

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-07/0025 of 23 September 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product fischer High-Performance Anchor FH II, FH II-I Product family Mechanical fastener for use in concrete to which the construction product belongs fischerwerke GmbH & Co. KG Manufacturer Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND fischerwerke Manufacturing plant This European Technical Assessment 25 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is EAD 330232-00-0601, Edition 10/2016 issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces ETA-07/0025 issued on 28 August 2018

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-07/0025 English translation prepared by DIBt

Page 2 of 25 | 23 September 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 25 | 23 September 2020

Specific Part

1 Technical description of the product

The fischer High-Performance Anchor FH II, FH II-I is an anchor made of galvanised steel (sizes with external diameter 10, 12, 15, 18, 24, 28 and 32, sizes with internal thread 12/M6 I, 12/M8 I, 15/M10 I and 15/M12 I) or stainless steel (sizes with external diameter 10, 12, 15, 18 and 24, sizes with internal thread 12/M6 I, 12/M8 I, 15/M10 I and 15/M12 I) which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1, C 2, C 7
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 3 and C4
Displacements (static and quasi-static loading)	See Annex C 10, C 11
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 8, C 9, C 11
Durability	See Annex B 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 5, C 6

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

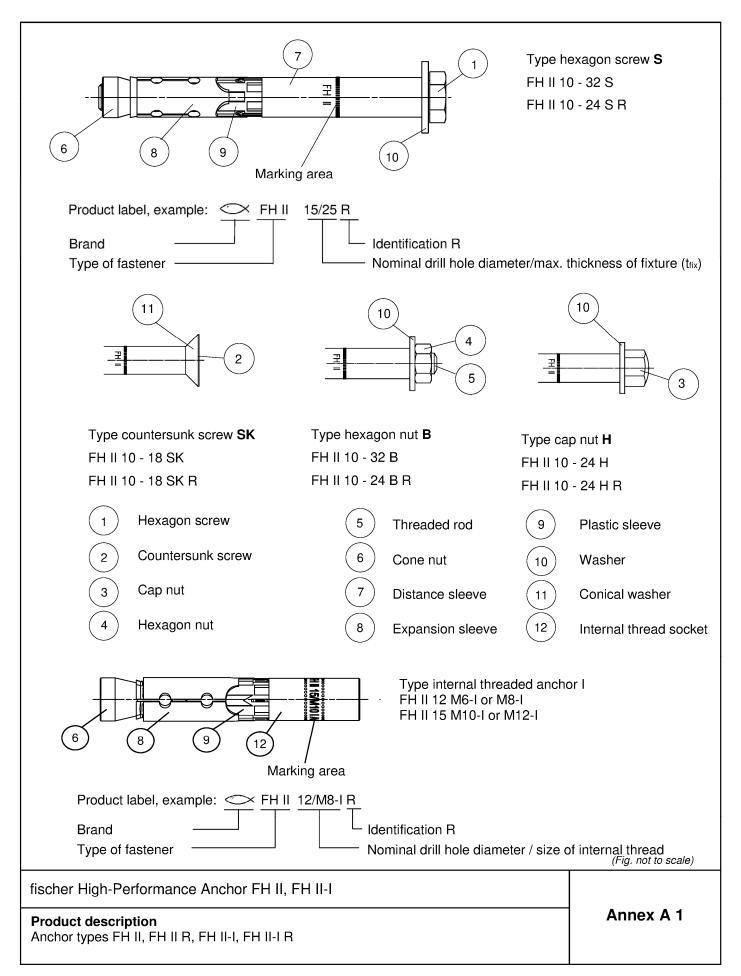
The system to be applied is: 1

European Technical Assessment ETA-07/0025 English translation prepared by DIBt

Page 4 of 25 | 23 September 2020

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

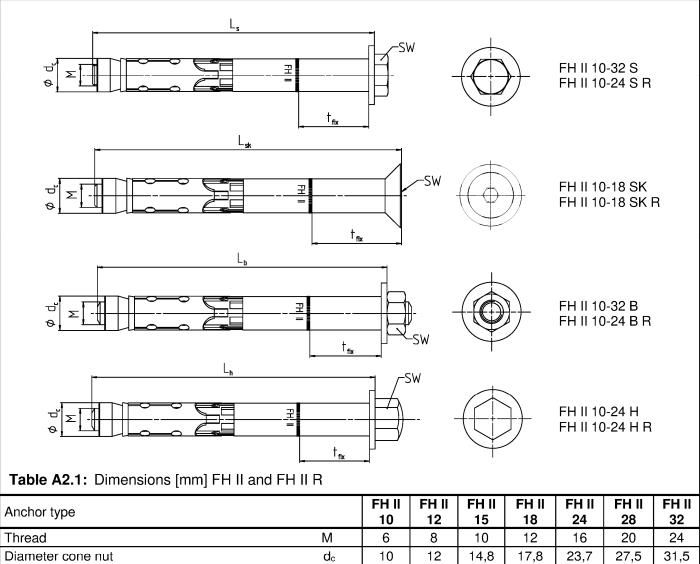
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 23 September 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider

Page 5 of European Technical Assessment ETA-07/0025 of 23 September 2020

English translation prepared by DIBt



Page 6 of European Technical Assessment ETA-07/0025 of 23 September 2020

English translation prepared by DIBt

¹⁾ Internal hexagon

²⁾ The influence of the thickness of fixture to the characteristic resistance for shear loads, steel failure without lever arm is taken into account, see tables C3.1, C8.1 and C9.1

 \geq

3) Anchor type not part of assessment

(Fig. not to scale)

24

24

24

0

124

8

8

0

8

30

3)

3)

0

3)

149

3)

3)

3)

36

0

174

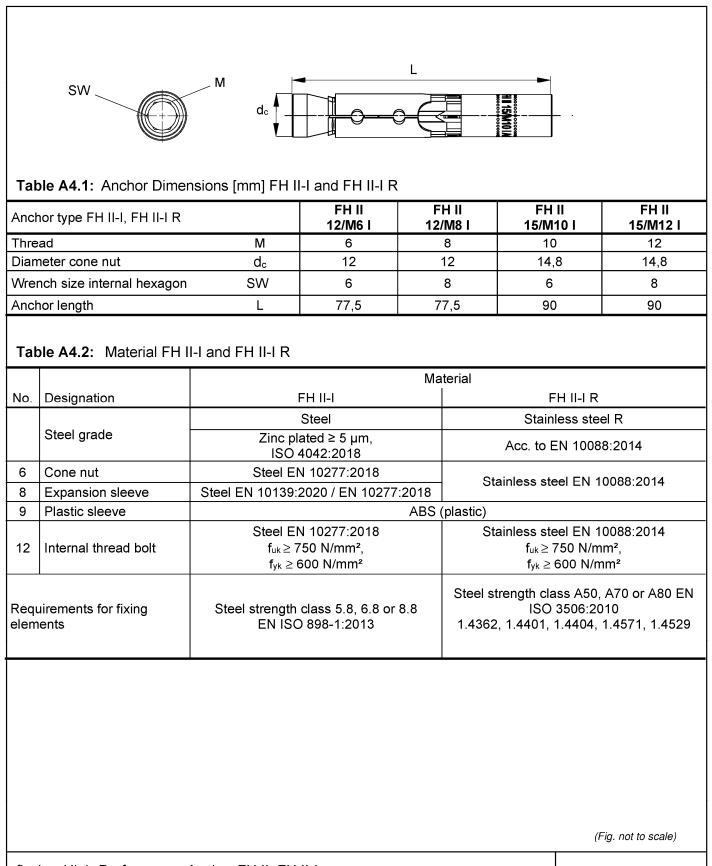
fischer High-Performance Anchor FH II, FH II-I

