

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-09/0157 of 28 April 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	BTI Simplexanchor BAZ, BAZ R, BAZ HCR
Product family to which the construction product belongs	Mechanical anchor for use in concrete
Manufacturer	BTI Befestigungstechnik GmbH & Co. KG Salzstraße 51 74653 Ingelfingen DEUTSCHLAND
Manufacturing plant	BTI Herstellwerk 1
This European Technical Assessment contains	19 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330232-00-0601
This version replaces	ETA-09/0157 issued on 22 March 2019

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-09/0157 English translation prepared by DIBt

Page 2 of 19 | 28 April 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 19 | 28 April 2020

European Technical Assessment ETA-09/0157 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The BTI Simplexanchor BAZ is an anchor made of galvanised steel (BAZ) or made of stainless steel (BAZ R) or high corrosion resistant steel (BAZ HCR) which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3, C 1
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2
Displacements (static and quasi-static loading)	See Annex C 5
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 4
Durability	See Annex B 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 3

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

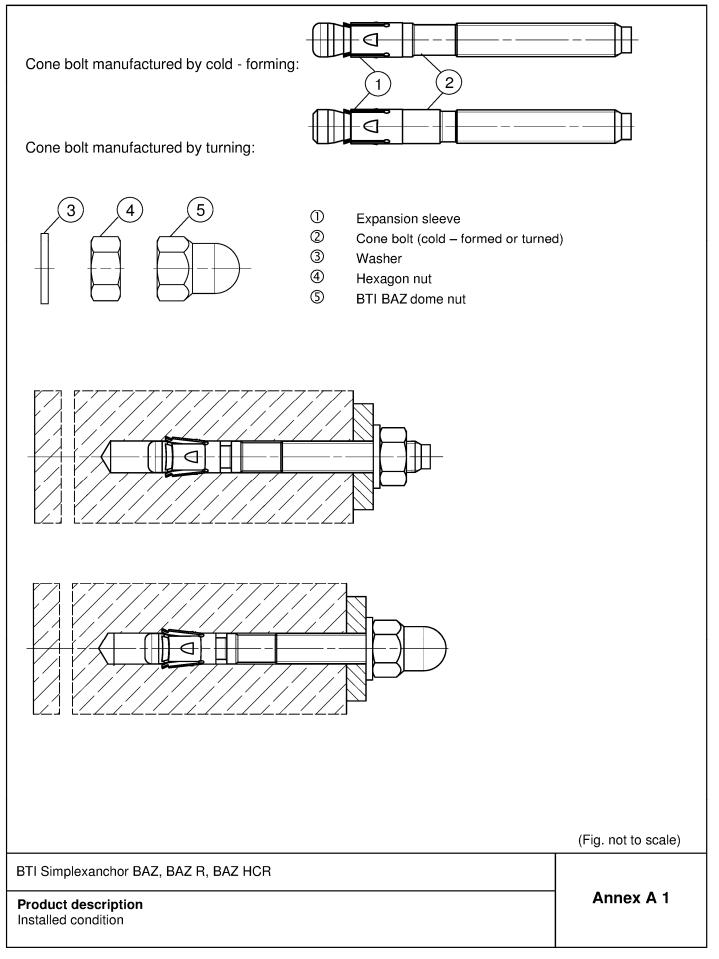
In accordance with the European Assessment Document EAD 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-09/0157 English translation prepared by DIBt

Page 4 of 19 | 28 April 2020

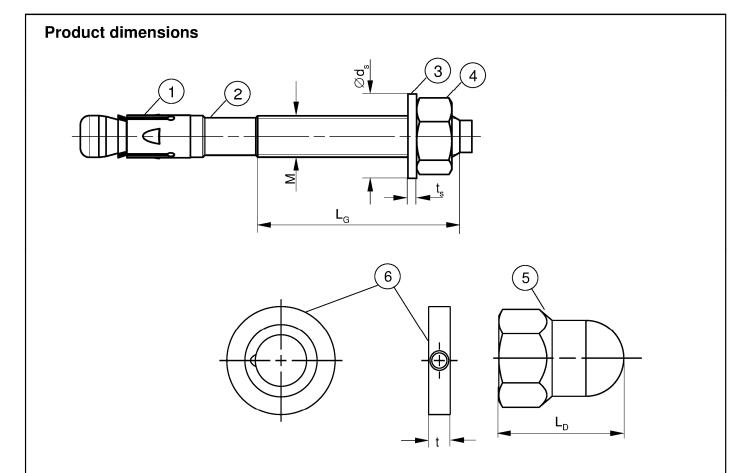
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 28 April 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider

