

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-08/0266 of 7 January 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Rebar connection with fischer injection mortar FIS V

Systems for post-installed rebar connection with mortar

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

24 pages including 3 annexes which form an integral part of this assessment

EAD 330087-00-0601

ETA-08/0266 issued on 24 August 2015

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-08/0266 English translation prepared by DIBt

Page 2 of 24 | 7 January 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 24 | 7 January 2020

European Technical Assessment ETA-08/0266 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The subject of this European technical assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the injection mortar FIS V in accordance with the regulations for reinforced concrete construction.

Reinforcing bars with a diameter ϕ from 8 to 28 mm or the fischer rebar anchor FRA of sizes M12 to M24 according to Annex A and the fischer injection mortar FIS V are used for the post-installed rebar connection. The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between embedded reinforcing bar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connections of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic		Performance	
Reaction to fire		Class A1	
Resistance to fire		See Annex C 2 and C 3	

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-00-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

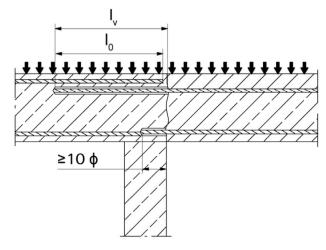
European Technical Assessment ETA-08/0266 English translation prepared by DIBt

Page 4 of 24 | 7 January 2020

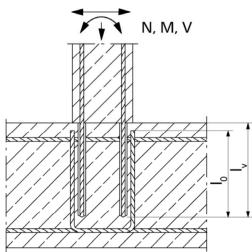
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

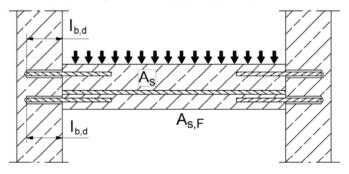
Issued in Berlin on 7 January 2020 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Lange

Installation conditions and application examples reinforcing bars, part 1


Figure A1.1:

Overlap joint with existing reinforcement for rebar connections of slabs and beams


Figure A1.2:

Overlap joint with existing reinforcement at a foundation of a column or wall where the rebars are stressed

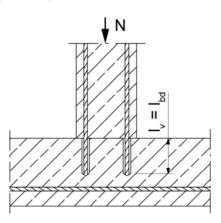
Figure A1.3:

End anchoring of slabs or beams (e.g. designed as simply supported)

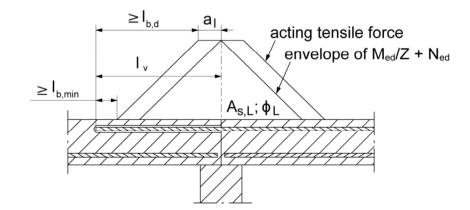
Figures not to scale

Rebar connection with fischer injection mortar FIS V

Product description


Installation conditions and application examples reinforcing bars, part 1

Installation conditions and application examples reinforcing bars, part 2


Figure A2.1:

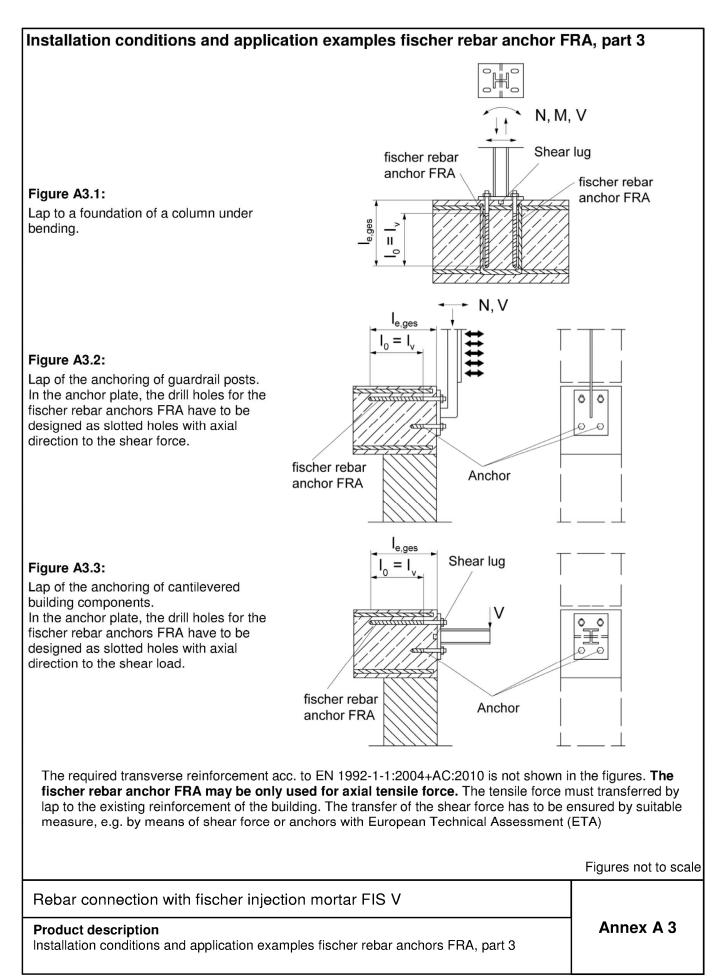
Rebar connection for stressed primarily in compression