Product description

Anchor types and dimensions FH II, FH II R

Electronic copy of the ETA by DIBt: ETA-07/0025

		Material								
No.	Designation	FH II	FH II R							
		Steel	Stainless steel R							
	Steel grade	Zinc plated ≥ 5 µm, ISO 4042:2018	Acc. to EN 10088:2014							
1	Hexagon screw									
2	Countersunk screw		Class 80							
3	Cap nut		EN ISO 3506:2020							
4	Hexagon nut	Steel class 8								
5	Threaded rod	$\begin{array}{c} Steel \\ f_{uk} \geq 800 \ N/mm^2; \ f_{yk} \geq 640 \ N/mm^2 \end{array}$	Stainless steel EN 10088:2014 $f_{uk} \ge 800 \text{ N/mm}^2; f_{yk} \ge 640 \text{ N/mm}^2$							
6	Cone nut	Steel EN 10277:2018								
7	Distance sleeve	Steel EN 10305:2016	Stainless steel EN 10088:2014							
8	Expansion sleeve	Steel EN 10139:2020/ EN 10277:2018								
9	Plastic sleeve	ABS (pla	stic)							
10	Washer	Steel EN 10139:2020	Stainlage steel EN 10088-2014							
11	Conical washer	Steel EN 10277:2018	Stainless steel EN 10088:2014							


fischer High-Performance Anchor FH II, FH II-I

Product description Materials FH II and FH II R Annex A 3

Page 8 of European Technical Assessment ETA-07/0025 of 23 September 2020

English translation prepared by DIBt

fischer High-Performance Anchor FH II, FH II-I

Product description

Anchor types, dimensions and materials FH II-I, FH II I-R

Annex A 4

Electronic copy of the ETA by DIBt: ETA-07/0025

Page 9 of European Technical Assessment ETA-07/0025 of 23 September 2020

English translation prepared by DIBt

	Specifi	ications	of inter	nded us	e			
Anchorages subject	et to:							
Size		10	12	15	18	24	28	32
	FH II-S, -B				1			
High Performance Anchor	FH II-H, -S R, -B R, -H R	✓						1)
	FH II-SK, FH II-SK R	✓					1)	
High Performance A	nchor FH II-I, FH II-I R	1)		/		1)	
Hammer drilling with standard drill bit	######################################							
Hammer drilling with hollow drill bit with automatic cleaning	Ī				1			
Static and quasi-stat	ic loads							
Cracked and uncracl	ked concrete]			1			
Fire exposure								
	C1 FH II					/		
	C1 FH II R	2)	1				х.	1)
Seismic performance	C2 FH II] _, [v	/		
category	C2 FH II R				/			1)
	C1 FH II-I, FH II-I R	1)	2	2)		1)	
	C2 FH II-I, FH II-I R	.,		-,			,	

¹⁾ Anchor type not part of the assessment

²⁾ No performance assessed

Base materials:

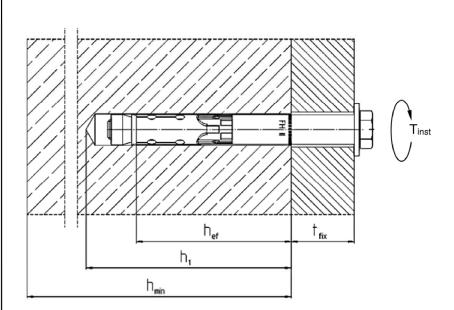
 Compacted reinforced or unreinforced normal weight concrete without fibres (cracked and uncracked) of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (FH II, FH II R, FH II-I, FH II-I R)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions, if no particular aggressive conditions exist (FH II R, FH II-I R)
 Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used)

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Design of fastenings according to EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018


fischer High-Performance Anchor FH II, FH II-I

Intended use Specifications Annex B 1

Page 10 of European Technical Assessment ETA-07/0025 of 23 September 2020

English translation prepared by DIBt

- hef = Effective embedment depth
- t_{fix} = Thickness of the fixture
- $h_1 =$ Depth of drill hole to deepest point
- h_{min} = Minimum thickness of concrete member
- T_{inst} = Required setting torque

Table B2.1: Installation parameters FH II and FH II R

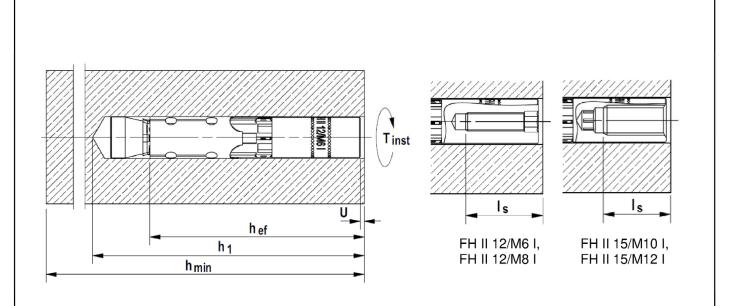
Anchor type FH II S, -SK, -B, -H and FH II S R, -SK R, -B R, -H R	FH II 10	FH II 12	FH II 15	FH II 18	FH II 24	FH II 28	FH II 32
Nominal drill hole diameter do	10	12	15	18	24	28	32
Maximum diameter of drill bit $d_{cut} \leq f_{max}$	10,45	12,50	15,50	18,50	24,55	28,55	32,70
Depth of drill hole to deepest $h_1 \ge$ [mm]	55	80	90	105	125	155	180
Diameter of clearance hole $d_f \leq$	12	14	17	20	26	31	35
Diameter of counter sunk FH II SK	18	22	25	32		1)	
Depth of counter sunk, 90° FH II SK R	5,0	5,8	5,8	8,0		•)	
FH II S		22,5	40		160	180	200
FHIB	10	17,5	38		120	180	200
Required FH II H	10	22,5	40	80	90	1)
torque FH II SK T _{inst} [Nm]			40			1)	
FH S R, FH B R FH H R	15	25	40	100	160	1)
FH II SK R	10		_			1)	

¹⁾ Anchor type not part of assessment

(Fig. not to scale)

fischer High-Performance Anchor FH II, FH II-I

Intended use


Installation parameters FH II, FH II R

Annex B 2

Page 11 of European Technical Assessment ETA-07/0025 of 23 September 2020

English translation prepared by DIBt

- h_{ef} = Effective embedment depth
- h_1 = Depth of drill hole to deepest point
- h_{min} = Minimum thickness of conrete member
- T_{inst} = Required setting torque
- U = Required gap after torqueing
- Is = Screw-in depth