Page 5 of European Technical Assessment ETA-09/0157 of 28 April 2020



Product label and letter-code:	
Marking area 3 - expansion sleeve	
Marking area 1 - cone bolt,	
Marking area 2 - cone bolt	
Product label, example: BAZ 12/30 R	
Brand type of fastener	
placed at marking area 2 or marking area 3 identification R or HCR placed at marking area 2	
BAZ: carbon steel, galvanized BAZ R: stainless steel	
BAZ R: stainless steel BAZ HCR: high corrosion resistant steel	
Table A2.1: Letter - code at marking area 1:	
Marking (a) (b) (c) (d) (A) (B) (C) (D) (E) (F) (G) (H) (I)	(K)
	50
	90
	95
	10 20
	35
	50
M24 - 130 135 140 145 150 155 160 165 170 1	75
	(<u>Z)</u>
	00
	40 45
	60
	70
	85
	500
M24 185 195 205 215 225 245 265 285 305 325 375 425 475 5	525
Calculation existing her for installed fasteners:	
ovicting h - D ovicting t	
existing $h_{ef} = B_{(according to table A2.1)} - existing t_{fix}$	
Thickness of the fixture t _{fix} including thickness of fastener plate t and e.g. thickness of grout layer t _{grout}	
Thickness of the fixture t _{fix} including thickness of fastener plate t and e.g. thickness of grout layer t _{grout} or other non-structural layers	
Thickness of the fixture t _{fix} including thickness of fastener plate t and e.g. thickness of grout layer tgrout	
Thickness of the fixture t _{fix} including thickness of fastener plate t and e.g. thickness of grout layer t _{grout} or other non-structural layers	
Thickness of the fixture t _{fix} including thickness of fastener plate t and e.g. thickness of grout layer t _{grout} or other non-structural layers (Fig. not to scale)	

Table A3.1: Dimensions [mm]

Dort	Designation					BAZ,	BAZ R, BA	Z HCR		
Part	Designation			M6	M8	M10	M12	M16	M20	M24
1	Expansion sleeve	Sheet thickne	ss	0,8	1,3	1,4	1,6	2,4	1	3,0
2	Cone bolt	Thread	size M	6	8	10	12	16	20	24
2		LG		10	19	26	31	40	50	57
3	Washer	ts	≥	1	,4	1,8	2,3	2,7	7	3,7
3	washer	Ød₅		11	15	19	23	29	36	43
4 & 5	Hexagon nut / BTI BAZ	Wrench	n size	10	13	17	19	24	30	36
5	dome nut	LD	\geq		-	22	27	33		-
6	BTI filling disc FFD	t	=		(6		7	8	10

BTI Simplexanchor BAZ, BAZ R, BAZ HCR

Product description Dimensions

ſ

Table	• A4.1: Materials BAZ (ISO 40	42:2018/Zn5/An(A2K))
Part	Designation	Material
1	Expansion sleeve	Cold strip, EN 10139:2016 or stainless steel EN 10088:2014
2	Cone bolt	Cold form steel or free cutting steel
3	Washer	Cold strip, EN 10139:2016
4	Hexagon nut	Steel, property class min. 8, EN ISO 898-2:2012

Table A4.2: Materials BAZ R

Part	Designation	Material
1	Expansion sleeve	
2	Cone bolt	Stainless steel EN 10088:2014
3	Washer	
4	Hexagon nut	Stainless steel EN 10088:2014; ISO 3506-2:2018; property class – min. 70

Table A4.3: Materials BAZ HCR

Part	Designation	Material
1	Expansion sleeve	Stainless steel EN 10088:2014
2	Cone bolt	Lligh correction registent steel EN 10099/2014
3	Washer	High corrosion resistant steel EN 10088:2014
4	Hexagon nut	High corrosion resistant steel EN 10088:2014; ISO 3506-2:2018; property class – min. 70

(Fig. not to scale)

BTI Simplexanchor BAZ, BAZ R, BAZ HCR

Product description Materials

Annex A 4

Specifica	ations o	of intend	ded use				
			BAZ, E	BAZ R, BA	Z HCR		
	M6	M8	M10	M12	M16	M20	M24
				1			
C1	-				/		
C2 ¹⁾		-			1		-
	 			<u>M6 M8 M10</u>	BAZ, BAZ R, BA M6 M8 M10 M12 √ 	· BAZ, BAZ R, BAZ HCR M6 M8 M10 M12 M16 ✓ C1 - ✓	· BAZ, BAZ R, BAZ HCR M6 M8 M10 M12 M16 M20 ✓ C1 - ✓

Base materials:

- Compacted reinforced and unreinforced normal weight concrete without fibres (cracked and uncracked) according to EN 206-1:2013+A1:2016
- Strength classes C20/25 to C50/60 according to EN 206-1:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (BAZ, BAZ R, BAZ HCR)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (BAZ R, BAZ HCR)
- Structures subject to external atmospheric exposure and permanently damp internal condition, if other particular aggressive conditions exist (BAZ HCR)
- Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used)

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or
 to supports, etc.)
- Design of fastenings according to EN 1992-4:2018 and EOTA Technical Report TR 055
- For effective embedment depth h_{ef} < 40 mm only statically indeterminate fixings (e.g. light-weight suspended ceilings with internal exposure) are covered by the ETA