Figure A2.2:

Anchoring of reinforcement to cover the enveloped line of acting tensile force in the bending member

Note to figure A1.1 to A1.3 and figure A2.1 to A2.2

In the figures no traverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1: 2004+AC:2010.

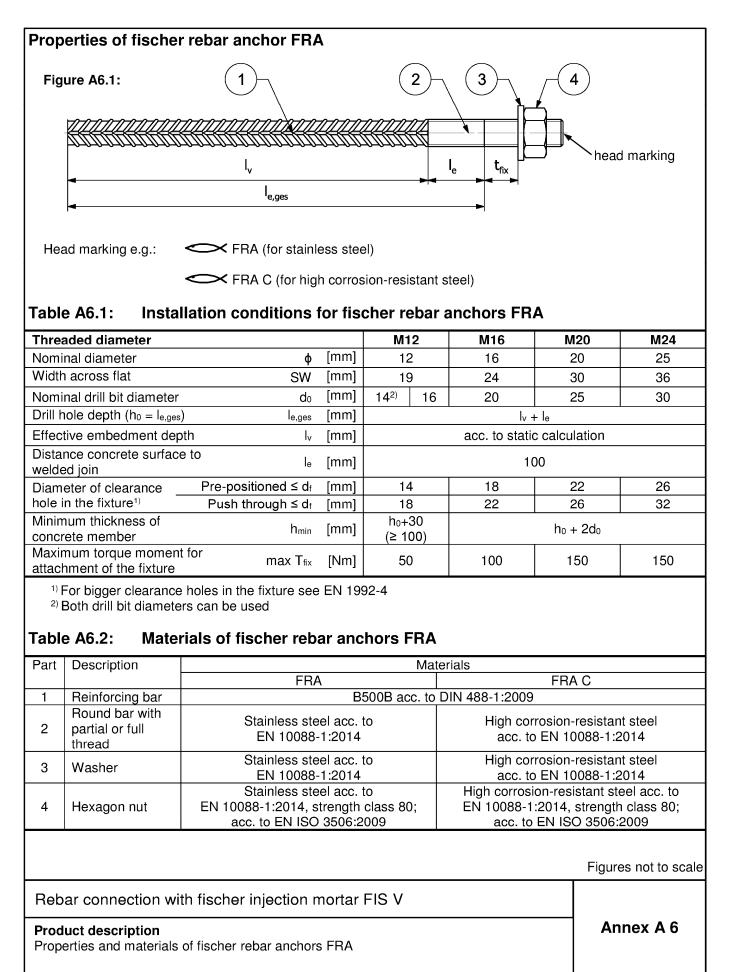

Preparing of joints according to Annex B 2

Figures not to scale

Rebar connection with fischer injection mortar FIS V

Product description Installation conditions and application examples reinforcing bars, part 2 Annex A 2

Overview system components	
Injection cartridge (shuttle cartridge) FIS V with sealing cap Sizes: 350ml, 360 ml, 390 ml, 585 ml, 950 ml, 1500 ml	
Imprint: fischer FIS V or FIS VS Low Speed, processing notes, she hazard code, curing times and processing times (depending on temperature), piston travel scale (optional), size, volume	əlf-life,
Injection cartridge (coaxial cartridge) FIS V with sealing cap; Sizes: 300 ml, 380 ml, 400) ml, 410 ml
Imprint: fischer FIS V or FIS VS Low Speed, processing notes, s hazard code, curing times and processing times (depending on te piston travel scale (optional), size, volume	emperature),
Static mixer FIS MR Plus for injection cartridges up to 410 ml	
Static mixer FIS UMR for injection cartridges from 585 ml	
Injection adapter and extension tube Ø 9 for static mixer FIS MR Plus; Injection adapter and extension tube Ø 9 or Ø 15 for static mixer FIS UMR	
Reinforcing bar (rebar) Sizes: \$\$, \$10, \$12, \$14, \$16, \$20, \$25, \$28 marking	setting depth
fischer rebar anchor FRA Sizes: M12, M16, M20, M24	
Blow out pump ABP	Figures not to scale
Rebar connection with fischer injection mortar FIS V	
Product description Overview system components; Injection mortar, static mixer, injection adapter, reinforcing bar, rebar anchor FRA, blow out pump	Annex A 4