Table B3.1: Installation parameters FH II-I and FH II-I R

Anchor type FH II-I and FH II-I R				FH II 12/M6 I	FH II 12/M8 I	FH II 15/M10 I	FH II 15/M12 I		
Nominal drill hole diameter	d_0				12	15			
Maximum bit diameter	d _{cut}	\leq		12	2,50	15,	50		
Depth of drill hole	h ₁	\geq	[mm]	5	85	95	5		
Diameter of clearance hole	df	\leq	_	7	9	12	14		
Required gap after torquing ¹⁾	U			3 - 5					
Required setting torque ¹⁾	T _{inst}		[Nm]		15	25			
Minimum screw-in depth	ls	≥	[mm]	11 + U	13 + U	10 + U	12 + U		
Maximum screw-in depth	ls	≤	- [mm]	20 + U					
Maximum torque on fixture in combination with screws and threaded rods strength class ≥ 5.8 resp. $\geq A50$	max	T _{fix}	[Nm]	3	8	15	20		

¹⁾ At least one of the requirements concerning the gap U or the required setting torque T_{inst} have to be fulfilled

(Fig. not to scale)

Annex B 3

fischer High-Performance Anchor FH II, FH II-I

Intended use

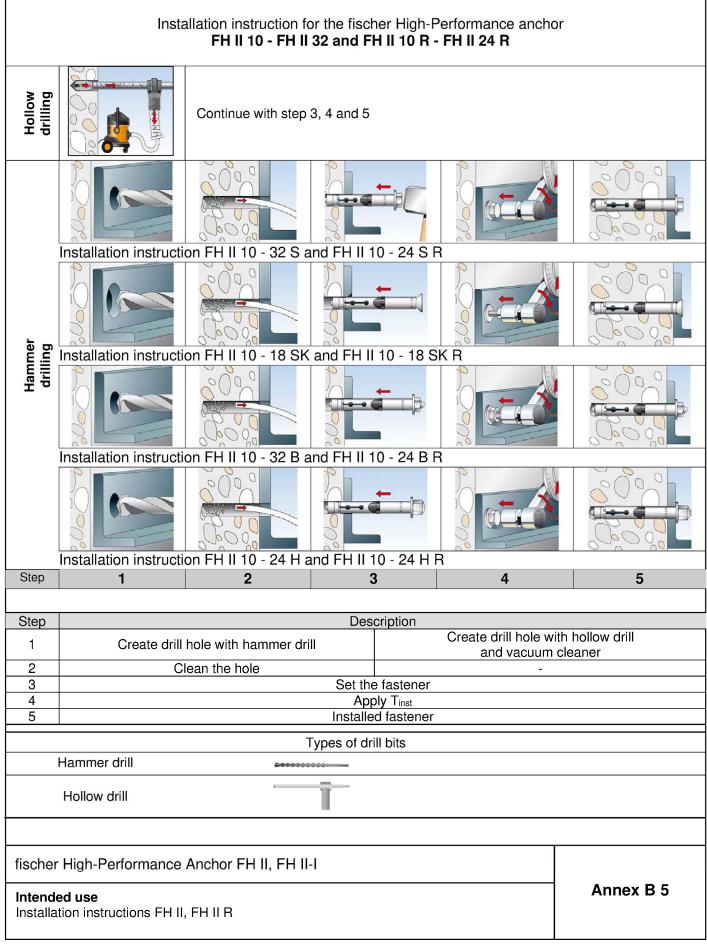
Installation parameters FH II-I, FH II-I R

8.06.01-618/20

Installation instructions:

- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener
- Checking before placing the fastener to ensure that the strength class of the concrete in which the fastener is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- Check of concrete being well compacted, e.g. without significant voids
- · Hammer or hollow drilling according to Annex B5 and B6
- Drill hole created perpendicular +/- 5° to concrete surface, positioning without damaging the reinforcement
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application

fischer High-Performance Anchor FH II, FH II-I


Intended Use Installation instructions

Annex B 4

Page 13 of European Technical Assessment ETA-07/0025 of 23 September 2020

English translation prepared by DIBt

	Installation		ligh-Performance anchor interr I d FH II-I R	nal thread						
Hollow drilling		Continue with step 2, 3, and	d 4							
Hammer drilling										
Step	1	2	3	4						
Step		D	escription							
1		Create drill hole with hammer drill, clean drill hole drill hole drill hole								
2			shed with the surface of the concr	rete						
3	Tighten the anchor. Th allowed.	ne included hexagon bit in the	package should be used. Other t	ightening methods are						
	Tighten the anchor in		3 - 5 mm or the required setting	torque T _{inst} is reached.						
4	Attach the fixture and determined depending and Is,min including the) on the thickness of fixture t _{fix}	or rod. The length of the screw or a diministration of the screw or a diministration of the screw or a screw of the screw							
		Turner e								
	Hammer drill		f drill bits							
	Hollow drill									
fische	er High-Performance	Anchor FH II, FH II-I								
	ded use ation instructions FH II	-I, FH II-I R		Annex B 6						

Anchor type FH II-S, -SK, -B, -H and FH II-S R, -SK R, -B R, -H R			FH II 10	FH II 12	FH II	FH II	FH II	FH II	FH II	
Steel failure			10	12	15	18	24	28	32	
FH II-S, -B,			16,1	29,3	46,4	67,4	125,3	195,8	282,0	
FH II-H, FH II-H R, -B R	_ N _{Rk,s}	[kN]	16,1	29,3	46,4	67,4	125,3		202,0	
FH II-SK	_INRK,S		16,1	29,3	46,4	67,4	125,5	2)	,	
Partial factor	γ _{Ms} ¹⁾	[-]	10,1	20,0	40,4	1,5		,		
FH II-S R	TVIS	L J	16,1	29,3	46,4	67,4	125,3	2	2)	
FH II-SK R	-N _{Rk,s}	[kN]	16,1	29,3	46,4	67,4	120,0	2)		
Partial factor	γ _{Ms} ¹⁾	[-]	10,1	23,5	40,4	1,6		,		
Pullout failure	γMs ′	[]				1,0				
Characteristic resistance in cracked concrete C20/25 FH II and FH II R			7,5	12,0	16,0	25,0	34,4	48,1	63,3	
Characteristic resistance in uncracked concrete C20/25 FH II	— N _{Rk,p}	[kN]	12,5	22,9	28,8	35,2	49,2	68,8	90,4	
Characteristic resistance in uncracked concrete C20/25 FH II R	_		12,5	20,0	28,8	35,2	49,2	2	2)	
		C25/30				1,12				
		C30/37				1,22				
Increasing factors for NRK,p for	Ψc	C35/45	1,32							
cracked and uncracked concrete		C40/50	1,41							
		C45/55	1,50							
		C50/60	1,58							
Installation factor	γinst	[-]				1,0				
Concrete cone failure and splitting						,				
Effective embedment depth	h _{ef}	[mm]	40	60	70	80	100	125	150	
Factor for cracked concrete	k _{cr,N}					7,7 ³⁾				
Factor for uncracked concrete	kucr,N	—[-]				11,0 ³⁾				
Spacing	Scr,N		120	180	210	240	300	375	450	
Edge distance	Ccr,N	 [mm]	60	90	105	120	150	187,5	225	
Spacing (splitting)	Scr,sp		190	300	320	340	380	480	570	
Edge distance (splitting)	Ccr,sp		95	150	160	170	190	240	285	
Characteristic resistance (splitting)	N ⁰ Rk,sp	[kN]				{N ⁰ rk,c, N		_		
 ¹⁾ In absence of other national regulation ²⁾ Anchor type no performance assessed ³⁾ Based on concrete strength as cylinde ⁴⁾ N⁰_{Rk,c} acc. EN 1992-4:2018 	ns d									

