

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-09/0159 vom 23. September 2020

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

BTI Hochleistungsanker BHA, BHA-I

Mechanischer Dübel zur Verwendung im Beton

BTI Befestigungstechnik GmbH & Co. KG Salzstraße 51 74653 Ingelfingen DEUTSCHLAND

BTI Herstellwerk 1

25 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330232-00-0601, Edition 10/2016

ETA-09/0159 vom 4. September 2018

Europäische Technische Bewertung ETA-09/0159

Seite 2 von 25 | 23. September 2020

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z82632.20 8.06.01-617/20

Europäische Technische Bewertung ETA-09/0159

Seite 3 von 25 | 23. September 2020

Besonderer Teil

1 Technische Beschreibung des Produkts

Der BTI Hochleistungsanker BHA, BHA-I ist ein Dübel aus galvanisch verzinktem Stahl (Größen mit Außendurchmesser 10, 12, 15, 18, 24, 28 und 32, Größen mit Innengewinde 12/M6 I, 12/M8 I, 15/M10 I und 15/M12 I) oder aus nichtrostendem Stahl (Größen mit Außendurchmesser 10, 12, 15, 18 und 24, Größen mit Innengewinde 12/M6 I, 12/M8 I, 15/M10 I und 15/M12 I), der in ein Bohrloch gesetzt und durch kraftkontrollierte Verspreizung verankert wird.

Die Produktbeschreibung ist in Anhang A dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1, C 2, C 7
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 3 und C 4
Verschiebungen (statische und quasi-statische Einwirkungen)	Siehe Anhang C 10, C 11
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Siehe Anhang C 8, C 9, C 11
Dauerhaftigkeit	Siehe Anhang B 1

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung			
Brandverhalten	Klasse A1			
Feuerwiderstand	Siehe Anhang C 5, C 6			

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330232-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

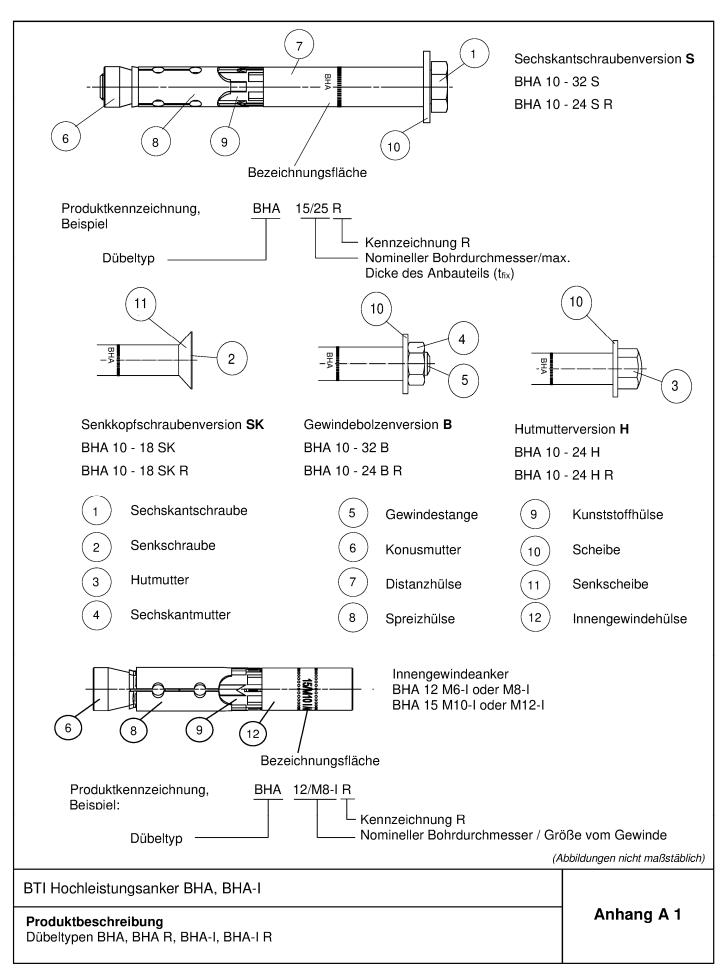
Z82632.20 8.06.01-617/20

Europäische Technische Bewertung ETA-09/0159

Seite 4 von 25 | 23. September 2020

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.


Ausgestellt in Berlin am 23. September 2020 vom Deutschen Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter

Beglaubigt: Baderschneider

Z82632.20 8.06.01-617/20

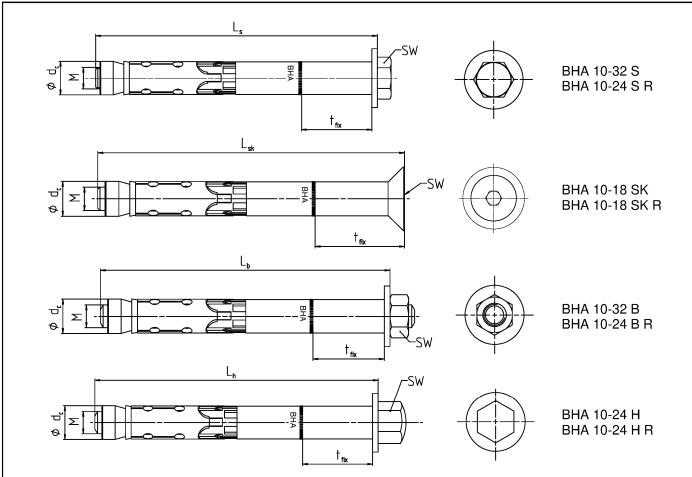


Tabelle A2.1: Dübelabmessungen [mm] BHA und BHA R

Dübeltyp				BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	BHA 32
Gewinde		М	6	8	10	12	16 20 24		
Durchmesser Konusmutter		dc	10	12	14,8	17,8	23,7 27,5 31,5		
	BHA-S, -B		10	13	17	19	24	30	36
	BHA-SK ¹⁾		4	5	6	8		_3)	
Schlüsselweite SW	ВНА-Н	13	17	17	19	24	_3	3)	
	BHA-S R, -B R, -H R		10	13	17	19	24	_3	3)
	BHA-SK R ¹⁾		4	5	6	8		_3)	
t _{fix} BHA-S, -B, -H + BHA-S R,	-B R, -H R r	min	0	0	0	0	0	0	0
t_{fix} BHA-SK $^{2)}$ + BHA-SK $^{2)}$ min		min	5	6	6	8		_3)	
Schrauben- / Bolzenlänge	Ls, Lh, Lb (- tfix)	>	49	74	89	99	124	149	174
Senkkopfschraubenlänge	L _{sk} (- t _{fix})	≥	54	79	95	107		_3)	

¹⁾ Innensechskant

(Abbildungen nicht maßstäblich)

BTI Hochleistungsanker BHA, BHA-I	
Produktbeschreibung Dübelabmessungen BHA, BHA R	Anhang A 2

²⁾ Der Einfluss der Anbauteildicke auf die charakteristische Quertragfähigkeit bei Stahlversagen ohne Hebelarm ist zu berücksichtigen siehe Tabellen C3.1, C8.1 und C9.1