Properties of reinforcing bars (rebar) Figure A5.1: The minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010 ٠ The maximum outer rebar diameter over the rips shall be: ○ The nominal diameter of the rip ϕ + 2 * h (h ≤ 0,07 * ϕ) (φ: Nominal diameter of the bar; h: rip height of the bar) 0 Table A5.1: Installation conditions for rebars 8¹⁾ Nominal diameter of the bar 10¹⁾ 12¹⁾ 14 φ 16 20 25 28 10 12 12 14 14 16 Nominal drill hole diameter 18 20 25 35 do 30 Drill hole depth h_0 $h_0 = I_v$ [mm] Effective embedment depth lv acc. to static calculation Minimum thickness of concrete l_v + 30 h_{min} $l_v + 2d_0$ (≥ 100) member 1) Both drill hole diameters can be used Table A5.2: Materials of rebars Designation Reinforcing bar (rebar) Bars and de-coiled rods class B or C with Reinforcing bar fyk and k according to NDP or NCL of EN 1992-1-1/NA:2013 EN 1992-1-1:2004+AC:2010, Annex C $f_{uk} = f_{tk} = \mathbf{k} \cdot f_{yk}$

Figures not to scale

Rebar connection with fischer injection mortar FIS V

Product description Properties and materials of reinforcing bars (rebar) Annex A 5

Specifications	of intended	use (part 1)				
		e and performan	_			
Anchorages subjec	t to			S V with		
			cing bar	fischer rebai	r anchor FRA	
Hammer drilling with standard drill bit	84000000		all s	izes		
Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Expert"; Bosch "Speed Clean"; Hilti "TE-CD, TE- YD")	Ī		Nominal drill bit diameter (d₀) 12 mm to 35 mm			
	uncracked		Tables:		Tables:	
Static and quasi static load, in	concrete	all sizes	C1.1 C1.2	all sizes	C1.1 C1.2	
Static IOau, III	cracked concrete		C1.3		C1.2 C1.3	
Installation tempera		$T_{i,min} = 0 \ ^{\circ}C \ to \ T_{i,max} = +40 \ ^{\circ}C$				
Fire exposure		all sizes	Annex C2	no performa	ince assessed	
Rebar connecti	on with fische	er injection morta	ar FIS V		Annex B 1	
Specifications (par	rt 1)					

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: reinforcing bar (rebar) size 8 mm to 28 mm
- Fire exposure

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016
- Strength classes C12/15 to C50/60 according to EN 206:2013+A1:2016
- Maximum chloride content of 0,40 % (CL 0.40) related to the cement content according to EN 206:2013+A1:2016
- · Non-carbonated concrete

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1 :2004+AC:2010. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Temperature Range:

- 40°C to +80°C (max. short term temperature +80°C and max long term temperature +50°C).

Installation temperature:

0 °C to +40 °C

Use conditions (Environmental conditions) for fischer rebar anchors FRA

- Structures subject to dry internal conditions (fischer rebar anchors FRA and FRA C)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (fischer rebar anchors FRA and FRA C)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other
 particular aggressive conditions exist (fischer rebar anchors FRA C)
 Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of
 seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in
 desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- · Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EN 1992-1-1:2004+AC:2010 and Annex B 3 and B 4.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