fischer High-Performance Anchor FH II, FH II-I

Performances

Performance characteristics of tension resistance for FH II and FH II R

Anchor type FH II-I and FH II-I R			FH II 12/M6 I	FH II 12/M8 I	FH II 15/M10 I	FH II 15/M12	
Steel failure							
Anchor in combination with screw	/ threa	ded rod c	of galvanised st	eel complying	g with DIN EN IS	SO 898	
Strength class 5.8			10	19	29	43	
Strength class 6.8	– N _{Rk,s}	[kN]	12	23	35	44	
Strength class 8.8	_		16	27	44	44	
Partial factor	γ _{Ms} 1)	[-]		1	,5		
Anchor in combination with screw			of stainless stee	el complying v	with DIN EN ISC) 3506	
Screw/thread strength class A50	N _{Rk,s}	[kN]	10	19	29	43	
Partial factor	$\gamma_{\rm Ms}$ $^{1)}$	[-]		2	,86		
Screw/thread strength class A70	, N _{Rk,s}	[kN]	14	26	41	54	
Partial factor	γ _{Ms} ¹⁾	[-]		1	,87		
Screw/thread strength class A80	N _{Rk,s}	[kN]	16	29	46	46	
Partial factor	γ _{Ms} ¹⁾	[-]		1	,60		
Pullout failure					,		
Characteristic resistance in							
cracked concrete C20/25	_N _{Rk,p}	[kN]	9,	0	1	2,0	
Characteristic resistance in uncracked concrete C20/25			20,0		28,8		
ncreasing factors for NRk,p		C25/30		1,	12		
		C30/37		1,	22		
	ψc	C35/45		1,	32		
for cracked and uncracked concrete		C40/50	1,41				
		C45/55	1,50				
		C50/60			58		
Installation factor	γinst	[-]			,0		
Concrete cone failure and splitting							
Effective embedment depth	h _{ef}	[mm]	60)	7	70	
Factor for cracked concrete	k _{cr,N}	_r 1		7,	7 ²⁾		
Factor for uncracked concrete	k _{ucr,N}	-[-] -		11	,0 ²⁾		
Spacing	S _{cr,N}	_	18	0	2	10	
Edge distance	Ccr,N	-[mm]	90)	1	05	
Spacing (splitting)	Scr,sp		30	0	3.	20	
Edge distance (splitting)	Ccr,sp		15	0	1	60	
Characteristic resistance (splitting)	N ⁰ Rk,s	p[kN]		min {N ⁰ _R	k,c, N Rk,p} ³⁾		
 In absence of other national regulations Based on concrete strength as cylinder N⁰_{Rk,c} acc. EN 1992-4:2018 		1					

Performance characteristics of tension resistance for FH II-I and FH II-I R

Anchor type FH II-S, -SK, -B, -H a FH II-S R, -SK R, -B R, -H R	and		FH II 10	FH II 12	FH II 15	FH II 18	FH II 24	FH II 28	FH II 32	
Installation factor	γinst	[-]				1,0				
Steel failure without lever arm				•	-		•	•		
FH II-S	_		18,0	33,0	59,0	76,0	146,0	176,4	217,0	
FH II-B	V ⁰ Rk,s	[kN]	16,0	27,2	42,8	61,9	119,0	148,8	169,0	
FH II-H			16,0	27,2	42,8	61,9	119,0	3	3)	
	t _{fix} 2)	[mm]	≥	10	≥	15				
FH II-SK	$V^0_{Rk,s}$	[kN]	18,0 33,0 59,0 76,0 3)							
1111-51	t _{fix} 2)	[mm]	<	10	<	15	,			
	V ⁰ Rk,s	[kN]	8,0	14,0	23,0	34,0				
Partial factor	γ _{Ms} 1)					1,25				
Factor for ductility	k 7	- [-]				1,0				
FH II-S R	V^0 Rk,s	[kN]	18,0	33,0	59,0	76,0	146,0	3	3)	
Partial factor	$\gamma Ms^{1)}$	[-]				1,33				
FH II-B R, -H R	$V^0_{Rk,s}$	[kN]	16,0	27,2	42,8	61,9	119,0	3	5)	
Partial factor	γMs ¹⁾	[-]				1,25				
	t _{fix} 2)	[mm]	≥	10	≥	15				
FH II-SK R	V^0 Rk,s	[kN]	18,0	33,0	59,0	76,0		3)		
	t _{fix} 2)	[mm]	<	10		15				
	$V^0_{Rk,s}$	[kN]	8,0	14,0	23,0	34,0				
Partial factor	γ _{Ms} 1)	[-]				1,33				
Factor for ductility	k 7	-				1,0				
Steel failure with lever arm and	concret	te pryou	t failure			1				
Characteristic bending resistance FH II-S, -SK, -B, -H	M^0 Rk,s	[Nm]	12	30	60	105	266	518	896	
Partial factor	γMs ¹⁾	[-]				1,25				
Characteristic bending resistance FH II R	M ⁰ Rk,s	[Nm]	12	30	60	105	266	3	3)	
Partial FH II-B R, -H R	1)					1,25				
factor FH II-S R, -SK R	- γMs ¹⁾	[-]				1,33				
Factor for pryout failure	k ₈	[-]	1,0			2	,0			
Concrete edge failure		•		1						
Effective embedment depth for calculation	$I_{\rm f} =$	_ [mm]				h _{ef}				
Outside diameter of a fastener	dnom	_ ()	10	12	15	18	24	28	32	
 In absence of other national regulat The thickness of the fixture has influ No performance assessed 		the chara	cteristic res	sistance for	shear load	ds, steel fai	lure withou	t lever arm		
fischer High-Performance And	hor FH	II, FH II	-1							

Anchor type FH II-I and FH II-I R			FH II 12/M6 I	FH II 12/M8 I	FH II 15/M10 I	FH II 15/M12 I	
Installation factor	γinst	[-]	L. L		1,0		
Steel failure without lever arm					,		
Anchor in combination with screw	v / threade	d rod o	of galvanised st	teel complyin	g with DIN EN IS	O 898:2013	
Strength class 5.8			5	9	15	21	
Strength class 6.8	V ⁰ Rk,s	[kN]	6	11	18	24	
Strength class 8.8			8	14	23	24	
Partial factor	$\gamma Ms^{1)}$				1,25		
Factor for ductility	k 7	- [-]			1,0		
Anchor in combination with screw	v / threade	d rod o	of stainless stee	el complying	with DIN EN ISO	3506:2010	
Strength class A50	V ⁰ Rk,s	[kN]	5	9	15	21	
Partial factor	$\gamma_{Ms}{}^{1)}$	[-]			2,38		
Strength class A70	V ⁰ Rk,s	[kN]	7	13	20	30	
Partial factor	$\gamma Ms^{1)}$	[-]			1,56		
Strength class A80	V ⁰ Rk,s	[kN]	8	15	23	32	
Partial factor	γ _{Ms} ¹⁾		I		1,33		
Factor for ductility	k ₇	- [-]	1,0				
Steel failure with lever arm and co		vout fai	lure) -		
Anchor in combination with screw				complying wi	th DIN EN ISO 898	3:2013	
Strength class 5.8		j	8	19	37	65	
Strength class 6.8	M ⁰ Rk,s	[Nm]	9	23	44	78	
Strength class 8.8		[]	12	30	60	105	
Partial factor	γ _{Ms} 1)			1	1,25		
Factor for ductility	k7	-[-]			1,0		
Anchor in combination with screw		d rod of	stainless steel	complying wit		06.2010	
Strength class A50	M ⁰ Rk,s	[Nm]	8	19	37	65	
P Partial factor	γMs ¹⁾	[-]			2,38		
Strength class A70	M ⁰ Rk,s		11	26	52	92	
Partial factor	γ _{Ms} ¹⁾	[-]	••	20	1,56		
Strength class A80	M ⁰ Rk,s	[Nm]	12	30	60	105	
Partial factor	γMs ¹⁾	[]	• =		1,33	1 100	
Factor for ductility	k7	[-]			1,0		
Factor for pryout failure	k	-''			2,0		
Concrete edge failure					, -		
Effective embedment depth for	lf =				h.;		
calculation		_ [mm]			h _{ef}		
Outside diameter of fastener	dnom		1	12		15	

