and cleaning

Make a cylindrical hole.

Clean the drill hole.

Hilti push-in anchor HKD

Intended use

Electronic copy of the ETA by DIBt: ETA-06/0047

Installation instructions in precast pre-stressed hollow core slabs

Annex B7

Electronic copy of the ETA by DIBt: ETA-06/0047

Fastener setting Install the anchor by hammering. Fixing is not allowed for hef=25mm and db<35mm when a cavity is cut. Choose the setting tool; and confirm the size of setting tool according to HSD-G M...x. the size of the anchor. HSD-M M...x... HSD-G M...x...: Hammer on the top of setting tool until the 4 marks are visible on the lips of the anchor. HSD-M M...x...: set the anchor until the setting tool touches the rim of the anchor Setting check Apply the torque (values for T_{inst} in ETA) using torque wrench.

Hilti push-in anchor HKD	
Intended use Installation instructions in precast pre-stressed hollow core slabs	Annex B8

Table C1: Characteristic resistance for Hilti push-in anchor HKD-S(R) and HKD-E(R)

HKD-S, HKD-E HKD-SR, HKD-ER			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50
Installation safety factor					,0	_ <	<	
All load directions	·							
Characteristic resistance in C20/25 to C50/60	F ⁰ Rk	[kN]	3	3	5	4	6	6
Characteristic spacing	Scr	[mm]	90	90	120	90	120	150
Characteristic edge distance	Ccr	[mm]	45	45	60	45	60	75
Shear load with lever arm		•		•				•
Steel grade 4.6	M ⁰ Rk,s	[Nm]	6	15	15	30	30	52
Partial safety factor	γ _{Ms} 1)				1,	67		
Steel grade 5.6	M^0 _{Rk,s}	[Nm]	8	19	19	37	37	65
Partial safety factor	γMs ¹⁾				1,	67		
Steel grade 5.8	M ⁰ Rk,s	[Nm]	8	19	19	37	37	65
Partial safety factor	γMs ¹⁾				1,	25		
Steel grade 8.8	M ⁰ Rk,s	[Nm]	12	30	30	60	60	105
Partial safety factor	γMs ¹⁾		1,25					
Steel grade 70	M ⁰ Rk,s	[Nm]	11	26	versio	on not	52	92
Partial safety factor	γMs ¹⁾		1,	56	available 1,5		56	
Ductility factor	k ₇	[-]			1	,0		

¹⁾ In absence of other national regulations.

Hilti push-in anchor HKD	
Performances Characteristic resistance for Hilti push-in anchor HKD-S (R) and HKD-E (R) in case of static and quasi-static loading	Annex C1

Table C2: Characteristic resistance for Hilti push-in anchor HKD and HKD-woL

HKD HKD-woL			M6x25	M8x25	M8x30	M8x40	M10x25	M10x30	M10x40	M12x25	M12x50	M16x65
Installation safety factor	γinst		1	,0	1,2	1,0	1,2			1,0		
All load directions												
Characteristic resistance in C20/25 to C50/60	F ⁰ Rk	[kN]	2	3	5	5	4	5	7,5	4	9	16
Characteristic spacing	Scr	[mm]	80	80	90	120	80	90	120	80	150	200
Characteristic edge distance	Ccr	[mm]	40	40	45	60	40	45	60	40	75	100
Shear load with lever arm						•						
Steel grade 4.6	M ⁰ Rk,s	[Nm]	6		15			30		5	2	133
Partial safety factor	γMs ¹⁾						1,0	67	,			
Steel grade 5.6	M^0 Rk,s	[Nm]	8		19			37		6	5	166
Partial safety factor	γMs ¹⁾						1,0	67				
Steel grade 5.8	M^0 _{Rk,s}	[Nm]	8 19 37		6	5	166					
Partial safety factor	γMs ¹⁾		1,25									
Steel grade 8.8	M^0 Rk,s	[Nm]	12 30			60			10)5	266	
Partial safety factor	γMs ¹⁾		1,25									
Ductility factor	k ₇	[-]					1,	,0				

¹⁾ In absence of other national regulations.