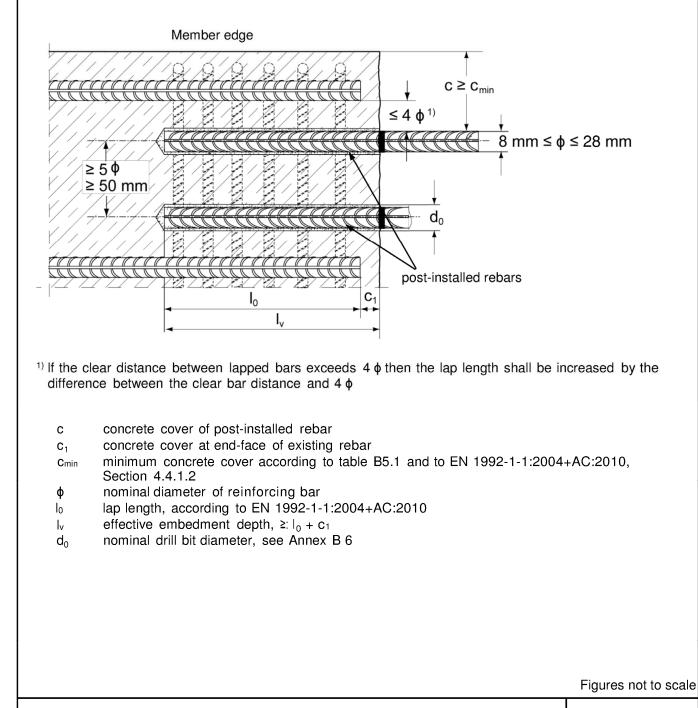
Installation:

- Dry or wet concrete
- · Water filled holes, only with 380 ml, 400 ml or 410 ml cartridges
- · Hole drilling by hammer drill, hollow drill or compressed air drill mode
- · Overhead installation allowed
- The installation of post-installed rebar respectively fischer rebar anchor FRA shall be done only by suitable trained installer and under Supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for Supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

Rebar connection with fischer injection mortar FIS V

Intended use

Specifications (part 2)


Annex B 2

General construction rules for post-installed rebars

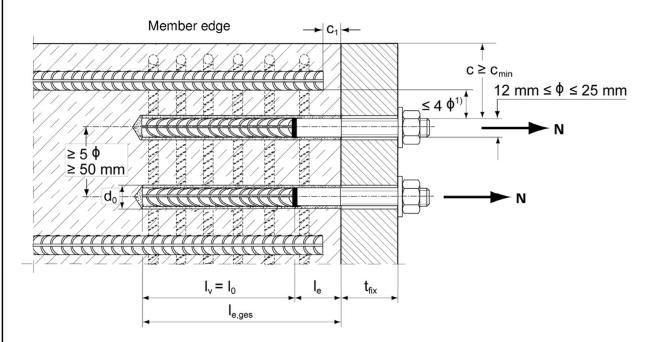
Figure B3.1:

- Only tension forces in the axis of the rebar may be transmitted.
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.

Rebar connection with fischer injection mortar FIS V

Intended use

General construction rules for post-installed rebars


Annex B 3

General construction rules for post-installed rebar anchors FRA

Figure B4.1:

- Only tension forces in the axis of the FRA may be transmitted.
- The tension force must be transferred via an overlap joint to the reinforcement in the building part.
- The transmission of the shear load shall be ensured by appropriate additional measures, e.g. by shear lugs or by anchors with a European Technical Assessment (ETA).
- In the anchor plate, the holes for the tension anchor shall be executed as slotted holes with the axis in the direction of the shear force.

- ¹⁾ If the clear distance between lapped bars exceeds 4ϕ then the lap length shall be increased by the difference between the clear bar distance and 4ϕ .
 - c concrete cover of post-installed rebar anchor FRA
 - c_1 concrete cover at end-face of existing rebar
 - c_{min} minimum concrete cover according to table B5.1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
 - φ nominal diameter of reinforcing bar
 - lo lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
 - $I_{e,ges}$ overall embedment depth, $\ge I_0 + I_e$
 - d₀ nominal drill bit diameter, see Annex B 6
 - Ie length of the bonded in threaded part
 - t_{fix} thickness of the fixture
 - Iv effective embedment depth