fischer High-Performance Anchor FH II, FH II-I

Performances

Performance characteristics of shear resistance for FH II-I and FH II-I R

English translation prepared by DIBt

			R30			R60	
Anchor type		N _{Rk,s,fi,30} [kN]	N _{Rk,p,fi,30} [kN]	N ⁰ _{Rk,c,fi,30} [kN]	N _{Rk,s,fi,60} [kN]	N _{Rk,p,fi,60} [kN]	N ⁰ Rk,c,fi,60 [kN]
FH II 10, FH II 10 R		0,2	1,8	1,8	0,2	1,8	1,8
FH II 12, FH II 12 R		2,0	3,0	5,0	1,3	3,0	5,0
FH II 15, FH II 15 R		3,2	4,0	7,4	2,3	4,0	7,4
FH II 18, FH II 18 R		4,8	6,3	10,3	3,9	6,3	10,3
FH II 24, FH II 24 R		8,9	9,0	18,0	7,3	9,0	18,0
FH II 28		13,9	12,6	31,4	11,3	12,6	31,4
FH II 32		20,0	16,5	49,6	16,3	16,5	49,6
FH II 12/M6-I,	5.8, A50 ¹⁾	0,1			0,1		
FH II 12/M6-I R	8.8, A70, A80 ^{1) 2)}	0,2	0.0	5.0	0,2		5.0
FH II 12/M8-I,	5.8, A50 ¹⁾	1,3	2,3	5,0	0,8	2,3	5,0
FH II 12/M8-I R	8.8, A70, A80 ^{1) 2)}	2,0			1,3		
FH II 15/M10-I,	5.8, A50 ¹⁾	2,0			1,4		
FH II 15/M10-I R	8.8, A70, A80 ^{1) 2)}	3,2			2,3		
FH II 15/M12-I,	5.8/A50 ¹⁾	3,0	3,0	7,4	2,4	3,0	7,4
FH II 15/M12-I R	8.8, A70, A80 ^{1) 2)}	4,8			3,9		
			R90			R120	
Anchor type		N _{Rk,s,fi,90} [kN]	N _{Rk,p,fi,90} [kN]	N ⁰ _{Rk,c,fi,90} [kN]	N _{Rk,s,fi,120} [kN]	N _{Rk,p,fi,120} [kN]	N ⁰ _{Rk,c,fi,12} [kN]
FH II 10, FH II 10 R		0,1	1,8	1,8	0,1	1,5	1,5
FH II 12, FH II 12 R		0,6	3,0	5,0	0,1	2,4	4,0
FH II 15, FH II 15 R		1,4	4,0	7,4	1,0	3,2	5,9
FH II 18, FH II 18 R		3,0	6,3	10,3	2,6	5,0	8,2
FH II 24, FH II 24 R		5,6	9,0	18,0	4,8	7,2	14,4
FH II 28		8,8	12,6	31,4	7,5	10,1	25,2
FH II 32		12,6	16,5	49,6	10,8	13,2	39,7
FH II 12/M6-I,	5.8, A50 ¹⁾	0,1			0,1		,
FH II 12/M6-I R	8.8, A70, A80 ^{1) 2)}	0,1		5.0	0,1		4.0
FH II 12/M8-I,	5.8, A50 ¹⁾	0,4	2,3	5,0	0,1	1,8	4,0
FH II 12/M8-I R	8.8, A70, A80 ^{1) 2)}	0,6	1		0,2		
FH II 15/M10-I,	5.8, A50 ¹⁾	0,9			0,6		
FH II 15/M10-I R	8.8, A70, A80 ^{1) 2)}	1,4		7.4	1,0		5.0
			3,0	7,4		2,4	5,9
FH II 15/M12-I,	5.8/A50 ¹⁾	1,9	0,0	.,.	1,6	_, .	- , -

¹⁾ Intermediate values by linear interpolation

²⁾ In combination with screw / threaded rod strength class 8.8, A70, A80

fischer High-Performance Anchor FH II, FH II-I

Performances

Performance characteristics of tension resistance under fire exposure

				R30			R60	
Anchor type			V _{Rk,s,fi} [kN]		M ⁰ _{Rk,s,fi,30} [Nm]	V _{Rk,s,fi,} [kN]		∕/ ⁰ _{Rk,s,fi,60} [Nm]
FH II 10, FH II 10 R			0,3		0	0,3		0
FH II 12, FH II 12 R			2,0		2	1,3		1
FH II 15, FH II 15 R			3,2		4	2,3		3
FH II 18, FH II 18 R			4,8		7	3,9		6
FH II 24, FH II 24 R			8,9		19	7,3		15
=H II 28			13,9)	37	11,3		30
FH II 32			20,0		64	16,3		52
	5.8, A	50 ¹⁾	0,2		0	0,2		0
FH II 12/M6 I R		70, A80 ^{1) 2)}	0,3		0	0,3		0
FH II 12/M8 I,	5.8, A		1,3		1	0,8		1
FH II 12/M8-I R		70, A80 ^{1) 2)}	2,0		2	1,3		1
	5.8, A	<u>70, A00 / /</u>	2,0		3	1,3		2
FH II 15/M10-I R	0.0, A	70, A80 ^{1) 2)}	3,2		4			3
	8.8, A 5.8/A5	10, AOU'''''			4 4	2,3		<u> </u>
FH II 15/M12-I,			3,0			2,4		
FH II 15/M12-I R	8.8, A	70, A80 ^{1) 2)}	4,8	 R90	7	3,9	 R120	6
Anchor type			V _{Rk,s,fi}		M ⁰ Rk,s,fi,90	V _{Rk,s,fi,1}		1 ⁰ Rk,s,fi,120
			[kN]		[Nm]	[kN]		[Nm]
FH II 10, FH II 10 R			0,2		0	0,1		0
FH II 12, FH II 12 R			0,6		1	0,2		0
FH II 15, FH II 15 R			1,4		2	1,0		1
FH II 18, FH II 18 R			3,0		5	2,6		4
FH II 24, FH II 24 R			5,6		12	4,8		10
FH II 28			8,8		23	7,5		20
FH II 32			12,6	6	40	10,8		34
FH II 12/M6-I,	5.8, A	50 ¹⁾	0,1		0	0,1		0
FH II 12/M6-I R		70, A80 ^{1) 2)}	0,2		0	0,1		0
FH II 12/M8-I,	5.8, A		0,4		1	0,1		0
FH II 12/M8-I R		70, A80 ^{1) 2)}	0,6		1	0,2		0
FH II 15/M10 I,	5.8, A		0,9		2	0,6		1
FH II 15/M10-I R		70, A80 ^{1) 2)}	1,4		3	1,0		1
	5.8/A5							3
FH II 15/M12 I, FH II 15/M12-I R		70, A80 ^{1) 2)}	<u> </u>		<u>4</u> 6	1,6		<u> </u>
1) Intermediate values b	y linear	interpolation		470 400	0	2,0		_
²⁾ In combination with s Table C6.2: Minim			U		s of anchors	under fire (exposure	
		nd shear lo	ads	-				
Anchor type		FH II 10	FH 12 FH 12-I	FH 15 FH 15-I	FH II 18	FH II 24	FH 28	FH II 32
Spacing Scr,N,fi					4x h _{ef}		·	
Spacing Smin,fi		40	50	60	70	80	100	120
Ccr,N,fi	[mm]				2 x h _{ef}			
Edge	[11111]							
distance C _{min,fi}			for fire expo		_{in,fi} = 2 x h _{ef} , ore than one	side c _{min,fi} ≥	300 mm	
fischer High-Perfor	mance	Anchor FH						
noonor night i entit			,				Anne	