³⁾ Dübelvariante nicht Bestandteil der ETA

		Mate	erial			
Nr.	Bezeichnung	вна	BHA R			
		Stahl	Nichtrostender Stahl R			
	Stahlsorte	Galvanisch verzinkt nach EN ISO 4042:2018, ≥ 5 μm	Nichtrostender Stahl EN 10088:2014			
1	Sechskantschraube	Stahl Festigkeitsklasse 8.8;				
2	Senkkopfschraube	EN ISO 898-1:2013	Festigkeitsklasse 80			
3 Hutmutter	Hutmutter	Otabl Fastislisitaliasas 0	EN ISO 3506:2020			
4	Sechskantmutter	Stahl Festigkeitsklasse 8				
5	Gewindestange	Stahl f _{uk} ≥ 800 N/mm²; f _{yk} ≥ 640 N/mm²	Nichtrostender Stahl EN 10088:2014 f _{uk} ≥ 800 N/mm²; f _{yk} ≥ 640 N/mm²			
6	Konusmutter	Stahl EN 10277:2018				
7	Distanzhülse	Stahl EN 10305:2016	Nichtrostender EN 10088:2014			
8	Spreizhülse	Stahl EN 10139:2020/ EN 10277:2018				
9	Kunststoffhülse	ABS (Ku	nststoff)			
10	Scheibe	Stahl EN 10139:2020	Nichtmostomdon FN 40000-0044			
11	Senkscheibe	Stahl EN 10277:2018	Nichtrostender EN 10088:2014			

BTI Hochleistungsanker BHA, BHA-I	
Produktbeschreibung Materialien BHA und BHA R	Anhang A 3

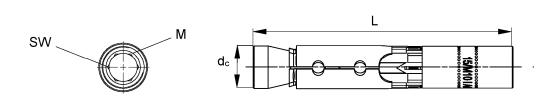


Tabelle A4.1: Dübelabmessungen [mm] BHA-I und BHA-I R

Dübeltyp BHA-I, BHA-I R		BHA 12/M6 I	BHA 12/M8 I	BHA 15/M10 I	BHA 15/M12 I
Gewinde	М	6	8	10	12
Durchmesser Konusmutter	d₅	12	12	14,8	14,8
Schlüsselweite Innensechskant	SW	6	8	6	8
Dübellänge	L	77,5	77,5	90	90

Tabelle A4.2: Materialien BHA-I und BHA-I R

		Ma	aterial			
Nr.	Bezeichnung	BHA-I	BHA-I R			
Stahlsorte		Stahl	Nichtrostender Stahl R			
		Galvanisch verzinkt nach EN ISO 4042:2018, ≥ 5 μm	Nichtrostender Stahl EN 10088:2014			
6	Konusmutter	Stahl EN 10277:2018	Nichtrostender Stahl EN 10088:2014			
8 Spreizhülse		Stahl EN 10139:2020 / EN 10277:2018	Wichtiosterider Staff Liv 10000.2014			
9	Kunststoffhülse	ABS (Kunststoff)				
12	Innengewindebolzen	Stahl EN 10277:2018 f _{uk} ≥ 750 N/mm², f _{yk} ≥ 600 N/mm²	Nichtrostender Stahl EN 10088:2014 $f_{uk} \geq 750 \text{ N/mm}^2, \\ f_{yk} \geq 600 \text{ N/mm}^2$			
Anforderung an die Befestigungsmittel		Stahl Festigkeitsklasse 5.8, 6.8 oder 8.8 EN ISO 898-1:2013 ¹⁾	Festigkeitsklasse A50, A70 oder A80 EN ISO 3506:2020 1.4362, 1.4401, 1.4404, 1.4571, 1.4529			

BTI Hochleistungsanker BHA, BHA-I	
Produktbeschreibung Dübelabmessungen und Materialien BHA-I, BHA I-R	Anhang A 4

	Spezifizierung des Verwendungszwecks								
Beanspruchung de	r Verankerung:								
Größe		10	12	15	18	24	28	32	
	BHA-S, -B				1				
Hochleistungsanker	BHA-H, -S R, -B R, -H R			/				1)	
	BHA-SK, BHA-SK R		~	/			1)		
Hochleistungsanker	1)		/			1)			
Hammerbohren mit S Bohrer									
Hammerbohren mit Hohlbohrer mit automatischer Reinigung					✓				
Statische und quasi-	statische Belastungen								
Gerissener und unge	rissener Beton	✓							
Brandbeanspruchung	9								
	C1 BHA					/			
	C1 BHA R	2)			/	1)		1)	
Seismik	C2 BHA		2)		✓				
Leistungskategorie	C2 BHA R		/				1)		
	C1 BHA-I, BHA-I R C2 BHA-I, BHA-I R	1)	2)			1)			

¹⁾ Dübelvariante nicht Bestandteil der ETA

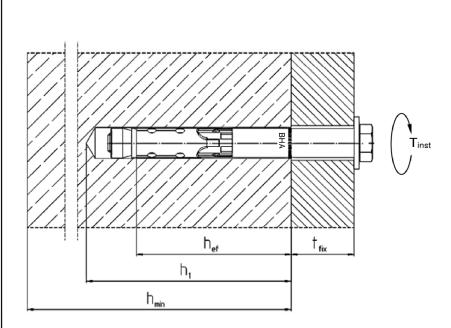
Verankerungsgrund:

 Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern (gerissen oder ungerissen) der Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013+A1:2016

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (BHA, BHA R, BHA-I, BHA-I R)
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (BHA R, BHA-I R)

Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Meerwasser oder der Bereich der Spritzzone von Meerwasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. in Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden)


Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. In den Konstruktionszeichnungen ist die Position der Dübel anzugeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.)
- Bemessung der Verankerungen erfolgt nach EN 1992-4:2018 und EOTA Technical Report TR 055, Fassung Februar 2018

BTI Hochleistungsanker BHA, BHA-I	
Verwendungszweck Spezifikation	Anhang B 1

²⁾ Leistung nicht bewertet

hef = Effektive Verankerungstiefe

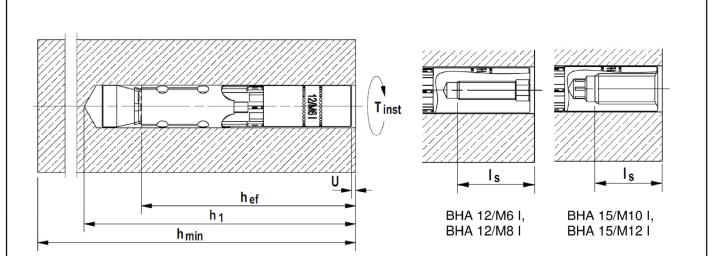
tfix = Dicke des Anbauteils

h₁ = Tiefe des Bohrlochs bis zum tiefsten Punkt

h_{min} = Minimale Dicke des Betonbauteils

 $T_{inst} = Montagedrehmoment$

Tabelle B2.1: Montagekennwerte BHA und BHA R


Dübeltyp BHA-S, -SK, -B, -H und BHA-S R, -SK R, -B R, -H R				BHA 10	BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	ВНА 32
	r Bohrdurchmesser	d ₀		10	12	15	18	24	28	32
Maximaler Schneiden- durchmesser d _{cut} ≤		_	10,45	12,50	15,50	18,50	24,55	28,55	32,70	
Bohrlochtiefe am tiefsten Punkt h		h₁ ≥	[mm]	55	80	90	105	125	155	180
Durchmesser des Durchgangs- lochs im Anbauteil d₁ ≤			12	14	17	20	26	31	35	
Durchmesser der Senkung BHA-SK		18	22	25	32	1)				
Senktiefe,	Senkwinkel 90° BH/	A-SK R	[mm]	5,0	5,8	5,8	8,0	''		
	BHA-S				22,5	40		160	180	200
Mantana	BHA-B			10	17,5	38	مم	120	180	200
Montage- dreh-	ВНА-Н			10	22,5	40	80	90)
moment	BHA-SK	T _{ir}	nst [Nm]		·	40			1)	
	BHA-S R, BHA-B R BHA-H R			15	25	40	100	160	1)
BHA-SK R			10					1)		