BTI Simplexanchor BAZ, BAZ R, BAZ HCR

Intended Use Specifications

Table B2.1: Installation parameters **BAZ, BAZ R, BAZ HCR** Size M6 **M8** M10 M12 M16 M20 M24 Nominal drill hole diameter 6 8 10 12 16 20 24 $d_0 =$ Maximum bit diameter 6,40 8.45 12,5 16,5 20,55 24,55 [mm] with hammer or hollow drilling 10,45 d_{cut,max} Maximum bit diameter 8,15 12,25 16.45 20,50 24.40 with diamond drilling 46,5 44,5 52,0 63,5 82,5 120 148,5 $h_{\text{nom}} \geq$ Overall fastener embedment depth in the (L) (12) (13,5) (20) (6,5) (9,5) (17,5)(23,5)concrete [mm] Existing hef + L = hnom Depth of drill hole to deepest point $h_{nom} + 5$ hnom + 10 $h_1 \ge$ Diameter of clearance hole in the fixture 12 $d_{\rm f} \leq$ [mm] 7 9 14 18 22 26 8 20 45 60 110 200 Required setting torque T_{inst} = [Nm] 270 Excess length after hammering-in the cone bolt (for BTI dome nut applications O = [mm]12 16 20 according to Annex B6) Setting gauge BAZ SL-H for anchor with BTI BAZ dome nut: Ο $h \ge h_{min}$ t_{fix} hef L h_{nom} h₁ Effective embedment depth hef = Thickness of the fixture = t_{fix} Depth of drill hole to deepest point h1 = Thickness of the concrete member = h h_{min} = Minimum thickness of concrete member h_{nom} = Overall fastener embedment depth in the concrete T_{inst} = Required setting torque (Fig. not to scale)

BTI Simplexanchor BAZ, BAZ R, BAZ HCR

Intended Use

Installation parameters

					BAZ,	BAZ R, B	AZ HCR		
Size			M6	M8	M10	M12	M16	M20	M24
Minimum edge distance				-	-	-	-	-	-
Uncracked concrete	— Cmin		45	40	45	55	65	95	135
Cracked concrete	Cmin		45	40	43	55	05	85	100
Corresponding spacing	s	[mm]			acco	rding to A	nnex B4		•
Minimum thickness of concrete member	h _{min}	[]		80		100	140	160	200
Thickness of concrete member	h ≥			max. {h _{mi}	n; h1 ¹⁾ + 3	0}	max. {	h _{min} ; h ₁ ¹⁾ +	- 2 · d₀}
Minimum spacing					-				
Uncracked concrete			35	40	40	50	65	95	100
Cracked concrete	- Smin		00	35	+0	00	00	55	
Corresponding edge distance	С	[mm]			acco	rding to A	nnex B4		
Minimum thickness of concrete member	h _{min}			80		100	140	160	200
Thickness of concrete member	h ≥			max. {h _{mi}	n; h1 ¹⁾ + 3	0}	max. {	h _{min} ; h ₁ 1)	- 2 · d₀}
Minimal splitting area						-			
Uncracked concrete	•	[·1000	5,1	18	37	54	67	100	117,5
Cracked concrete	— A _{sp,req}	mm²]	1,5	12	27	40	50	77	87,5

¹⁾ h₁ according to Annex B2

Splitting failure applied for minimum edge distance and spacing in dependence of the her

For the calculation of minimum spacing and minimum edge distance of anchors in combination with different embedment depths and thicknesses of concrete members the following equation shall be fulfilled:

 $A_{sp,req} < A_{sp,ef}$

 $A_{sp,req}$ = required splitting area $A_{sp,ef}$ = effective splitting area (according to Annex B4)

BTI Simplexanchor BAZ, BAZ R, BAZ HCR

Intended Use

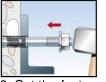
Minimum thickness of member, minimum spacing and edge distance

	1,5°c s 1,5°c		
	A _{sp.ef}		
Single anchor and group of anchors with s > 3 [.] c	$A_{sp,ef} = (6 \cdot c) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm ²]	with c ≥ c _{min}
Group of anchors with $s \le 3 \cdot c$	$A_{sp,ef} = (3 \cdot c + s) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm ²]	with $c \ge c_{min}$ and $s \ge s_m$
Fable B4 2 ' Effective enlitting	n area A _{snef} with member thickne	ass h < h _{af} ⊥ 1 F	$b \cdot c$ and $b > b_{min}$
Fable B4.2 : Effective splitting Image: splitting	g area A _{sp,ef} with member thickne	ess h ≤ h _{ef} + 1,5	5 · c and h ≥ h _{min}
Table B4.2 : Effective splitting Image: splitting	<u>1,5·c s 1,5·c</u>	ess h ≤ h _{ef} + 1,5	5 · c and h ≥ h _{min}
Single anchor and	1,5·c s 1,5 c		$b \cdot c$ and $h \ge h_{min}$
Single anchor and group of anchors with $s > 3 \cdot c$ Group of anchors with $s > 3 \cdot c$	$A_{sp,ef} = 6 \cdot c \cdot existing h$ $A_{sp,ef} = (3 \cdot c + s) \cdot existing h$		-
Table B4.2: Effective splitting Image: Single anchor and group of anchors with $s > 3 \cdot c$ Group of anchors with $s > 3 \cdot c$ Edge distance and axial spacing s BTI Simplexanchor BAZ, BAZ R,	$A_{sp,ef} = 6 \cdot c \cdot existing h$ $A_{sp,ef} = (3 \cdot c + s) \cdot existing h$ hall be rounded to at least 5 mm	[mm ²]	with c ≥ c _{min}