Table C7.1: Minimum thickness of concrete member, minimum spacing and minimum edge distances FH II, FH II R

Anchor type FH II-S, -SK, -B, -H a FH II-S R, -SK R, -B R, -H R	Ind		FH II 10	FH II 12	FH II 15	FH II 18	FH II 24	FH II 28	FH II 32
Minimum thickness of concrete member	h _{min}	[mm]	80	120	140	160	200	250	300
Minimum spacing,	Smin		40	50	60	70	80	100	120
cracked concrete	for $c \ge$	1	40	80	120	140	180	200	260
Minimum edge distance,	Cmin	— [mm]	40	50	60	70	80	100	120
cracked concrete	for $s \ge$		40	80	120	160	200	220	280
Minimum spacing,	Smin		40	60	70	80	100	120	160
uncracked concrete	for $c \ge$		70	100	100	160	200	220	360
Minimum edge distance,	Cmin	— [mm]	40	60	70	80	100	120	180
uncracked concrete	for $s \ge$		70	100	140	200	220	240	380

Intermediate values may be calculated by linear interpolation

Table C7.2: Minimum thickness of concrete member, minimum spacing and minimum edge distances FH II-I, FH II-I R

Anchor type FH II-I and FH II-I R			FH II 12/M6 I FH II 12/M8 I	FH II 15/M10 I FH II 15/M12 I
Minimum thickness of concrete member	h _{min}	[mm]	125	150
Minimum spacing,	Smin		50	60
cracked concrete	for $c \ge$		80	120
Minimum edge distance,	Cmin	— [mm]	50	60
cracked concrete	for $s \ge$	_	80	120
Minimum spacing,	Smin		60	70
uncracked concrete	for c ≥		100	100
Minimum edge distance,	Cmin	— [mm]	60	70
uncracked concrete	for $s \ge$	_	100	140

Intermediate values may be calculated by linear interpolation.

Performances

Minimum thickness of concrete member, minimum spacing and minimum edge distances

٦

	erformance characteris Itegory C1 for FH II-S,							performa	ince
Anchor type FH I FH II-S R, -SK R,	-S, -SK, -B, -H and -B R, -H R			FH II 12	FH II 15	FH II 18	FH II 24	FH II 28	FH II 32
Steel failure					•	•	1		1
	FH II-S, -B			29,3	46,4	67,4	125,3	195,8	282,0
	FH II-H, -H R, -B R	NRk,s,C1	[kN]	29,3	46,4	67,4	125,3	3	;)
Characteristic	FH II-SK	_		29,3	46,4	67,4		3)	
resistance of tension load	Partial factor	γMs,C1 ¹⁾	[-]			1	,5		
	FH II-S R	NRk,s,C1	[kN]	29,3	46,4	67,4	125,3	3	i)
	FH II-SK R			29,3	46,4	67,4		3)	
	Partial factor	γ _{Ms,C1} 1)	[-]			1	,6		
Pullout failure				•					
Characteristic res		N _{Rk,p,C1}	[kN]	12,0	16,0	25,0	36,0	50,3	66,1
tension load in cr	acked concrete C1	γ _{Mp,C1} 1)	[-]			1	,5		
Steel failure with	nout lever arm								
Characteristic re	esistance of shear load	C1							
FH II-S				25,0	41,0	60,0	123,0	141,0	200,0
FH II-B		VRk,s,C1	[kN]	17,0	30,0	46,0	103,0	117,0	169,0
FH II-H		_		17,0	30,0	46,0	103,0		
		t _{fix} 2)	[mm]	≥ 10	≥	15			
		V _{Rk,s,C}	[kN]	25,0	41,0	60,0		3)	
FH II-SK		t _{fix} ²⁾	[mm]	< 10	<	15		0)	
		V _{Rk,s,C}	[kN]	11,0	16,0	27,0			
Partial factor		γMs,C1 ¹⁾	[-]			1,	25		
FH II-S R		$V_{Rk,s,C1}$	[kN]	25,0	41,0	60,0	123,0		-
Partial factor		γMs,C1 ¹⁾	[-]			1,	33		
FH II-B R, -H R		V _{Rk,s,C1}	[kN]	17,0	30,0	46,0	103,0		-
Partial factor		γMs,C1 ¹⁾	[-]			1,	25		
		t _{fix} ²⁾	[mm]	≥ 10	≥	15			
		V _{Rk,s,C1}	[kN]	25,0	41,0	60,0		3)	
FH II-SK R		t _{fix} ²⁾	[mm]	< 10	<	15		0,	
		V _{Rk,s,C1}	[kN]	11,0	16,0	27,0			
Partial factor		γMs,C1 ¹⁾	. 1			1,	33		
Factor for annula	r gap	αgap	- [-]			0,	50		
1) In channes of att	ar national regulations								

¹⁾ In absence of other national regulations

²⁾ The thickness of the fixture has influence to the characteristic resistance for shear loads, steel failure without lever arm

³⁾ No performance assessed

fischer High-Performance Anchor FH II, FH II-I

Performances

Performance characteristics of tension and shear resistance for seismic performance category C1