¹⁾ Dübelvariante nicht Bestandteil der ETA

(Abbildungen nicht maßstäblich)

BTI Hochleistungsanker BHA, BHA-I	
Verwendungszweck Montagekennwerte BHA, BHA R	Anhang B 2

hef = Effektive Verankerungstiefe

h₁ = Tiefe des Bohrlochs bis zum tiefsten Punkt

 h_{min} = Minimale Dicke des Betonbauteils

 T_{inst} = Montagedrehmoment U = Hülsenunterstand I_s = Einschraubtiefe

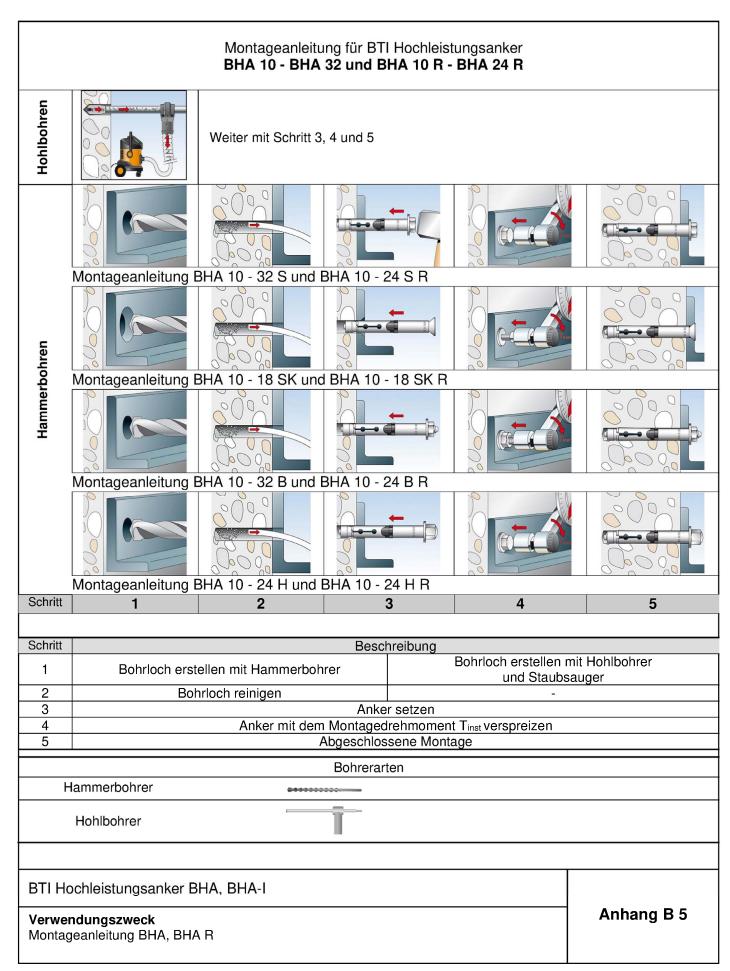
Tabelle B3.1: Montagekennwerte BHA-I und BHA-I R

Dübeltyp BHA-I und BHA-I R				BHA 12/M6 I	BHA 12/M8 I	BHA 15/M10 I	BHA 15/M12 I	
Nomineller Bohrdurchmesser	d_0		_		12	15		
Maximaler Schneidendurchmesser	d _{cut}	≤		12	2,50	15,50		
Bohrlochtiefe am tiefsten Punkt	h ₁	≥	- _ [mm]	•	85	95		
Durchmesser des Durchgangs- lochs im Anbauteil	df	≤	_ []	7	9	12	14	
Hülsenunterstand ¹⁾	U			3 - 5				
Montagedrehmoment ¹⁾	T_{inst}		[Nm]		15	25		
Minimale Einschraubtiefe	ls	≥	- [mm]	11 + U	13 + U	10 + U	12 + U	
Maximale Einschraubtiefe	ls	≤	- [mm]		20 +	U		
Maximales Montagedrehmoment des Befestigungsmittels Schrauben oder Gewindestange Festigkeitsklasse ≥ 5.8 oder ≥ A50	max	T _{fix}	[Nm]	3	8	15	20	

¹⁾ Nur eine der beiden Bedingungen der Unterstand U oder das Montagedrehmoment T_{inst} muss erfüllt sein

(Abbildungen nicht maßstäblich)

BTI Hochleistungsanker BHA, BHA-I	
Verwendungszweck Montagekennwerte BHA-I, BHA-I R	Anhang B 3



Montageanleitung:

- · Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters
- · Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist, als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten
- · Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume
- · Hammer- oder Hohlbohren gemäß Anhang B5 und B6
- Bohrloch senkrecht +/- 5° zur Oberfläche des Verankerungsgrundes erstellen, ohne die Bewehrung zu beschädigen
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt

BTI Hochleistungsanker BHA, BHA-I	
Verwendungszweck Montageanleitung	Anhang B 4

Montageanleitung für BTI Hochleistungsanker Innengewinde BHA-I und BHA-I R Weiter mit Schritt 2, 3, und 4 Hammer bohren Schritt 3 Schritt Beschreibung Bohrloch erstellen mit Hammerbohrer, Bohrloch erstellen mit Hohlbohrer 1 Bohrloch reinigen und Staubsauger 2 Einschlagen des Ankers mit einem Hammer bündig zur Betonoberfläche 3 Anziehen des Ankers. Es sollte der im Lieferumfang enthaltene Sechskant-Bit verwendet werden. Andere Anzugsmethoden sind zulässig. Den Dübel im Beton so weit anziehen, bis der Spalt U 3 - 5 mm beträgt oder das erforderliche Montagedrehmoment Tinst erreicht ist. Nur eine der beiden Bedingungen muss erfüllt sein. Befestigen Sie das Anbauteil und verwenden Sie eine Schraube oder eine Gewindestange. Die Länge der Schraube oder Gewindestange sollte in Abhängigkeit von der Dicke des Anbauteils tfix, den zulässigen Toleranzen und der verfügbaren Gewindelänge I_{s,max} und I_{s,min} einschließlich des Unterstandes U bestimmt Schraube mit Drehmoment anziehen ≤ max T_{fix} (max T_{fix} siehe Tabelle B3.1) Bohrerarten Hammerbohrer Hohlbohrer BTI Hochleistungsanker BHA, BHA-I Anhang B 6 Verwendungszweck Montageanleitung BHA-I, BHA-I R