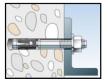
Installation instructions:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Use of the anchor only as supplied by the manufacturer without exchanging the components of the anchor Exception: BTI BAZ dome nut.
- Checking before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- · Check of concrete being well compacted, e.g. without significant voids
- Hammer, hollow or diamond drilling according to Annex B5
- Drill hole created perpendicular +/- 5° to concrete surface, positioning without damaging the reinforcement
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application
- · It must be ensured that in case of fire local spalling of the concrete cover does not occur
- · Fastenings in stand-off installation or with a grout layer under seismic action are not covered
- In case of seismic applications the fastener shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure

Installation instructions: Drilling and cleaning the hole


		Types of drills and cleaning	
Hammer drill	#**********	1: Drill the hole	2: Clean the hole
Hollow drill	Ī	1: Drill the hole with automatic cleaning	-
Diamond drill, for non seismic applications only and ≥ drill Ø 8		1: Drill the hole	2: Clean the hole
		7.1100	
BTI Simplexanch	or BAZ, BAZ R, BAZ	ZHCR	

Intended Use Installation instructions


HEXAGON NUT:

3: Set the fastener

4: Apply Tinst

5: Installed fastener

BTI BAZ DOME NUT:

Option 1: Push through installation with setting gauge SL-H:

washer and BTI BAZ dome nut

6: Apply Tinst

7: Installed fastener

3: Set the fastener using setting gauge

4: Check offset

Option 2: Push through installation with hexagon nut:

3: Set the fastener

- 4: check setting position: Visible one turn of a thread

4.1: Remove nut

BTI FILLING DISC FFD optional for seismic C2 application or minimizing the annular gap:

The thickness of the filling disc must be considered for definition of t _{fix}

BTI Simplexanchor BAZ, BAZ R, BAZ HCR

Intended Use

Installation instructions

-						BAZ, B	AZ R, B		3		
Size			M6	M	3	M10	M12	M16	M20	M24	
Steel failure					-						
Characteristic resistance	NI	[LN]]	7,6	16	,6	28,3	43,2	67,0	123,3	176,7	
BAZ R/HCR	- N _{Rk,s}	[kN]	11,4	17	,0	29,0	44,3	70,6	124,9	183,6	
Partial factor for steel failure	$\gamma Ms^{1)}$	[-]				•	1,5		•		
Pullout failure											
Effective embedment depth for	h _{ef}	[mm]	40	35 -	45	40 -	50 -	65 -	100	125	
calculation	ner	[]		< 45		60	70	85	100	120	
Characteristic resistance in			1,5	5,5	8	13	20	27,0	34,4	48,1	
cracked concrete C20/25 Characteristic resistance in	NRk,p	[kN]									
uncracked concrete C20/25			10,5	14	ŀ	20	22	38,6	49,2	68,8	
		C25/30					1,12				
	-	C30/37					1,22				
Increasing factors for NRk,p for	-	C35/45					1,32				
ncreasing factors for N _{Rk,p} for racked and uncracked concrete	Ψc-						1,41				
	-	C45/55					1,50				
	-	C50/60					1,58				
Installation factor	γinst	[-]					1,0				
Concrete cone and splitting failure			1								
Factor for uncracked concrete	k _{ucr,N}	r 1					11,0 ²⁾				
Factor for cracked concrete	k _{cr,N}	[-]					7,72)				
Characteristic spacing	Scr,N	[mm]					$3 \cdot h_{\text{ef}}$	ıf			
Characteristic edge distance	Ccr,N	[mm]					1,5 · h _{ef}				
Spacing	S _{cr,sp}						$2 \cdot c_{cr,sp}$				
Edge distance for $h = 80$				2,4	h _{ef}	2·h _{ef}	-				
Edge distance for $h = 100$						2,4 hef	2∙h _{ef}		-		
Edge distance for $h = 120$	-	[mm]	40				2,1·h _{ef}				
Edge distance for $h = 140$	Ccr,sp		40	2∙h	ef	105				-	
Edge distance for $h = 160$						1,9∙h _{ef}	1,5 h _{ef}	2∙h _{ef}		-	
Edge distance for $h = 200$									2,4·h _{ef}	2,2·h _{ef}	
Characteristic resistance to splitting	N ⁰ Rk,sp	[kN]				min	[N⁰ _{Rk,c} ; N	I _{Rk,p} } ³⁾			
 In absence of other national regulation Based on concrete strength as cylinde N⁰_{Rk,c} according to EN 1992-4:2018 		h									
BTI Simplexanchor BAZ, BAZ R, BAZ H Performances Characteristic values of resistance under									Annex (C 1	