٦

	II-S, -SK, -B, -H and			FH II	FHI				
FH II-S R, -SK I	R, -B R, -H R			12	15	18	24	28	32
Steel failure			I						
	FH II-S, -B			29,3	46,4	67,4	125,3	19	,
	FH II-H, -H R, -B R	NRk,s,C2	[kN]	29,3	46,4	67,4	125,3	3)
Characteristic resistance of	FH II-SK			29,3	46,4	67,4		3)	
tension load	Partial factor	γ Ms,C2 ¹⁾	[-]			1	,5		
C2	FH II-S R	— N	[kN]	29,3	46,4	67,4	125,3	3)
	FH II-SK R	— N _{Rk,s,C2}	נגואן	29,3	46,4	67,4		3)	
	Partial factor	γMs,C2 ¹⁾	[-]			1	,6		
Pullout failure									
Characteristic re		N _{Rk,p,C2}	[kN]	6,2	11,3	21,8	43,0	65	,9
tension load in	cracked concrete C2	γMp,C2 ¹⁾	[-]			1	,5		
Steel failure w	ithout lever arm								
Characteristic	resistance of shear lo	ad C2							
FH II-S				14,7	28,9	41,0		100,7	
FH II-B		VRk,s,C2	[kN]	9,8	20,9	34,1	61,9	67	,2
FH II-H				9,8	20,9	34,1	61,9	3)
		t _{fix} ²⁾	[mm]	≥ 10	≥	15			
		V _{Rk,s,C2}	[kN]	14,8	23,3	33,8		3)	
FH II-SK		t _{fix} ²⁾	[mm]	< 10	<	15		0)	
		V _{Rk,s,C2}	[kN]	6,3	9,1	15,1	1		
Partial factor		$\gamma_{Ms,C2}^{1)}$	[-]			1,	25		
FH II-S R		V _{Rk,s,C2}	[kN]	14,7	28,9	41,0	100,7	3)
Partial factor		γMs,C2 ¹⁾	[-]			1,			
FH II-B R, -H R		V _{Rk,s,C2}	[kN]	9,8	20,9	34,1	61,9	3)
Partial factor		γ Ms,C2 ¹⁾	[-]			1,	25		
		t _{fix} ²⁾	[mm]	≥ 10	≥	15			
		V _{Rk,s,C2}	[kN]	14,8	23,3	33,8		3)	
FH II-SK R		t _{fix} ²⁾	[mm]	< 10	<	15		3)	
		V _{Rk,s,C2}	[kN]	6,3	9,1	15,1	1		
Partial factor		γMs,C2 ¹⁾				-	33		
Factor for annu	lar gap	αgap	-[-]				50		

²⁾ The thickness of the fixture has influence to the characteristic resistance for shear loads, steel failure without lever arm ³⁾ No performance assessed

fischer High-Performance Anchor FH II, FH II-I

Performances

Performance characteristics of tension and shear resistance for seismic performance category C2

Anchor type FH II-S, -SK, -B, -H FH II-S R, -SK R, -B R, -H R	and			FH II 10	FH II 12	FH II 15	FH I 18	I FH 24		FH 32
Tension load cracked concrete		Ν	[kN]	3,6	5,7	7,6	11,9	17,	1 24,0	31,5
Corresponding displacements		δ _{N0}	[mm] -	1,0	1,0	1,0	1,0	1,0	0,7	0,7
corresponding displacements		δ _{N∞}	[IIIII]	1,7	1,6	1,6	1,6	1,8	3 1,3	1,1
Tension load uncracked concrete)	Ν	[kN]	6,0	11,2	14,1	17,2	24,		44,2
Corresponding displacements		<u>δno</u> δ _{N∞}	[mm]	0,6 1,7	1,0 1,6	1,0 1,6	1,0 1,6	1,0 1,8		0,3
Anchor type FH II-I and FH II-I R Tension load cracked concrete			N		[kN]		FH 12 FH 12 4,3		FH II 1 5	,7
			IN		[]		95		14	. 1
Tension load uncracked concrete	9						9,5 1.7			.1 .9
Tension load uncracked concrete Corresponding displacements			Νδ _{N∞}		[mm]		9,5 1,7 2,2		1	,1 ,9 ,9
Tension load uncracked concrete	under	· static a	<u>δ</u> νο δν∞		shear I	oads 1 H II 15	1,7 2,2	-S and FH II 24	1	,9
Tension load uncracked concrete Corresponding displacements Table C10.3: Displacements Anchor type FH II-S and FH II-Sk Shear load in cracked and	under	static a	<u>δ_{N0}</u> δ _{N∞} and qua	I FH 12	shear I	H II	1,7 2,2 for FH II FH II	FH II	1 2 FH II-SK	9 9 FH II
Tension load uncracked concrete Corresponding displacements Table C10.3: Displacements Anchor type FH II-S and FH II-S Shear load in cracked and uncracked concrete Corresponding	under <	[kN]	<u>δ_{N∞}</u> and qua FH I 10,3 2,4	I FH 12 3 18 2,7	[mm] shear I II FI 2 1 ,9 3	H II 15	1,7 2,2 for FH II FH II 18	FH II 24 83,4 7,0	1 2 FH II-SK FH II 28	9 9 FH II 32
Tension load uncracked concrete Corresponding displacements Table C10.3: Displacements Anchor type FH II-S and FH II-Sk Shear load in cracked and uncracked concrete	under (V		<u>δ_{N0}</u> δ _{N∞} and qua FH I 10	I FH 12 3 18 2,7	[mm] shear I II FI 2 1 ,9 3 7 4	H II 15 3,7	1,7 2,2 for FH II FH II 18 43,4	FH II 24 83,4	1 2 FH II-SK FH II 28 99,4	9 9 FH II 32 124,0
Tension load uncracked concrete Corresponding displacements Table C10.3: Displacements Anchor type FH II-S and FH II-S Shear load in cracked and uncracked concrete Corresponding	under < V δνο δν∞	[kN] – [mm]	<u>δ_{N∞}</u> and qua FH I 10,3 2,4 3,6	I FH 12 3 18 2,7 4,1	[mm] shear I II FI 2 1 ,9 3 7 4 1 6	H II 15 3,7 -,4 5,6	1,7 2,2 for FH II FH II 18 43,4 5,0 7,5	FH II 24 83,4 7,0 10,5	1 2 FH II-SK FH II 28 99,4 6,0 9,0	9 9 FH II 32 124,0 8,0
Tension load uncracked concrete Corresponding displacements Table C10.3: Displacements Anchor type FH II-S and FH II-Sk Shear load in cracked and uncracked concrete Corresponding displacements	under < V δνο δν∞	[kN] – [mm]	<u>δ_{N∞}</u> and qua FH I 10,3 2,4 3,6	I FH 12 3 18 2,7 4,1 si static	[mm] shear I II FI 2 1 ,9 3 7 4 1 6 shear I I II FI	H II 15 3,7 -,4 5,6	1,7 2,2 for FH II FH II 18 43,4 5,0 7,5	FH II 24 83,4 7,0 10,5	1 2 FH II-SK FH II 28 99,4 6,0 9,0	9 9 FH II 32 124,0 8,0
Tension load uncracked concrete Corresponding displacements Table C10.3: Displacements Anchor type FH II-S and FH II-Sk Shear load in cracked and uncracked concrete Corresponding displacements Table C10.4: Displacements	under < V δνο δν∞	[kN] – [mm]	<u>δ</u> Νο δΝ∞ and qua FH I 10,3 2,4 3,6 and qua FH I	I FH 12 3 18 2,7 4,1 si static I FH 12	[mm] shear I II FI 2 - ,9 3 7 4 1 6 shear I FI 2 - 1 6 shear I FI 2 -	H II 15 3,7 ,4 6,6 oads 1 H II	1,7 2,2 for FH II FH II 18 43,4 5,0 7,5 for FH II FH II	FH II 24 83,4 7,0 10,5 -B and FH II	1 2 FH II-SK FH II 28 99,4 6,0 9,0 FH II-H FH II	9 9 FH II 32 124,0 8,0 12,0 FH II
Tension load uncracked concrete Corresponding displacements Table C10.3: Displacements Anchor type FH II-S and FH II-Sk Shear load in cracked and uncracked concrete Corresponding displacements Table C10.4: Displacements Anchor type FH II-B and FH II-H Shear load in cracked and	under < V δν₀ δν∞ under	[kN] - [mm]	$\frac{\delta_{N0}}{\delta_{N\infty}}$ and qua FH I 10,3 2,4 3,6 and qua FH I 10	I FH 12 3 18 2,7 4,1 si static I FH 12 15	shear I II FI 2 - ,9 3 7 4 1 6 shear I 1 ,9 3 7 4 1 6 shear I 1 ,4 2	H II 15 3,7 ,4 5,6 0ads 1 H II 15	1,7 2,2 for FH II FH II 18 43,4 5,0 7,5 for FH II FH II 18	FH II 24 83,4 7,0 10,5 -B and FH II 24	1 2 FH II-SK FH II 28 99,4 6,0 9,0 FH II-H FH II 28	9 9 FH II 32 124,0 8,0 12,0 FH II 32