Tabelle C1.1: Leistungsmerkmale der Zugtragfähigkeit unter statischer und quasi-statischer Belastung für BHA und BHA R										
Dübeltyp BHA-S, -SK, -B, -H und BHA-S R, -SK R, -B R, -H R			BHA 10	BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	BHA 32	
Stahlversagen										
BHA-S, -B,			16,1	29,3	46,4	67,4	125,3	195,8	282,0	
BHA-H, BHA-H R, -B R	$N_{Rk,s}$	[kN]	16,1	29,3	46,4	67,4	125,3		2)	
BHA-SK			16,1	29,3	46,4	67,4		2)		
Teilsicherheitsbeiwert	γ Ms $^{1)}$	[-]				1,5				
BHA-S R,	NI	[LAN]]	16,1	29,3	46,4	67,4	125,3	:	2)	
BHA-SK R	─N _{Rk,s}	[kN]	16,1	29,3	46,4	67,4		2)		
Teilsicherheitsbeiwert	γMs ¹⁾	[-]				1,6				
Herausziehen										
Charakteristischer Widerstand in gerissenem Beton C20/25 BHA und BHA R			7,5	12,0	16,0	25,0	34,4	48,1	63,3	
Charakteristischer Widerstand in ungerissenem Beton C20/25 BHA	$N_{Rk,p}$	[kN]	12,5	22,9	28,8	35,2	49,2	68,8	90,4	
Charakteristischer Widerstand in ungerissenem Beton C20/25 BHA R			12,5	20,0	28,8	35,2	49,2	:	2)	
		C25/30				1,12				
		C30/37				1,22				
Erhöhungsfaktoren für N _{Rk,p} für		C35/45	1,32							
gerissenen und ungerissenen Beton	Ψс	C40/50	1,41							
		C45/55	1,50							
		C50/60				1,58				
Montagebeiwert	γinst	[-]				1,0				
Betonversagen und Spalten										
Effektive Verankerungstiefe	h _{ef}	[mm]	40	60	70	80	100	125	150	
Faktor für gerissenem Beton	$k_{\text{cr,N}}$					$7,7^{3)}$				
Faktor für ungerissenem Beton	$k_{ucr,N}$	—[- <u>]</u>				11,0 ³⁾				
Achsabstand	S _{cr} ,N		120	180	210	240	300	375	450	
Randabstand	Ccr,N	— —[mm]	60	90	105	120	150	187,5	225	
Achsabstand (Spalten)	S _{cr,sp}	-[IIIIII] 	190	300	320	340	380	480	570	
Randabstand (Spalten)	Ccr,sp		95	150	160	170	190	240	285	
Charakteristischer Widerstand gegen Spalten	N ⁰ Rk,sp	[kN]			min {	[N ⁰ _{Rk,c,} N _I	Rk,p} ⁴⁾	-		

¹⁾ Sofern keine anderen nationalen Regelungen vorliegen

BTI Hochleistungsanker BHA, BHA-I	
Leistungen Leistungsmerkmale für die Zugtragfähigkeit für BHA und BHA R	Anhang C 1

Dübelvariante nicht Bestandteil der ETA
 Bezogen auf Betondruckfestigkeit als Zylinderdruckfestigkeit
 N⁰_{Rk,c} nach EN 1992-4:2018

min $\{N^0_{Rk,c}, N_{Rk,p}\}^{3)}$

Dübeltyp BHA-I und BHA-I R			BHA 12/M6 I	BHA 12/M8 I	BHA 15/M10 I	BHA 15/M12
Stahlversagen			12/1010 1	12/1010 1	15/10/10/1	15/10112
Dübel in Kombination mit Schraub	e / Gev	vindestan	ge verzinkter S	Stahl nach DIN	EN ISO 898	
Festigkeitsklasse 5.8	-, -, -, -, -		10	19	29	43
Festigkeitsklasse 6.8	– N _{Rk,s}	[kN]	12	23	35	44
Festigkeitsklasse 8.8		[]	16	27	44	44
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]			,5	
Dübel in Kombination mit Schraub			ae nichtrosten		•	506
Festigkeitsklasse A50	N _{Rk,s}	[kN]	10	19	29	43
Teilsicherheitsbeiwert	γMs ¹⁾	[-]		L	86	
Festigkeitsklasse A70	N _{Rk,s}	[kN]	14	26	41	54
Teilsicherheitsbeiwert	γMs ¹⁾	[-]		L	87	
Festigkeitsklasse A80	N _{Rk,s}	[kN]	16	29	46	46
Teilsicherheitsbeiwert	γMs ¹⁾	[-]			60	
Herausziehen	71013			-,		
Charakteristischer Widerstand im gerissenen Beton C20/25	NI.	[Ich]]	9 20		12	
Charakteristischer Widerstand im ungerissenen Beton C20/25	_N _{Rk,p}	[kN]			28,8	
		C25/30		1,	12	
		C30/37		1,2	22	
Erhöhungsfaktoren für N _{Rk,p} für	N/4	C35/45		1,0	32	
gerissenen und ungerissenen Beton	ψс	C40/50		4, 1	41	
		C45/55		1,	50	
		C50/60		1,	58	
Montagebeiwert	γinst	[-]		1,	0	
Betonversagen und Spalten						
Effektive Verankerungstiefe	h _{ef}	[mm]	60			0
Faktor für gerissenen Beton	k _{cr,N}	- [-] -		7,7		
Faktor für ungerissenen Beton	k _{ucr,N}	r 1		11,		
Achsabstand	Scr,N	_	18			10
Randabstand	C _{cr} ,N	- [mm]	90			05
Achsabstand (Spalten)	S _{cr,sp}	_ ',	30			20
Randabstand (Spalten)	Ccr,sp		15	50	10	60

¹⁾ Sofern keine anderen nationalen Regelungen vorliegen

 $N^0_{Rk,sp} \ \ [kN]$

Charakteristischer Widerstand

gegen Spalten

BTI Hochleistungsanker BHA, BHA-I	
Leistungen Leistungsmerkmale für die Zugtragfähigkeit für BHA-I und BHA-I R	Anhang C 2