Size					E	BAZ, BA	AZ R, B	AZ HCI	2	
Size				M6	M8	M10	M12	M16	M20	M24
Steel failure without lever an							-	-		
Characteristic resistance	BAZ BAZ R/HCR	$V^0_{Rk,s}$	[kN]	5,9 8,8	13,6 16,8	21,4 26,5	30,6 38,3	55,0 69,8	81,4 106,3	110, 148,
Partial factor for steel failure		$\gamma Ms^{1)}$					1,25			
Factor for ductility		 k ₇	[-]				1,0			
Steel failure with lever arm a	and Concrete pryor	ut failure)							
Effective embedment depth fo	r calculation	h _{ef}	[mm]	40	45	60	70	85	100	125
Characteristic bending	BAZ	N 40	[h]	11,4	26	52	92	233	513	865
resistance	BAZ R/HCR	- M ⁰ Rk,s	[Nm]	10,7	29	59	100	256	519	898
Factor for pryout failure		k ₈	[-]	2,6	2,8	3	,2	3,0	2,6	2,4
Effective embedment depth fo	r calculation	h _{ef}	[mm]		35 - < 45	40 - < 60	50 - < 70	65 - < 85		
Characteristic bending	BAZ	N 40	[N.Log]	-	20	44	92	184		-
resistance	BAZ R/HCR	- M ⁰ Rk,s	[INM]		21	45	100	193		
Factor for pryout failure		k_8	[-]		2,5	2,6	3,1	3,2		
Partial factor for steel failure		$\gamma Ms^{1)}$	[_]				1,25			
Factor for ductility		k 7	[-]				1,0			
Concrete edge failure										
Effective embedment depth fo		l _f =	[mm]				h _{ef}			
Outside diameter of a fastener		d_{nom}		6	8	10	12	16	20	24
¹⁾ In absence of other national										

Performances

Characteristic values of resistance under shear loads

Annex C 2

Electronic copy of the ETA by DIBt: ETA-09/0157

Cino.						BAZ, BAZ	Z R, BAZ	HCR		
Size				M6	M8	M10	M12	M16	M20	M24
		h _{ef} ≥	[mm]	40	35 / 45	40 / 60	50 / 70	65 / 85	100	125
Chavastavistis	_	R30		0,61) / 0,92)	1,4	2,8	5,0	9,4	14,7	21,*
Characteristic resistance	NI	R60		0,41) / 0,92)	1,2	2,3	4,1	7,7	12,0	17,3
	N _{Rk,s,fi} -	R90		0,31) / 0,92)	0,9	1,9	3,2	6,0	9,4	13,5
steel failure	_	R120		0,21) / 0,72)	0,8	1,6	2,8	5,2	8,1	11,6
Characteristic resistance			[kN]		7,7 ·	h _{ef} ^{1,5} · (20)) ^{0,5} · h _{ef} / 2	200 / 1000		
Concrete cone failure		R120		7,7 · h _{ef} ^{1,5} · (20) ^{0,5} · h _{ef} / 200 / 1000 · 0,8						
Characteristic resistance	- NRk,p,fi	R30 R60 R90		0,4	0,9 / 2,0 0,8 / 2,0 0,5 / 2,0	2,2 / 3,3	3,0 / 5,0	4,5 / 6,8	8,6	12,(
pullout failure	-	R120		0,3	0,3 / 1,6	1,7 / 2,6	2,4 / 4,0	3,6 / 5,4	6,9	9,6
Table C3.2: Charac	teristic	values	of she	ear resistar	nce unde					
Size				R30				R60		