fischer High-Performance Anchor FH II, FH II-I

Performances

Displacements under tension and shear loads

Anchor type FH II-S R, -SK R, -B R, -H R			FH II 10	FH II 12	FH II 15	FH II 18	FH II 24
Shear load in cracked and uncracked concrete	V	[kN]	10,3	16,0	24,6	37,7	68,0
Corresponding displacements	<u>δνο</u> δν∞	[mm]	3,5 5,3	3,5 5,3	3,7 5,6	5,7 8,6	9,0 13,5
Table C11.2: Displacements under	r static an	d quasi	static shea	ar loads for	FH II-I an	d FH II-I R	
Anchor type: FH II-I and FH II-I R				FH II 12/M6 I	FH II 12/M8 I	FH II 15/M10 I	FH II 15/M12
Shear load in cracked and uncracked concrete		V	[kN]	4,6	8,3	13,3	13,7
Corresponding displacements		δνο δν∞	– [mm]	2,6 3,9	2,6 3,9	2,2 3,3	2,2 3,3
for FH II and FH II R Anchor type FH II-S, -SK, -B, -H and		FH II	FH II	FH II	FH II	FH II	FH II
Table C11.3: Displacements under for FH II and FH II R				•		-	
				•		-	FH II 32
for FH II and FH II R Anchor type FH II-S, -SK, -B, -H and FH II-S R, -SK R, -B R, -H R Displacement DLS δ _{N,C2 (DLS)} [r	nml	FH II 12 1,55	FH II 15 2,63	FH II 18 2,04	FH II 24 4,26	FH II 28 3,	32
$\begin{array}{c} \mbox{for FH II and FH II R} \\ \mbox{Anchor type FH II-S, -SK, -B, -H and} \\ \mbox{FH II-S R, -SK R, -B R, -H R} \\ \mbox{Displacement DLS} & \delta_{N,C2 (DLS)} \\ \mbox{Displacement ULS} & \delta_{N,C2 (ULS)} \end{array} \begin{bmatrix} r \\ r$	nm] —	FH II 1,55 8,71	FH II 15 2,63 11,07	FH II 18 2,04 7,30	FH II 24 4,26 11,70	FH II 28 3, 11	32
for FH II and FH II R Anchor type FH II-S, -SK, -B, -H and FH II-S R, -SK R, -B R, -H R Displacement DLS δN,C2 (DLS) Displacement ULS δN,C2 (ULS) [r Table C11.4: Displacements under for FH II and FH II R	nm]	FH II 12 1,55 8,71	FH II 15 2,63 11,07 seismic p	FH II 18 2,04 7,30 erformanc	FH II 24 4,26 11,70 e category	FH II 28 3, 11 y C2	32 06 ,44
for FH II and FH II R Anchor type FH II-S, -SK, -B, -H and FH II-S R, -SK R, -B R, -H R Displacement DLS δN,C2 (DLS) Displacement ULS δN,C2 (ULS) [r Table C11.4: Displacements under for FH II and FH II R Anchor type FH II-S, -SK and	nm]	FH II 1,55 8,71	FH II 15 2,63 11,07	FH II 18 2,04 7,30	FH II 24 4,26 11,70	FH II 28 3, 11	32
for FH II and FH II R Anchor type FH II-S, -SK, -B, -H and FH II-S R, -SK R, -B R, -H R Displacement DLS $\delta_{N,C2 (DLS)}$ [r Table C11.4: Displacements under for FH II and FH II R Anchor type FH II-S, -SK and FH II-S R, -SK R Displacement DLS $\delta_{N,C2 (DLS)}$	nm]	FH II 1,55 8,71 Pads for FH II	FH II 15 2,63 11,07 seismic p	FH II 18 2,04 7,30 erformanc FH II	FH II 24 4,26 11,70 e category FH II	FH II 28 3, 11 y C2 FH II 28	32 06 ,44 FH II
for FH II and FH II R Anchor type FH II-S, -SK, -B, -H and FH II-S R, -SK R, -B R, -H R Displacement DLS δ _{N,C2 (DLS)} [r Table C11.4: Displacements under for FH II and FH II R Anchor type FH II-S, -SK and FH II-S R, -SK R Displacement DLS δ _{V,C2 (DLS)} [r	nm]	FH II 1,55 8,71 Pads for FH II 12	FH II 15 2,63 11,07 seismic p FH II 15	FH II 18 2,04 7,30 erformanc FH II 18	FH II 24 4,26 11,70 e category FH II 24	FH II 28 3, 11 y C2 FH II 28 4,	32 06 ,44 FH II 32
for FH II and FH II R Anchor type FH II-S, -SK, -B, -H and FH II-S R, -SK R, -B R, -H R Displacement DLS $\delta_{N,C2 (DLS)}$ [r Table C11.4: Displacements under for FH II and FH II R Anchor type FH II-S, -SK and FH II-S R, -SK R Displacement DLS $\delta_{V,C2 (DLS)}$ [r Anchor type FH II-S, -H and	nm]	FH II 1,55 8,71 Pads for FH II 12 3,53	FH II 15 2,63 11,07 seismic p FH II 15 4,18	FH II 18 2,04 7,30 erformanc FH II 18 4,67	FH II 24 4,26 11,70 e category FH II 24 5,59	FH II 28 3, 11 y C2 FH II 28 4,	32 06 ,44 FH II 32 79
for FH II and FH II R Anchor type FH II-S, -SK, -B, -H and FH II-S R, -SK R, -B R, -H R Displacement DLS $\delta_{N,C2 (DLS)}$ [r Table C11.4: Displacements under for FH II and FH II R Anchor type FH II-S, -SK and FH II-S R, -SK R Displacement DLS $\delta_{V,C2 (DLS)}$ [r Anchor type FH II-S, -H and FH II-B R, -H R Displacement DLS $\delta_{V,C2 (DLS)}$ [r	nm]	FH II 1,55 8,71 Pads for FH II 12 3,53 6,62 FH II	FH II 15 2,63 11,07 seismic p FH II 15 4,18 7,38 FH II	FH II 18 2,04 7,30 erformanc FH II 18 4,67 9,03 FH II	FH II 24 4,26 11,70 e category FH II 24 5,59 14,09 FH II	FH II 28 3, 11 y C2 FH II 28 4, 9, FH II	32 06 ,44 FH II 32 79 95 FH II

fischer High-Performance Anchor FH II, FH II-I

Performances

Displacements under tension and shear loads