²⁾ Bezogen auf Betondruckfestigkeit als Zylinderdruckfestigkeit

³⁾ N⁰_{Rk,c} nach EN 1992-4:2018

Dübeltyp BHA-S, -SK, -B, -H und			ВНА	ВНА	ВНА	ВНА	ВНА	ВНА	вна	
BHA-S R, -SK R, -B R, -H R			10	12	15	18	24	28	32	
Montagebeiwert	γinst	[-]				1,0				
Stahlversagen ohne Hebelarm										
BHA-S	-		18,0	33,0	59,0	76,0	146,0	176,4	217,0	
BHA-B	V^0 Rk,s	[kN]	16,0	27,2	42,8	61,9	119,0	148,8	169,0	
BHA-H			16,0	27,2	42,8	61,9	119,0	3)	
	$t_{\text{fix}}^{2)}$	[mm]	≥	10	≥	15				
DLIA CIZ	V ⁰ Rk,s	[kN]	18,0	33,0	59,0	76,0		3)		
BHA-SK ————	t _{fix} 2)	[mm]	<	10	<	< 15		3)	3)	
	V ⁰ Rk,s	[kN]	8,0	14,0	23,0	34,0	1			
Teilsicherheitsbeiwert	γMs ¹⁾		3,5	1, 5		1,25				
Faktor für Duktilität	k ₇	- [-]				1,0				
BHA-S R	V ⁰ Rk,s	[kN]	18,0	33,0	59,0	76,0	146,0	3)	
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]	.,-	1 .,-	1 7-	1,33	- , -	<u> </u>		
BHA-B R, -H R	V ⁰ Rk,s		16,0	27,2	42,8	61,9	119,0	3)	
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]	,	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	1,25	,			
	t _{fix} 2)	[mm]	≥	10	≥					
	V ⁰ Rk,s	[kN]	18,0	33,0	59,0	76,0		0)		
BHA-SK R	t _{fix} 2)	[mm]	<	10	<	15		3)		
	V^0 Rk,s	[kN]	8,0	14,0	23,0	34,0				
Teilsicherheitsbeiwert	γ _{Ms} 1)	r 1		•	•	1,33	•			
Faktor für Duktilität	k ₇	- [-]				1,0				
Stahlversagen mit Hebelarm und	l Pryou	tversag	en							
Charakteristisches Biegemoment BHA-S, -SK, -B, -H	$M^0_{Rk,s}$	[Nm]	12	30	60	105	266	518	896	
Teilsicherheitsbeiwert	γMs ¹⁾	[-]		ı		1,25				
Charakteristisches Biegemoment BHA-S R, -SK R, - B R, -H R	M ⁰ Rk,s	[Nm]	12	30	60	105	266	3)	
Teilsicherheits- BHA-B R, -H R	4)			ı	ı	1,25				
beiwert BHA-S R, -SK R	γMs ¹⁾	[-]				1,33				
Faktor für Pryoutversagen	k ₈	[-]	1,0			2	,0			
Betonkantenbruch										
Effektive Verankerungstiefe für die Berechnung	l _f =	_ [mm]				h _{ef}				
Dübeldurchmesser	d _{nom}	- []	10	12	15	18	24	28	32	
Sofern keine anderen nationalen Re Die Dicke des Anbauteils hat Einflus Leistung nicht bewertet				uertragfäh	nigkeit					
BTI Hochleistungsanker BHA, BHA-I										

Montagebeiwert Stahlversagen ohne Hebelarm Dübel in Kombination mit Schrau			BHA 12/M6 I	BHA 12/M8 I	BHA 15/M10 I	BHA 15/M12 I
Dübel in Kombination mit Schrau	γinst	[-]		1	,0	
	be / Gew	indestan	ige galvanisch	verzinkter Sta	ahl nach DIN EN	ISO 898:201
Festigkeitsklasse 5.8			5	9	15	21
Festigkeitsklasse 6.8	V^0 Rk,s	[kN]	6	11	18	24
Festigkeitsklasse 8.8			8	14	23	24
Teilsicherheitsbeiwert	$\gamma { m Ms}^{1)}$	_ []		1	,25	
Faktor für Duktilität	k 7	- [-]			1,0	
Dübel in Kombination mit Schrau	be / Gew	indestan	ige nichtroster	nder Stahl nac	h DIN EN ISO 3	506:2010
Festigkeitsklasse A50	V^0 Rk,s	[kN]	5	9	15	21
Teilsicherheitsbeiwert	γ Ms $^{1)}$	[-]		2	2,38	
Festigkeitsklasse A70	V^0_Rk,s	[kN]	7	13	20	30
Teilsicherheitsbeiwert	γMs ¹⁾	[-]		1	,56	•
Festigkeitsklasse A80	V ⁰ Rk,s	[kN]	8	15	23	32
Teilsicherheitsbeiwert	γ _{Ms} 1)	.,		1	,33	•
Faktor für Duktilität	k ₇	- [-]			1,0	
Stahlversagen mit Hebelarm und	Betonau	sbruch a	uf der lastabg	ewandten Seit	e	
Anker in Kombination mit Schrau						ISO 898:201
			8	19	37	65
Festigkeitsklasse 6.8	M ⁰ Rk,s	[Nm]	9	23	44	78
Festigkeitsklasse 8.8			12	30	60	105
Teilsicherheitsbeiwert	γMs ¹⁾		· · · · · ·	<u> </u>	,25	1
Faktor für Duktilität	k ₇	-[-]			1,0	
Dübel in Kombination mit Schrau	 ibe / Gew	indestar	nge nichtroste		•	506-2010
Festigkeitsklasse A50	M ⁰ Rk,s	[Nm]	8	19	37	65
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]			2,38	1 00
Festigkeitsklasse A70	M ⁰ Rk,s	[Nm]	11	26	52	92
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]	•••	l	,56	
	M ⁰ Rk,s	[Nm]	12	30	60	105
Festigkeitsklasse A80	γMs ¹⁾	[1411.]		L	,33	1 .00
	1.0.0	- ⊢			1,0	
Teilsicherheitsbeiwert	k ₇	[-]				
Teilsicherheitsbeiwert Faktor für Duktilität	k ₇	_[-]			-	
Festigkeitsklasse A80 Teilsicherheitsbeiwert Faktor für Duktilität Faktor für Pryoutversagen Betonkantenbruch	k ₇ k ₈	_[-]			2,0	
Teilsicherheitsbeiwert Faktor für Duktilität Faktor für Pryoutversagen Betonkantenbruch	k ₈	_[-]			2,0	
Teilsicherheitsbeiwert Faktor für Duktilität Faktor für Pryoutversagen		_[-] _[mm]			-	