Hilti push-in anchor HKD	
Performances Characteristic resistance for Hilti push-in anchor HKD and HKD-woL	Annex C2

Table C3: Characteristic resistance for Hilti push-in anchor in precast prestressed hollow core slabs C30/37 to C50/60

HKD HKD-woL			M6x25	M8x25	M10x25			
Installation safety factor	Installation safety factor γ _{inst}			,0	1,2			
All load directions								
bottom flange thickness	dь	[mm]	≥ 35 (or 30 ²⁾)	≥ 35	≥ 40			
Characteristic resistance in C20/25 to C50/60	F ⁰ Rk	[kN]	2	3	4			
Characteristic spacing	Scr	[mm]						
Characteristic edge distance	Ccr	[mm]						
Shear load with lever arm								
Steel grade 4.6	$M^0_{\text{Rk,s}}$	[Nm]	6	15	30			
Partial safety factor	γ _{Ms} ¹⁾			1,67				
Steel grade 5.6	M^0 Rk,s	[Nm]	8	19	37			
Partial safety factor	γMs ¹⁾			1,67				
Steel grade 5.8	M^0 Rk,s	[Nm]	8	19	37			
Partial safety factor	γMs ¹⁾		1,25					
Steel grade 8.8	M ⁰ Rk,s	[Nm]	12	30	60			
Partial safety factor	γMs ¹⁾		1,25					
Ductility factor	k ₇	[-]		1,0				

¹⁾ In absence of other national regulations.

Hilti push-in anchor HKD	
Performances Characteristic resistance for Hilti push-in anchor in precast pre-stressed hollow core slabs	Annex C3

²⁾ The anchor may be used in a flange thickness of 30 mm with the same characteristic resistance but the drill hole is not allowed to cut a cavity (see Annex B8).

Table C4: Characteristic resistance for Hilti push-in anchor HKD-SR and HKD-ER under fire exposure in concrete C20/25 to C50/60 for all load directions

Fire resistance class	HKD-SR, HKD-ER		M6x30	M8x30	M10x40	M12x50
R 30	Characteristic resistance	$F^0_{Rk,fi}$ [kN]	0,5	0,9	1,8	2,3
R 60	Characteristic resistance	$F^0_{Rk,fi}$ [kN]	0,5	0,9	1,8	2,3
R 90	Characteristic resistance	$F^0_{Rk,fi}$ [kN]	0,5	0,9	1,8	2,3
R 120	Characteristic resistance	F ⁰ _{Rk,fi} ¹⁾ [kN]	0,3	0,7	1,5	1,8
R 30 to	Spacing	s _{cr,fi} [mm]	120	120	160	200
R 120	Edge distance	C _{cr,fi} [mm]	105	105	140	175

In case of fire attack from more than one side, the minimum edge distance shall be \geq 300 mm. The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given value

Table C5: Characteristic resistance²⁾ for Hilti push-in anchor HKD and HKD-woL under fire exposure in concrete C20/25 to C50/60 for all load directions

Fire resistance class	HKD HKD-woL		M6x25	M8x25	M8x30	M8x40	M10x25	M10x30	M10x40	M12x25	M12x50	M16x65
R 30	Characteristic resistance	F ⁰ Rk,fi ¹⁾ [kN]	0,5	0,6	0,9	1,3	0,6	0,9	1,8	0,6	2,3	4,0
R 60	Characteristic resistance	$F^0_{Rk,fi}^{1)}$ [kN]	0,4	0,6	0,9	1,3	0,6	0,9	1,8	0,6	2,3	4,0
R 90	Characteristic resistance	F ⁰ _{Rk,fi} ¹⁾ [kN]	0,3	0,6	0,9	1,3	0,6	0,9	1,8	0,6	2,3	4,0
R 120	Characteristic resistance	$F^0_{Rk,fi}^{1)}$ [kN]	0,2	0,5	0,7	0,7	0,5	0,7	1,5	0,5	1,8	3,2
R 30 to	Spacing	s _{cr,fi} [mm]	160	160	120	160	120	120	160	160	200	260
R 120	Edge distance	c _{cr,fi} [mm]	140	140	105	140	105	105	140	140	175	230

In case of fire attack from more than one side, the minimum edge distance shall be \geq 300 mm. The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given value

Hilti push-in anchor HKD	
Performances	Annex C4
Characteristic resistance for Hilti push-in anchor under fire exposure	

¹⁾ In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{m,fi} = 1,0$ is recommended.

¹⁾ In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{m,fi} = 1.0$ is recommended.

²⁾ The fire resistance data is only valid for concrete C20/25 to C50/60 with a minimum slab thickness of 80 mm. The data is **not** valid for precast pre-stressed hollow core slabs.