	Size		F	R30	R	60
BAZ, BAZ I	R, BAZ HO	CR	V _{Rk,s,fi,30} [kN]	M ⁰ Rk,s,fi,30 [Nm]	V _{Rk,s,fi,60} [kN]	M ⁰ _{Rk,s,fi,60} [Nm]
M6		40	0,6 ¹⁾ /0,9 ²⁾	0,51)/0,22)	0,4 ¹⁾ / 0,9 ²⁾	0,31)/0,12)
M8]]	35	1,8	1,4	1,6	1,2
M10		40	:	3,6	2,9	3,0
M12	h _{ef} ≥	50	6,3	7,8	4,9	6,4
M16		65	11,7	19,9	9,1	16,3
M20]]	100	18,2	39,0	14,2	31,8
M24		125	26,3	67,3	20,5	55,0
	Size		F	R90	R1	120
BAZ, BA	Z R, BAZ	HCR	V _{Rk,s,fi,90} [kN]	M ⁰ _{Rk,s,fi,90} [Nm]	V _{Rk,s,fi,120} [kN]	M ⁰ Rk,s,fi,120 [Nm]
M6		40	0,3 ¹⁾ /0,9 ²⁾	0,21)/0,12)	0,2 ¹⁾ /0,7 ²⁾	0,21)/0,12)
M6 M8		40 35	0,3 ¹⁾ / 0,9 ²⁾ 1,3	0,2 ¹⁾ /0,1 ²⁾ 1,0	<u>0,2¹/0,7²</u> 1,2	0,2 ¹⁾ /0,1 ²⁾ 0,8
-			, ,	, ,		, ,
M8	 _ h _{ef} ≥ _	35	1,3	1,0	1,2	0,8
M8 M10		35 40	1,3 2,2	1,0 2,4	1,2 1,9	0,8 2,1
M8 M10 M12	 h _{ef} ≥ _	35 40 50	1,3 2,2 3,5	1,0 2,4 5,0	1,2 1,9 2,8	0,8 2,1 4,3

Concrete pryout failure according to EN 1992-4:2018

Table C3.3: Minimum spacings and minimum edge distances of anchors under fire exposurefor tension and shear load

Size					BAZ	Z, BAZ R, B	BAZ HCR		
Size			M6	M8	M10	M12	M16	M20	M24
Spacing	Smin					Annex I	33		
Edge distance	0 .	[mm]				$c_{min} = 2 \cdot$	h _{ef} ,		
Euge distance	Cmin			for fire ex	xposure froi	m more tha	in one side	c _{min} ≥ 300	mm
¹⁾ BAZ									

²⁾ BAZ R / HCR

BTI Simplexanchor BAZ, BAZ R, BAZ HCR

Performances

Characteristic values of resistance under fire exposure

					BAZ. B	AZ R, BA	AZ HCR		
Size			M6	M8	M10	M12	M16	M20	M24
Length of anchor	L _{max}			167	186	221	285	394	477
Effective embedment depth	h _{ef}	[mm]	-	45	40 - 60	50 - 70	65 - 85	100	125
With filling of the annular gap	$lpha_{ ext{gap}}$	[-]				1,0			
Steel failure									
Characteristic resistance tension load C1	N _{Rk,s,C1}	[kN]		16,0	27,0	41,0	66,0	111,0	150,0
Partial factor for steel failure	$\gamma_{Ms,C1}$	[-]	-			1	,5		
Pullout failure									
Characteristic resistance tension load in cracked concrete C1	NRk,p,C1	[kN]	-	4,6	8,0	16,0	28,2	36,0	50,3
Installation factor	γinst	[-]				1	,0		
Steel failure without lever arm									
Characteristic resistance shear load C1	V _{Rk,s,C1}	[kN]		11	17	27	47	56	69
Partial factor for steel failure	$\gamma_{Ms,C1}$	[-]	-			1,	25		
¹⁾ In absence of other national regulations									
Table C4.2: Characteristic values category C2	of tensic	on and	d sheai						
category C2	of tensic	on and	d shear M6			nder se AZ R, BA M12			M24
category C2	of tensic	on and	M6		BAZ, BA	AZ R, BA)	M24
category C2 Size Length of anchor	L _{max}		M6	M8	BAZ, BA M10	AZ R, BA M12	Z HCR ¹⁾ M16	M20	M24 -
category C2 Size Length of anchor With filling of the annular gap		[mm]	M6	M8	BAZ, BA M10	AZ R, BA M12 221	Z HCR ¹⁾ M16	M20	M24 -
category C2 Size Length of anchor With filling of the annular gap	L _{max} α _{gap}	[mm]	M6	M8	BAZ, BA M10	AZ R, BA M12 221	Z HCR ¹⁾ M16	M20	M24 -
Size Length of anchor With filling of the annular gap Steel failure	L _{max} α _{gap}	[mm] [-]	M6	M8	BAZ, BA M10 186	AZ R, BA M12 221 1,0 41	•Z HCR ¹⁾ M16 285	M20 394	<u>M2</u> - -