Tabelle C5.1: Leistung	gsmerkmale der Z	'ugtragf	ähigkeit u	nter Brand k	oeanspruch	nung	
			R30			R60	
Dübeltyp	N	I _{Rk,s,fi,30} [kN]	N _{Rk,p,fi,30} [kN]	N ⁰ _{Rk,c,fi,30} [kN]	N _{Rk,s,fi,60} [kN]	N _{Rk,p,fi,60} [kN]	N ⁰ _{Rk,c,fi,60} [kN]
BHA 10, BHA 10 R		0,2	1,8	1,8	0,2	1,8	1,8
BHA 12, BHA 12 R		2,0	3,0	5,0	1,3	3,0	5,0
BHA 15, BHA 15 R		3,2	4,0	7,4	2,3	4,0	7,4
BHA 18, BHA 18 R		4,8	6,3	10,3	3,9	6,3	10,3
BHA 24, BHA 24 R		8,9	9,0	18,0	7,3	9,0	18,0
BHA 28		13,9	12,6	31,4	11,3	12,6	31,4
BHA 32		20,0	16,5	49,6	16,3	16,5	49,6
BHA 12/M6-I, 5.8, A	\50 ¹⁾	0,1			0,1		
BHA 12/M6-I R 8.8, A	A70, A80 ^{1) 2)}	0,2	0.0	5 0	0,2	0.0	F 0
BHA 12/M8-I, 5.8, A	\50 ¹⁾	1,3	2,3	5,0	0,8	2,3	5,0
BHA 12/M8-I R 8.8, A	A70, A80 ^{1) 2)}	2,0			1,3		
BHA 15/M10-I, 5.8, A		2,0			1,4		
	\70, A80 ^{1) 2)}	3,2			2,3		
BHA 15/M12-I, 5.8/A		3,0	3,0 7,4		2,4	3,0	7,4
	A70, A80 ^{1) 2)}	4,8			3,9		
,	,	,	R90		,	R120	
Dübeltyp		Rk,s,fi,90	N _{Rk,p,fi,90}	N ⁰ Rk,c,fi,90	N _{Rk,s,fi,120}	N _{Rk,p,fi,120}	N^0 Rk,c,fi,120
		[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
BHA 10, BHA 10 R		0,1	1,8	1,8	0,1	1,5	1,5
BHA 12, BHA 12 R		0,6	3,0	5,0	0,2	2,4	4,0
BHA 15, BHA 15 R		1,4	4,0	7,4	1,0	3,2	5,9
BHA 18, BHA 18 R		3,0	6,3	10,3	2,6	5,0	8,2
BHA 24, BHA 24 R		5,6	9,0	18,0	4,8	7,2	14,4
BHA 28		8,8	12,6	31,4	7,5	10,1	25,2
BHA 32		12,6	16,5	49,6	10,8	13,2	39,7
BHA 12/M6-I, 5.8, A	\50 ¹⁾	0,1			0,1		
BHA 12/M6-I R 8.8, A	A70, A80 ^{1) 2)}	0,1		F 0	0,1	1.0	4.0
BHA 12/M8-I, 5.8, A	\50 ¹⁾	0,4	2,3	5,0	0,1	1,8	4,0
BHA 12/M8-I R 8.8, A	A70, A80 ^{1) 2)}	0,6			0,2		
BHA 15/M10-I, 5.8, A	\50 ¹⁾	0,9			0,6		
BHA 15/M10-I R 8.8, A	A70, A80 ^{1) 2)}	1,4		7.4	1,0	0.4	5 0
BHA 15/M12-I, 5.8/A		1,9	3,0	7,4	1,6	2,4	5,9
· —	\70, A80 ^{1) 2)}	3,0			2,6		

¹⁾ Zwischenwerte dürfen interpoliert werden

BTI Hochleistungsanker BHA, BHA-I	
Leistungen Leistungsmerkmale für Zugtragfähigkeit unter Brandbeanspruchung in gerissenem und ungerissenem Beton	Anhang C 5

²⁾ In Kombination mit Schraube / Gewindestange der Festigkeitsklasse 8.8, A70, A80

Tabelle C6.1: Leistungsmerkmale de	r Quertragfähigk	eit unter Brandbe	anspruchung	
	R	30	R	60
Dübeltyp	V _{Rk,s,fi,30} [kN]	M ⁰ _{Rk,s,fi,30} [Nm]	V _{Rk,s,fi,60} [kN]	M ⁰ Rk,s,fi,60 [Nm]
BHA 10, BHA 10 R	0,3	0	0,3	0
BHA 12, BHA 12 R	2,0	2	1,3	1
BHA 15, BHA 15 R	3,2	4	2,3	3
BHA 18, BHA 18 R	4,8	7	3,9	6
BHA 24, BHA 24 R	8,9	19	7,3	15
BHA 28	13,9	37	11,3	30
BHA 32	20,0	64	16,3	52
BHA 12/M6 I, 5.8, A50 ¹⁾	0,2	0	0,2	0
BHA 12/M6 I R 8.8, A70, A80 ^{1) 2)}	0,3	0	0,3	0
BHA 12/M8 I, 5.8, A50 ¹⁾	1,3	1	0,8	1
BHA 12/M8-I R 8.8, A70, A80 ^{1) 2)}	2,0	2	1,3	1
BHA 15/M10 I, 5.8, A50 ¹⁾	2,0	3	1,4	2
BHA 15/M10-I R 8.8, A70, A80 ^{1) 2)}	3,2	4	2,3	3
BHA 15/M12-I, 5.8/A50 ¹⁾	3,0	4	2,4	4
BHA 15/M12-I R 8.8, A70, A80 ^{1) 2)}	4,8	7	3,9	6
	R	90	R1	120
Dübeltyp	V _{Rk,s,fi,90} [kN]	M ⁰ _{Rk,s,fi,90} [Nm]	V _{Rk,s,fi,120} [kN]	M ⁰ Rk,s,fi,120 [Nm]
BHA 10, BHA 10 R	0,2	0	0,1	0
BHA 12, BHA 12 R	0,6	1	0,2	0
BHA 15, BHA 15 R	1,4	2	1,0	1
BHA 18, BHA 18 R	3,0	5	2,6	4
BHA 24, BHA 24 R	5,6	12	4,8	10
BHA 28	8,8	23	7,5	20
BHA 32	12,6	40	10,8	34
BHA 12/M6-I, 5.8, A50 ¹⁾	0,1	0	0,1	0
BHA 12/M6-I R 8.8, A70, A80 ^{1) 2)}	0,2	0	0,1	0
BHA 12/M8-I, 5.8, A50 ¹⁾	0,4	1	0,1	0
BHA 12/M8-I R 8.8, A70, A80 ^{1) 2)}	0,6	1	0,2	0
BHA 15/M10 I, 5.8, A50 ¹⁾	0,9	2	0,6	1
BHA 15/M10-I R 8.8, A70, A80 ^{1) 2)}	1,4	3	1,0	1
BHA 15/M12 I, 5.8/A50 ¹⁾	1,9	4	1,6	3
BHA 15/M12-I R 8.8, A70, A80 ^{1) 2)}	3,0	6	2,6	4

¹⁾ Zwischenwerte dürfen interpoliert werden

Tabelle C6.2: Minimale Achs- und Randabstände für Dübel unter **Brandbeanspruchung** für Zug- und Querlast

Dübeltyp	BHA 10	BHA 12 BHA 12-I	BHA 15 BHA 15-I	BHA 18	BHA 24	BHA 28	BHA 32
Acheabetand Scr,N,fi				4x h _{ef}			
Achsabstand Smin,fi	40	50	60	70	80	100	120
				2 x h _{ef}			
Randabstand Cmin,fi		bei mel	o nrseitiger Brar	e _{min,fi} = 2 x h _{ef} ndbeanspruc		300 mm	

BTI Hochleistungsanker BHA, BHA-I

Leistungen
Leistungsmerkmale der Quertragfähigkeit unter Brandbeanspruchung
Minimale Achs- und Randabstände für Dübel unter Brandbeanspruchung

²⁾ In Kombination mit Schraube / Gewindestange der Festigkeitsklasse 8.8, A70, A80

Tabelle C7.1: Mindestdicke des Betonbauteils, minimaler Achs- und minimaler Randabstand BHA, BHA R

Dübeltyp BHA-S, -SK, -B, -H und BHA-S R, -SK R, -B R, -H R			BHA 10	BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	BHA 32
Minimale Dicke des Betonbauteils	h_{min}	[mm]	80	120	140	160	200	250	300
Minimaler Achsabstand,	Smin		40	50	60	70	80	100	120
gerissener Beton	für c≥		40	80	120	140	180	200	260
Minimaler Randabstand,	Cmin	— [mm]	40	50	60	70	80	100	120
gerissener Beton	für s ≥		40	80	120	160	200	220	280
Minimaler Achsabstand,	Smin		40	60	70	80	100	120	160
ungerissener Beton	für c ≥	_ [70	100	100	160	200	220	360
Minimaler Randabstand,	Cmin	— [mm] _	40	60	70	80	100	120	180
ungerissener Beton	für s ≥	_	70	100	140	200	220	240	380

Zwischenwerte dürfen linear interpoliert werden.