Figures not to scale

Rebar connection with fischer injection mortar FIS V

Intended use

General construction rules for post-installed rebar anchors FRA

Annex B 4

Table B5.1:	Minimum concrete cover $c_{min}^{1)}$ depending of the drilling method and the drilling tolerance			
	nominal diameter Minimum concrete cover cmin			er Cmin
Drilling method	of reinforcing bar φ [mm]	Without drilling aid [mm]	With dril	lling aid [mm]
Hammer drilling with standard drill	< 25	30 mm + 0,06 l _v ≥ 2 φ	$30 \text{ mm} + 0,02 \mid_{v} \geq 2 \phi$	
bit	≥ 25	40 mm + 0,06 l _v ≥ 2 φ	40 mm + 0,02 $ _v \ge 2 \phi$	
Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Expert"; Bosch "Speed Clean"; Hilti "TE-CD, TE- YD")	< 25	30 mm + 0,06 l _v ≥ 2 ¢	30 mm + 0,02 l _v ≥ 2 ¢	Drilling aid
	≥ 25	40 mm + 0,06 l _v ≥ 2 ¢	40 mm + 0,02 l _v ≥ 2 φ	
Compressed air	< 25	50 mm + 0,08 l _v	50 mm + 0,02 l _v	
drilling	≥ 25	60 mm + 0,08 l _v ≥ 2 φ	60 mm + 0,02 l _v ≥ 2 φ	
		Annex B4, figure B4.1 over as specified in EN	1992-1-1:2004+AC:2010) must be observed.
Table B5.2:	Dispensers and I _{v,max}	l cartride sizes corr	esponding to maxim	um embedment depth

reinforcing bars (rebar)	rebar anchor	Manual dispenser	Accu and pneumatic dispenser (small)	Pneumatic dispenser (large)
	FRA 🛛		Cartridge size	
		< 5	00 ml	> 500 ml
φ [mm]	thread [M]	l _{v,max} / l _{e,g}	ges,max [mm]	I _{v,max} / I _{e,ges,max} [mm]
8			1000	
10		1000	1000	
12	FRA 12		1200	1800
14			1200	1000
16	FRA 16		1500	
20	FRA 20	700	1300	
25	FRA 24	700	1000	2000
28		500	700	2000

Rebar connection with fischer injection mortar FIS $\ensuremath{\mathsf{V}}$

Intended use Annex B 5 Minimum concrete cover; dispenser and cartridge sizes corresponding to maximum embedment depth

Table B6.1: Working times twork and curing times tcure					
Temperature in the anchorage base		orking time ¹⁾	Minimum curing time ²⁾ t _{cure}		
[°Č]	FIS V	FIS VS Low Speed	FIS V	FIS VS Low Speed	
>±0 to +5	13 min ³⁾		3 h	6 h	
>+5 to +10	9 min ³⁾	20 min	90 min	3 h	
>+10 to +20	5 min	10 min	60 min	2 h	
>+20 to +30	4 min	6 min	45 min	60 min	
>+30 to +40	2 min ⁴⁾	4 min	35 min	30 min	

¹⁾ Maximum time from the beginning of the injection to rebar / FRA setting and positioning

²⁾ For wet concrete the curing time must be doubled

³⁾ If the temperature in the concrete falls below 10°C the cartridge has to be warmed up to +15°C.

⁴⁾ If the temperature in the concrete exceeds 30 °C the cartridge has to be cooled down to +15°C up to 20°C

Table	B6.2:	Installation tools for drilling and cleaning the bore hole and injection of the
		mortar

reinforcing	rebar		Drilling and	cleaning		Inj	ection
bars (rebar)	anchor FRA	Nominal drill bit diameter	Diameter of cutting edge	Steel brush diameter	Diameter of cleaning nozzle	Diameter of extension tube	Injection adapter
φ [mm]	thread [M]	d₀ [mm]	d _{cut} [mm]	d₀ [mm]	[mm]	[mm]	[colour]
8 ¹⁾		10	≤ 10,50	11,0			
0''		12	≤ 12,50	12,5	11		nature
10 ¹⁾		12	≤ 12,50	12,5		9	nature
		14	≤ 14,50	15		5	blue
12 ¹⁾	FRA 12 ¹⁾	14	≤ 14,50	15			blue
12 /		16	≤ 16,50	17	15		red
14		18	≤ 18,50	19			yellow
16	FRA 16	20	≤ 20,55	21,5	19		green
20	FRA 20	25	≤ 25,55	26,5	19	9 or 15	black
25	FRA 24	30	≤ 30,55	32	28		grey
28		35	≤ 35,70	37	20		brown