Size					BAZ, BA	AZ R, BA			
Size			M6	M8	M10	M12	M16	M20	M24
Length of anchor	L_{max}	[mm]		-	186	221	285	394	-
With filling of the annular gap	$lpha_{ ext{gap}}$	[-]				1,0			
Steel failure							_		
Characteristic resistance tension load C2	N _{Rk,s,C2}	[kN]			27	41	66	111	
Partial factor for steel failure	γMs,C2 ²⁾	[-]				1	,5		-
Pullout failure								•	
	h _{ef}	[mm]			60	70	85	100	_
Characteristic resistance tension load in	N _{Rk,p,C2}	[kN]			5,1	7,4	21,5	30,7	_
cracked concrete C2	h _{ef}	[mm]		-	40-59	50-69	65-84		
	N _{Rk,p,C2}	[kN]			2,7	4,4	16,4		-
Installation factor	γinst	[-]				1,0			
Steel failure without lever arm									
	h _{ef}	[mm]			60	70	85	100	
Characteristic registeres sheer load CO	V _{Rk,s,C2}	[kN]			10,0	17,4	27,5	39,9	-
Characteristic resistance shear load C2	h _{ef}	[mm]		-	40-59	50-69	65-84		
	V _{Rk,s,C2}	[kN]			7,0	12,7	22,0		-
Partial factor for steel failure	γMs,C2 ²⁾	[-]			·	1,25			
¹⁾ BAZ HCR: Only valid for cold-formed ve ²⁾ In absence of other national regulations	rsion (acc	ording	to Anne	x A1)					
BTI Simplexanchor BAZ, BAZ R, BAZ HC	R								
Performances Characteristic values of resistance under	tension a	nd she	ar loads	under se	eismic ac	tion	Aı	nnex C	4