Tabelle C7.2: Mindestdicke des Betonbauteils, minimaler Achs- und minimaler Randabstand BHA-I, BHA-I R

Dübeltyp BHA-l und BHA-l R			BHA 12/M6 I BHA 12/M8 I	BHA 15/M10 I BHA 15/M12 I
Minimale Dicke des Betonbauteils	h _{min}	[mm]	125	150
Minimaler Achsabstand,	Smin		50	60
gerissener Beton	für c ≥	· []	80	120
Minimaler Randabstand,	Cmin	[mm]	50	60
gerissener Beton	für s ≥		80	120
Minimaler Achsabstand,	Smin		60	70
ungerissener Beton	für c ≥	[100	100
Minimaler Randabstand,	Cmin	[mm]	60	70
ungerissener Beton	für s ≥		100	140

Zwischenwerte dürfen interpoliert werden

BTI Hochleistungsanker BHA, BHA-I	
Leistungen Mindestdicke des Betonbauteils, minimale Achs- und minimale Randabstände	Anhang C 7

Tabelle C8.1: Leistungsmerkmale der Zug- und Quertragfähigkeit der seismischen Leistungskategorie C1 für BHA-S,-SK,-B,-H und BHA-S R,-SK R,-B R,-H R									
Dübeltyp BHA-S, -S BHA-S R, -SK R, -I				BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	ВНА 32
Stahlversagen									
	BHA-S, -B			29,3	46,4	67,4	125,3	195,8	282,0
	BHA-H, -H R, -B R	N _{Rk,s,C1}	[kN]	29,3	46,6	67,4	125,3	3	3)
Charakteristische	BHA-SK	-		29,3	46,6	67,4		3)	
Zugtragfähigkeit	Teilsicherheitsbeiwert	γMs,C1 ¹⁾	[-]			1,	5		
C1	BHA-S R	N.I.	FI - N 17	29,3	46,4	67,4	125,3	3	3)
	BHA-SK R	- N _{Rk,s,C1}	[kN]	29,3	46,4	67,4		3)	
	Teilsicherheitsbeiwert	γMs,C1 ¹⁾	[-]			1,	6		
Herausziehen									
Charakteristische	Zugtragfähigkeit in	$N_{\text{Rk,p,C1}}$	[kN]	12,0	16,0	25,0	36,0	50,3	66,1
gerissenem Beton	C 1	γ _{Mp,C1} 1)	[-]			1,	5		
Stahlversagen oh									
Charakteristische	Quertragfähigkeit C1								
BHA-S				25,0	41,0	60,0	123,0	141,0	200,0
ВНА-В		V _{Rk,s,C1}	[kN]	17,0	30,0	46,0	103,0	117,0	169,0
ВНА-Н		_		17,0	30,0	46,0	103,0	3	3)
		t _{fix} ²⁾	[mm]	≥ 10	≥	15			
BHA-SK		$V_{\text{Rk,s,C1}}$	[kN]	25,0	41,0	60,0		3)	
DHA-SK		t _{fix} 2)	[mm]	< 10	<	15		O)	
		$V_{\text{Rk,s,C1}}$	[kN]	11,0	16,0	27,0			
Teilsicherheitsbeiw	vert	γMs,C1 ¹⁾	[-]			1,2	25		
BHA-S R		$V_{\text{Rk,s,C1}}$	[kN]	25,0	41,0	60,0	123,0	3	3)
Teilsicherheitsbeiw	vert	γMs,C1 ¹⁾	[-]			1,3	33		
BHA-B R, -H R		$V_{Rk,s,C1}$	[kN]	17,0	30,0	46,0	103,0	3	3)
Teilsicherheitsbeiw	vert	γMs,C1 ¹⁾	[-]			1,2	25		
		t _{fix} ²⁾	[mm]	≥ 10	≥	15			
BHA-SK R		$V_{\text{Rk,s,C1}}$	[kN]	25,0	41,0	60,0		3)	
		t _{fix} ²⁾	[mm]	< 10	<	15	,		
		V _{Rk,s,C1}	[kN]	11,0	16,0	27,0			
Teilsicherheitsbeiw		γMs,C1 ¹⁾	- [-]			1,0			
Faktor für Ringspa		$lpha_{ extsf{gap}}$				0,5	50		
1) Coforn kaina anda	ron nationalan Pagalungar		_						

BTI Hochleistungsanker BHA, BHA-I	
Leistungen Leistungsmerkmale für Zug- und Querwiderstände der seismischen Leistungskategorie C1	Anhang C 8

Sofern keine anderen nationalen Regelungen vorliegen
 Die Dicke des Anbauteils hat Einfluss auf die charakteristische Quertragfähigkeit

³⁾ Leistung nicht bewertet

	Leistungsmerkmale der Zug- und Quertragfähigkeit der seismischen Leistungskategorie C2 für BHA-S,-SK,-B,-H und BHA-S R,-SK R,-B R,-H R								
Dübeltyp BHA-S, -S BHA-S R, -SK R, -E				BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	BHA 32
Stahlversagen									
	BHA-S, -B			29,3	46,4	67,4	125,3	198	5,8
	BHA-H, -H R, -B R	N _{Rk,s,C2}	[kN]	29,3	46,4	67,4	125,3	3)
Charakteristische	BHA-SK			29,3	46,4	67,4		3)	
Zugtragfähigkeit	Teilsicherheitsbeiwert	γMs,C2 ¹⁾	[-]			1,	5		
C2	BHA-S R	- NI	[kN]	29,3	46,4	67,4	125,3	3)
	BHA-SK R	- N _{Rk,s,C2}		29,3	46,4	67,4		3)	
	Teilsicherheitsbeiwert	γMs,C2 ¹⁾	[-]			1,	6		
Herausziehen									
Charakteristische Z		N _{Rk,p,C2}	[kN]	6,2	11,3	21,8	43,0	65	,9
gerissenem Beton	C2	γ _{Mp,C2} 1)	[-]			1,	5		
Stahlversagen oh	ne Hebelarm								
Charakteristische	Quertragfähigkeit C2								
BHA-S				14,7	28,9	41,0		100,7	
BHA-B		$V_{\rm Rk,s,C2}$	[kN]	9,8	20,9	34,1	61,9	67	,2
ВНА-Н		_		9,8	20,9	34,1	61,9	3)
		t _{fix} 2)	[mm]	≥ 10	≥	15			
BHA-SK		$V_{\text{Rk,s,C2}}$	[kN]	14,8	23,3	33,8		3)	
DHA-SK		t _{fix} 2)	[mm]	< 10	<	15		0,	
		$V_{Rk,s,C2}$	[kN]	6,3	9,1	15,1			
Teilsicherheitsbeiw	ert	γMs,C2 ¹⁾	[-]			1,2	25		
BHA-S R		V _{Rk,s,C2}	[kN]	14,7	28,9	41,0	100,7	3)
Teilsicherheitsbeiw	ert	γMs,C2 ¹⁾	[-]			1,0	33		
BHA-B R, -H R		$V_{Rk,s,C2}$	[kN]	9,8	20,9	34,1	61,9	3)
Teilsicherheitsbeiw	ert	γMs,C2 ¹⁾	[-]			1,2	25		
	t _{fix} 2)	[mm]	≥ 10	≥ '	15				
BHA-SK R	DUA CK D		[kN]	14,8	23,3	33,8		3)	
DITA-OR IT		t _{fix} 2)	[mm]	< 10	<	15		-1	
		$V_{Rk,s,C2}$	[kN]	6,3	9,1	15,1			
Teilsicherheitsbeiw	ert	γMs,C2 ¹⁾	· [-]			1,0	33		
Faktor für Ringspal	t	$lpha_{ extsf{gap}}$	[-]			0,5	50		