¹⁾ Both drill bit diameters can be used

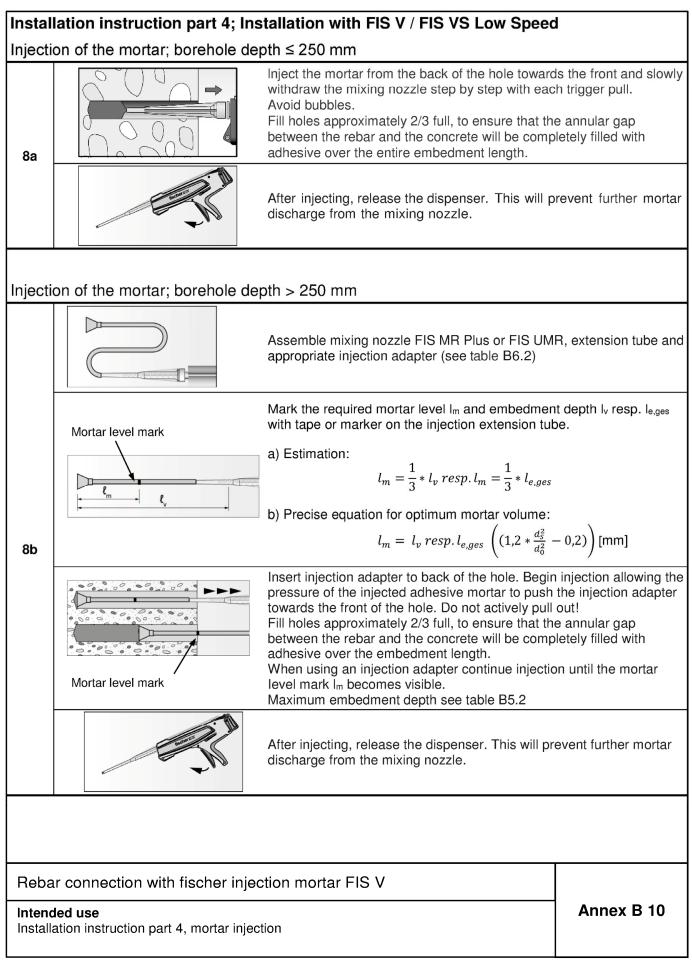
Rebar connection with fischer injection mortar FIS V

Intended use

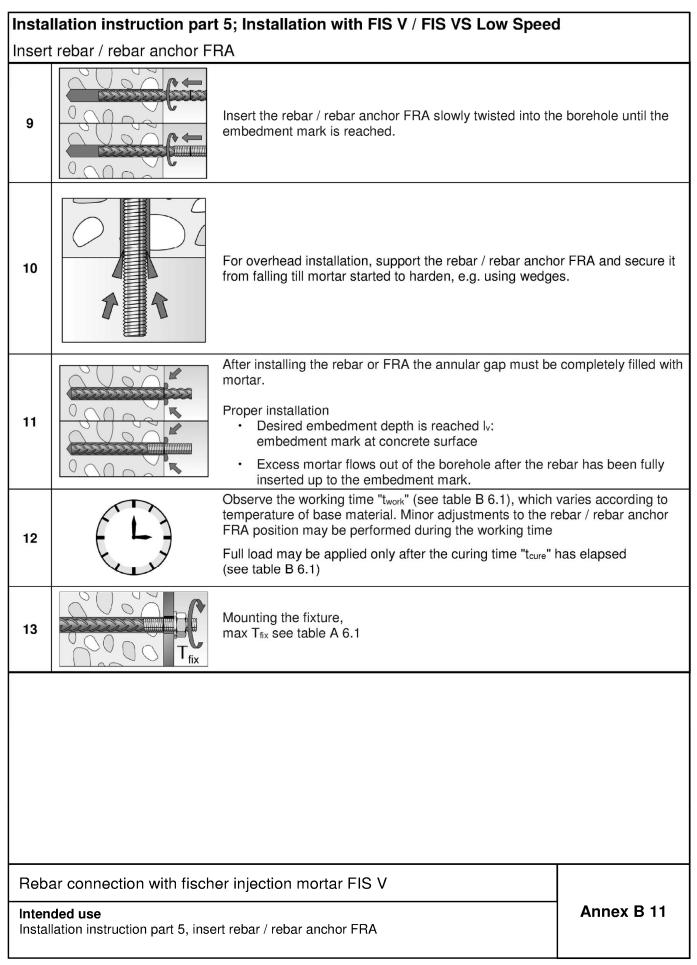
Working times and curing times;

Installation tools for drilling and cleaning the bore hole and injection of the mortar