<u> </u>					BAZ, B	SAZ R, E	BAZ HC	R	
Size			M6	M8	M10	M12	M16	M20	M24
Displacement – fact	tor for tensile load ¹⁾		1	-	1		1	-	
δN0 - factor	in cracked concrete		0,13	0,22	0,12	0,09	0,08	0,07	0,0
$\delta_{N\infty}$ - factor		[mm/kN]	1,00	0,78	0,40	0,19	0,	09	0,07
δN0 - factor	in uncracked concrete	[]	0,16	0,07	0,05	-	06	0,05	0,04
δN∞ - factor			0,24	0,29	0,21	0,14	0,10	0,06	0,08
Table C5.2: Disp	lacements under static	and quasi s	tatic s	hear le	bads				
Size			MG	MO	M10	BAZ M12	M16	MOO	MO
Displacement - fac	tor for shear load ²⁾		M6	M8	MIU	INT 2	M16	M20	M24
Displacement – factor			0,6	0,35	0,37	0,27	0,10	0,09	0,0
δv∞ - factor	_		0,0	0,53	0,57	0,27	0,10	0,03	0,0
	 in cracked and 	[mm/kN]		0,01		R, BAZ		0,10	0,1
δvo - factor	uncracked concrete		0,6	0,23	0,19	0,18	0,10	0,11	0,0
$\delta_{V\infty}$ - factor	_		0,9	0,27	0,22	0,16	0,11	0,05	0,0
¹⁾ Calculation of effect $\delta_{N0} = \delta_{N0 - factor} \cdot N_E$ $\delta_{N\infty} = \delta_{N\infty - factor} \cdot N_E$ (N _{ED} : Design value)	D	δνα		$f_{actor} \cdot V$	ED	applied	shear fo	orce)	
$\begin{array}{l} \delta_{N0} = \delta_{N0 - factor} \cdot N_{E} \\ \delta_{N\infty} = \delta_{N\infty - factor} \cdot N_{E} \\ (N_{ED}: Design value) \end{array}$	ED ED	δνα ?) (Vi	₀ = δv∞- ED: Desi	_{- factor} · V gn value	ed e of the				6
$\begin{split} \delta_{N0} &= \delta_{N0-factor} \cdot N_{E} \\ \delta_{N\infty} &= \delta_{N\infty-factor} \cdot N_{E} \\ (N_{ED}: Design value) \end{split}$	e of the applied tension force	δνα ?) (Vi	₀ = δv∞- ED: Desi	gn valu	e of the 2 for a		edment		6
$\begin{array}{l} \delta_{N0} = \delta_{N0 - factor} \cdot N_{E} \\ \delta_{N\infty} = \delta_{N\infty - factor} \cdot N_{E} \\ (N_{ED}: Design value) \end{array}$	e of the applied tension force	e) δνα (Vi	categ	gn valu gn valu Jory C	e of the 2 for a AZ, BA	ll embe	edment Z HCR		S M24
$\begin{split} \delta_{N0} &= \delta_{N0 - factor} \cdot N_{E} \\ \delta_{N\infty} &= \delta_{N\infty - factor} \cdot N_{E} \\ (N_{ED}: Design value) \end{split}$	e of the applied tension force	e) (Vi on loads for	cate <u>c</u>	gn valu gn valu Jory C	e of the 2 for a AZ, BA	ll embe Z R, BA	edment Z HCR M16	depths	
$\begin{split} \delta_{N0} &= \delta_{N0-factor} \cdot N_{E} \\ \delta_{N\infty} &= \delta_{N\infty-factor} \cdot N_{E} \\ (N_{ED}: Design value) \end{split}$ $\begin{aligned} \textbf{Table C5.3: Disp} \\ Size \end{aligned}$	e of the applied tension force	e) δνα (Vi	cate <u>c</u>	gn valu jory C B M8	e of the 2 for a AZ, BA	ll embe Z R, BA M12	edment Z HCR M16	depths	
$\begin{split} \delta_{N0} &= \delta_{N0-factor} \cdot N_E \\ \delta_{N\infty} &= \delta_{N\infty-factor} \cdot N_E \\ (N_{ED}: Design value) \end{split}$ $\begin{aligned} \textbf{Table C5.3: Disp} \\ Size \\ Displacement DLS \\ Displacement ULS \\ \end{aligned}$	D ED e of the applied tension force placements under tensic δ _{N,C2(DLS)}	 δva (Vi on loads for [mm] 	categ 16 -	gn valu gn valu jory C B M8	2 for a AZ, BA 2,7 11,5	II embe z R, BA M12 4,4 13,0	edment Z HCR M16 12,3 ment d	M20 5,6 14,4	
$\begin{split} \delta_{N0} &= \delta_{N0-factor} \cdot N_E \\ \delta_{N\infty} &= \delta_{N\infty-factor} \cdot N_E \\ (N_{ED}: Design value) \end{split}$ $\begin{aligned} \textbf{Table C5.3: Disp} \\ Size \\ Displacement DLS \\ Displacement ULS \\ \end{aligned}$	D ED e of the applied tension force placements under tensic δ _{N,C2(DLS)} δ _{N,C2 (ULS)}	e) (Vi	 categ 16 atego 	ny C2	2 for a AZ, BA 11,5 for all e AZ, BA	II embe Z R, BA M12 4,4 13,0 embedi Z R, BA	edment Z HCR M16 12,3 ment d Z HCR	M20 5,6 14,4 epths	M24
$\begin{split} \delta_{N0} &= \delta_{N0-factor} \cdot N_{E} \\ \delta_{N\infty} &= \delta_{N\infty-factor} \cdot N_{E} \\ (N_{ED}: Design value) \end{split}$ $\begin{aligned} \textbf{Table C5.3: Disp} \\ Size \\ Displacement DLS \\ Displacement ULS \\ \end{aligned}$ $\begin{aligned} \textbf{Table C5.4: Disp} \\ Size \\ \end{aligned}$	D ED e of the applied tension force olacements under tensio δN,C2(DLS) δN,C2 (ULS)	 δva (Vi on loads for [mm] 	 categ 16 atego 	ny C2	2 for a AZ, BA 0110 2,7 11,5 or all e AZ, BA	II embe Z R, BA M12 4,4 13,0 2 mbedi Z R, BA M12	edment Z HCR M16 12,3 ment d Z HCR M16	2 depths M20 5,6 14,4 epths M20	M24
$\delta_{N0} = \delta_{N0} - factor \cdot Ne} \\ \delta_{N\infty} = \delta_{N\infty} - factor \cdot Ne} \\ (NED: Design value)$ Table C5.3: Displacement DLS Displacement ULS Table C5.4: Displacement DLS Size Displacement DLS	Dependent of the applied tension force of the applied tension force $\delta_{N,C2(DLS)}$ $\delta_{N,C2(ULS)}$ blacements under shear $\delta_{V,C2(DLS)}$	e) (Vi	 categ 16 atego 	ny C2	2 for a AZ, BA M10 2,7 11,5 or all e AZ, BA M10 4,1	II embe Z R, BA M12 (13,0) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	edment Z HCR M16 12,3 ment d Z HCR M16 5,5	depths <u>M20</u> 5,6 14,4 epths <u>M20</u> 4,8	
δ _{N0} = δ _{N0 - factor} · N _E δ _{N∞} = δ _{N∞ - factor} · N _E (N _{ED} : Design value) Table C5.3: Disp Size Displacement DLS Displacement ULS Table C5.4: Disp Size	D ED e of the applied tension force olacements under tensio δN,C2(DLS) δN,C2 (ULS)	e) δνα on loads for [mm] .	 categ 16 atego 	ny C2	2 for a AZ, BA 0110 2,7 11,5 or all e AZ, BA	II embe Z R, BA M12 4,4 13,0 2 mbedi Z R, BA M12	edment Z HCR M16 12,3 ment d Z HCR M16	2 depths M20 5,6 14,4 epths M20	M24
$\delta_{N0} = \delta_{N0-factor} \cdot N_E$ $\delta_{N\infty} = \delta_{N\infty-factor} \cdot N_E$ (NED: Design value) Table C5.3: Displ Size Displacement DLS Displacement ULS Size Displacement DLS Displacement DLS Displacement ULS	Dependent of the applied tension force of the applied tension force $\delta_{N,C2(DLS)}$ $\delta_{N,C2(ULS)}$ blacements under shear $\delta_{V,C2(DLS)}$	e) δνα on loads for [mm] .	 categ 16 atego 	ny C2	2 for a AZ, BA M10 2,7 11,5 or all e AZ, BA M10 4,1	II embe Z R, BA M12 (13,0) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	edment Z HCR M16 12,3 ment d Z HCR M16 5,5	depths <u>M20</u> 5,6 14,4 epths <u>M20</u> 4,8	M24