BTI Hochleistungsanker BHA, BHA-I	
Leistungen Leistungsmerkmale für Zug- und Querwiderstände der seismischen Leistungskategorie C2	Anhang C 9

Sofern keine anderen nationalen Regelungen vorliegen
 Die Dicke des Anbauteils hat Einfluss auf die charakteristische Quertragfähigkeit

³⁾ Leistung nicht bewertet

Tabelle C10.1: Verschiebungen unter statischer und quasi	si-statischer Zuglast für BHA und BHA R
--	--

Dübeltyp BHA-S, -SK, -B, -H und BHA-S R, -SK R, -B R, -H R			BHA 10	BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	BHA 32
Zuglast gerissener Beton	N	[kN]	3,6	5,7	7,6	11,9	17,1	24,0	31,5
7	δηο	- [mm]	1,0	1,0	1,0	1,0	1,0	0,7	0,7
Zugehörige Verschiebungen	δ _{N∞}	- [mm]	1,7	1,6	1,6	1,6	1,8	1,3	1,1
Zuglast ungerissener Beton	N	[kN]	6,0	11,2	14,1	17,2	24,0	33,6	44,2
Zugobärige Verschiebungen	δηο	- [mm]	0,6	1,0	1,0	1,0	1,0	0,3	0,3
Zugehörige Verschiebungen	δ _{N∞}	- [mm]	1,7	1,6	1,6	1,6	1,8	1,3	1,1

Tabelle C10.2: Verschiebungen unter statischer und quasi-statischer Zuglast für BHA-I und BHA-I R

Dübeltyp BHA-I und BHA-I R			BHA 12/M6 I BHA 12/M8 I	BHA 15/M10 I BHA 15/M12 I
Zuglast gerissener Beton	NI	[LAN]]	4,3	5,7
Zuglast ungerissener Beton	N	[kN]	9,5	14,1
Zugehärige Verschiehungen	δηο	[mm]	1,7	1,9
Zugehörige Verschiebungen		—— [mm]	2,2	2,9

Tabelle C10.3: Verschiebungen unter statischer und quasi-statischer Querlast für BHA-S und -SK

Dübeltyp BHA-S und BHA-SK			BHA 10	BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	ВНА 32
Querlast in gerissenem und ungerissenem Beton	V	[kN]	10,3	18,9	33,7	43,4	83,4	99,4	124,0
Zugehörige	δνο	[mm]	2,4	2,7	4,4	5,0	7,0	6,0	8,0
Verschiebungen	δν∞	– [mm]	3,6	4,1	6,6	7,5	10,5	9,0	12,0

Tabelle C10.4: Verschiebungen unter statischer und quasi-statischer Querlast für BHA-B und -H

Dübeltyp BHA-B und BHA-H			BHA 10	BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	ВНА 32
Querlast in gerissenem und ungerissenem Beton	٧	[kN]	8,9	15,4	23,4	35,4	68,0	83,4	96,6
Zugehörige	δνο	- [mm]	2,2	2,3	3,0	5,0	7,0	5,0	5,0
Verschiebungen	δν∞	_ [[[[]]]]	3,3	3,5	4,5	7,5	10,5	7,5	7,5

BTI Hochleistungsanker BHA, BHA-I	
Leistungen Verschiebungen unter Zug- und Querlast	Anhang C 10

Tabelle C11.1: Verschiebungen unte	er statischer und quasi-statischer Querlast für BHA-S R,
BHA-SK R. BHA-B R	und BHA-H R

Dübeltyp BHA-S R, -SK R, -B R, -H R			BHA 10	BHA 12	BHA 15	BHA 18	BHA 24
Querlast in gerissenem und ungerissenem Beton	V	[kN]	10,3	16,0	24,6	37,7	68,0
Zugehörige	δνο	[mm]	3,5	3,5	3,7	5,7	9,0
Verschiebungen	δν∞	— [mm]	5,3	5,3	5,6	8,6	13,5

Tabelle C11.2: Verschiebungen unter statischer und quasi statischer **Querlast** für BHA-I und BHA-I R

Dübeltyp: BHA-I und BHA-I R			BHA 12/M6 I	BHA 12/M8 I	BHA 15/M10 I	BHA 15/M12 I
Querlast in gerissenem und ungerissenem Beton	٧	[kN]	4,6	8,3	13,3	13,7
Zugehörige	δνο	– [mm]	2,6	2,6	2,2	2,2
Verschiebungen	δν∞	_ [!!!!!]	3,9	3,9	3,3	3,3

Tabelle C11.3: Verschiebungen unter **Zuglast** für **seismische Leistungskategorie C2** für BHA und BHA R

Dübeltyp BHA-S, -SK, - BHA-S R, -SK R, -B R,	BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	BHA 32	
Verschiebung DLS	δN,C2 (DLS) [mm]	1,55	2,63	2,04	4,26	3,	06
Verschiebung ULS	δN,C2 (ULS)	8,71	11,07	7,30	11,70	11	,44

Tabelle C11.4: Verschiebungen under **Querlast** für **seismische Leistungskategorie C2** für BHA und BHA R

Dübeltyp BHA-S, -SK t BHA-S R, -SK R	und	BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	BHA 32
Verschiebung DLS	δ V,C2 (DLS) [mm]	3,53	4,18	4,67	5,59	4,	79
Verschiebung ULS	δv,c2 (ULS)	6,62	7,38	9,03	14,09	9,	95
		1	ı		1		
Dübeltyp BHA-B, -H ur BHA-B R, -H R	nd	BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	BHA 32
1	δν,c2 (DLS) [mm]						

BTI Hochleistungs	anker BHA, BHA-I	
Leistungen Verschiebungen unt	ter Zug- und Querlast	Anhang C 11