Safety regulations Review the Safety Data Sheet (SDS) before use for proper and safe handling! Wear well-fitting protective goggles and protective gloves when working with mortar FIS V / FIS VS Low Speed. Important: Observe the instructions for use provided with each cartridge. Installation instruction part 1; Installation with FIS V / FIS VS Low Speed Hole drilling Note: Before drilling, remove carbonized concrete; clean contact areas (see Annex B 2) In case of aborted drill holes the drill hole shall be filled with mortar. Hammer drilling or compressed air drilling Drill the hole to the required embedment depth using a 1a hammer drill with carbide drill bit set in rotation hammer mode or a pneumatic drill. Drill bit sizes see table B6.2. Hammer drilling with hollow drill bit Drill the hole to the required embedment depth using a hammer drill with hollow drill bit in rotation hammer mode. 1b Dust extraction conditions see drill hole cleaning annex B8. Drill bit sizes see table B6.2. \mathbf{C}_{drill} Measure and control concrete cover c $(C_{drill} = C + \emptyset / 2)$ Drill parallel to surface edge and to existing rebar. 1Ø Where applicable use fischer drilling aid. \mathbf{I}_{v} , $\mathbf{I}_{e,ges}$ 2 For holes $l_v > 20$ cm use drilling aid. Three different options can be considered: A) fischer drilling aid B) Slat or spirit level C) Visual check Minimum concrete cover cmin see table B5.1 Rebar connection with fischer injection mortar FIS V Annex B 7 Intended use Safety regulations; Installation instruction part 1, hole drilling



	Hammer or compressed air drilling	CULTURE		
	3x	Blowing three times from the back of the hole with nozzle (oil-free compressed air ≥ 6 bar) u is free of noticeable dust. Personal protective equipment must be us Annex B7).	ntil return air strean	
3a	3x	Brushing (with power drill) three times with the suitable brush size (brush diameter > dri hole diameter). Switch on the power drill after inserting the steel brush into the drill hole. The brush must produce a noticeable resistance when it is inserted into the drill hole. If this is not the case, use a new or larger brush. If necessary, check with brush inspection template. Suitable brushes see table B6.2.		
	3x	Blowing three times from the back of the hole with nozzle (oil-free compressed air ≥ 6 bar) u is free of noticeable dust. Personal protective equipment must be u Annex B7).	ntil return air strean	
	Hammer drilling with hollow drill bit			
3b fischer FVC 35 M or a comparable equivalent performance data. Drill the hole with hollow drill bit. T has to extract the drill dust nonsto and must be adjusted to maximum		Use a suitable dust extraction system, e. fischer FVC 35 M or a comparable dust e equivalent performance data. Drill the hole with hollow drill bit. The dust has to extract the drill dust nonstop during and must be adjusted to maximum power No further drill hole cleaning necessary	xtraction system with extraction system g the drilling process	
Reha	ar connection with fischer injection m	nortar FIS V		



Instal	lation instruction part 3; Installati	on with FIS V / FIS VS Low Speed	l
reinfor	rcing bars (rebar) / fischer rebar anc	hor FRA and cartridge preparation	
4		Before use, make asure that the rebar o FRA is dry and free of oil or other residu Mark the embedment depth I_v (e.g. with Insert rebar in borehole, to verify drill hol depth I_v resp. $I_{e,ges}$	e. tape)
5		Twist off the sealing cap Twist on the static mixer (the spiral in the clearly visible).	e static mixer must be
6	fischer EZ	Place the cartridge into a suitable disper	nser.
7	X	Press out approximately 10 cm of morta permanently grey in colour. Mortar which will not cure and must be disposed.	
Reba	ar connection with fischer injection m	ortar FIS V	
Installa	led use ation instruction part 3, ^r cing bars (rebar) / fischer rebar anchor FR.	A and cartridge preparation	Annex B 9

Minimum anchorage length and minimum lap length

The minimum anchorage length $I_{b,min}$ and the minimum lap length $I_{o,min}$ according to EN 1992-1-1 shall be multiply by the relevant amplification factor α_{lb} according to table C1.1.

Table C1.1: Amplification factor α_{lb} related to concrete strength class and drilling method

Concrete strength class	Drilling method	Amplification factor α_{lb}	
	Hammer drilling with standard drill bit	1,0	
C12/15 to C50/60	Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Expert"; Bosch "Speed Clean"; Hilti "TE-CD, TE-YD")	1,0	
	Compressed air drilling	1,0	

Table C1.2:Bond efficiency factor kb for hammer drilling, hollow drilling and compressed
air drilling

Hammer drilling, hollow drilling and compressed air drilling

Rebar / rebar				Bond ef	ficiency fa	actor k _b			
anchor FRA	Concrete strength class								
φ [mm]	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 28					1,00				

Table C1.3:Design values of the bond strength fbd,PIR in N/mm² for hammer drilling,
hollow drilling, compressed air drilling and for good bond conditions

 $f_{bd,PIR} = k_b \bullet f_{bd}$

- fbd: Design value of the bond strength in N/mm² considering the concrete strength classes and the rebar diameter according to EN 1992-1-1: 2004+AC:2010 (for all other bond conditions multiply the values by 0,7)
- k_b: Bond efficiency factor according to table C1.2

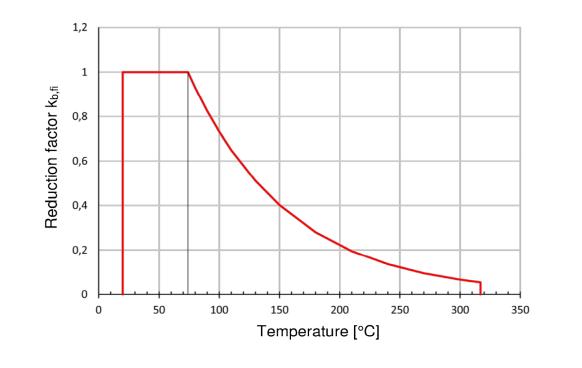
Hammer drilling, hollow drilling and compressed air drilling									
				bond stre	ength f _{bd,Plf}				
Rebar / rebar	Concrete strength class								
anchor FRA	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
φ [mm]									
8 to 28	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3

Rebar connection with fischer injection mortar FIS V

Performance

Amplification factor $\alpha_{\text{lb}},$ bond efficiency factor $k_b,$ design values of the bond strength $f_{\text{bd},\text{PIR}}$

Annex C 1


Table C2.1:	Essential characteristics of tensile resistance for fischer rebar anchors FRA under fire exposure								
	concrete strength classes C12/C15 to C50/60, according to EN 1992-4								
fischer rebar anc	hor FRA		M12	M16	M20	M24			
Stainless steel (FF	A or FRA C)								
Characteristic tensile resistance	R30	[N/mm²]	30						
	R60 σ _{Rk,s,fi}		25						
	R90		20						
	R120			16	Ď				
anchor FRA	ie of the steel bea on: / γ _{M,fi} Characteristic	ring capacity of tensile resis	σ _{Rd,s,fi} under fir stance accore	ii under fire ex re exposure has to ding to table C2 2:2004+AC:200	be calcula 2.1	ted by the			
Rebar connec	tion with fische	r injection n	nortar FIS V						
Performance Annex C 2 Design value of the steel bearing capacity σ _{Rd,s,fi} under fire exposure for fischer rebar anchor FRA Content of the steel bearing capacity σ _{Rd,s,fi}						Annex C 2			

Design values of the bond strength $f_{bd,fi}$ under fire exposure for concrete strength classes C12/15 to C50/60 (all drilling methods)							
The design value of the bond strength fbd,fi under fire exposure has to be calculated by the following equation:							
$f_{bd,fi} = k_{b,fi}(\boldsymbol{\Theta}) \cdot f_{bd} \cdot \frac{\boldsymbol{\gamma}_c}{\boldsymbol{\gamma}_{\mathrm{M,fi}}}$							
lf: θ > 74 °	С	$k_{\rm b,fi}(\theta) = \frac{24,308 \cdot e^{-0,012 \cdot \theta}}{10} \le 1.0$					
lf: θ > 317	°C	$k_{b,fi}(\theta) = 0.0$					
f _{bd,fi}	=	Design value of the bond strength in case of fire (in N/mm ²)					
(θ)	=	Temperature in °C					
k _{b,fi} (θ)	=	Reduction factor under fire exposure					
f _{bd}	=	Design value of the bond strength in N/mm ² in cold condition according to table C1.3 considering the concrete classes, the rebar diameter, the drilling method and the bond conditions according to EN 1992-1-1:2004+AC:2010					
γο	=	Partial factor according to EN 1992-1-1:2004+AC:2010					
γ _{M,fi}	=	Partial factor according to EN 1992-1-2:2004+AC:2008					

For evidence under fire exposure the anchorage length shall be calculated according to EN 1992-1-1:2004+AC:2010 Equation 8.3 using the temperature-dependent ultimate bond strength $f_{bd,fi}$.

Figure C3.1: Example graph of reduction factor $k_{b,fi}$ (θ) for concrete class C20/25 for good bond conditions

Rebar connection with fischer injection mortar FIS V

Performance

Design values of bond strength $f_{\text{bd},\text{fi}}$ under fire exposure

Annex C 3