

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-09/0159 of 23 September 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

BTI High-Performance Anchor BHA, BHA-I

Mechanical fastener for use in concrete

BTI Befestigungstechnik GmbH & Co. KG Salzstraße 51 74653 Ingelfingen DEUTSCHLAND

BTI Herstellwerk 1

25 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601, Edition 10/2016

ETA-09/0159 issued on 4 September 2018

European Technical Assessment ETA-09/0159

Page 2 of 25 | 23 September 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z82633.20 8.06.01-617/20

European Technical Assessment ETA-09/0159

Page 3 of 25 | 23 September 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The BTI High-Performance Anchor BHA, BHA-I is an anchor made of galvanised steel (sizes with external diameter 10, 12, 15, 18, 24, 28 and 32, sizes with internal thread 12/M6 I, 12/M8 I, 15/M10 I and 15/M12 I) or stainless steel (sizes with external diameter 10, 12, 15, 18 and 24, sizes with internal thread 12/M6 I, 12/M8 I, 15/M10 I and 15/M12 I) which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1, C 2, C 7
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 3 and C 4
Displacements (static and quasi-static loading)	See Annex C 10, C 11
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 8, C 9, C 11
Durability	See Annex B 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 5, C 6

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Z82633.20 8.06.01-617/20

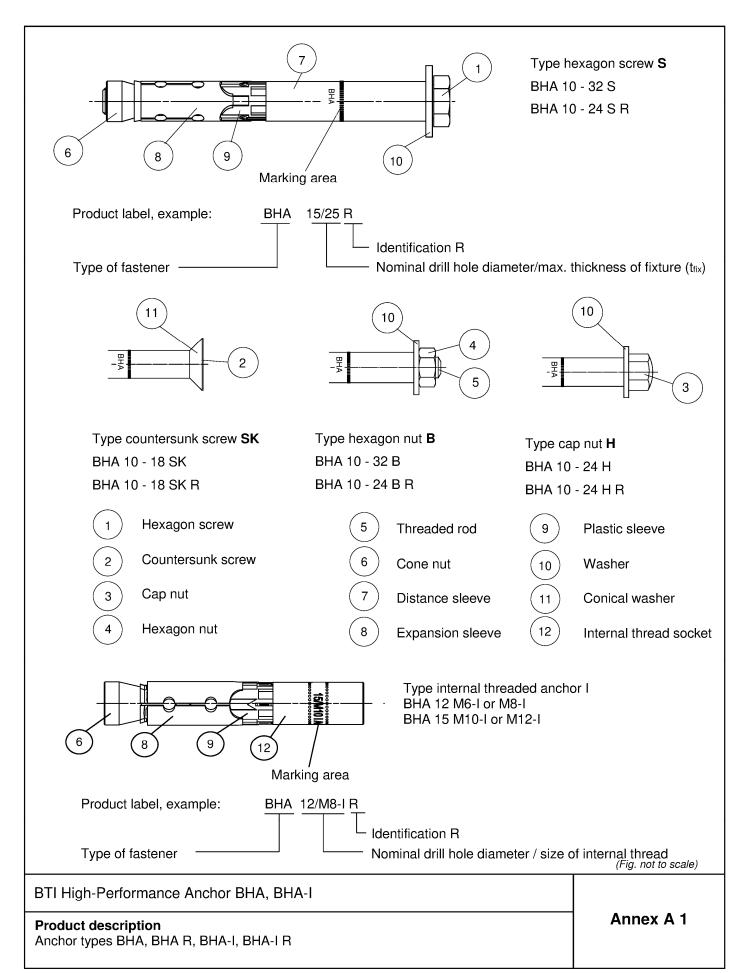
European Technical Assessment ETA-09/0159

Page 4 of 25 | 23 September 2020

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 23 September 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Baderschneider

Z82633.20 8.06.01-617/20

Electronic copy of the ETA by DIBt: ETA-09/0159

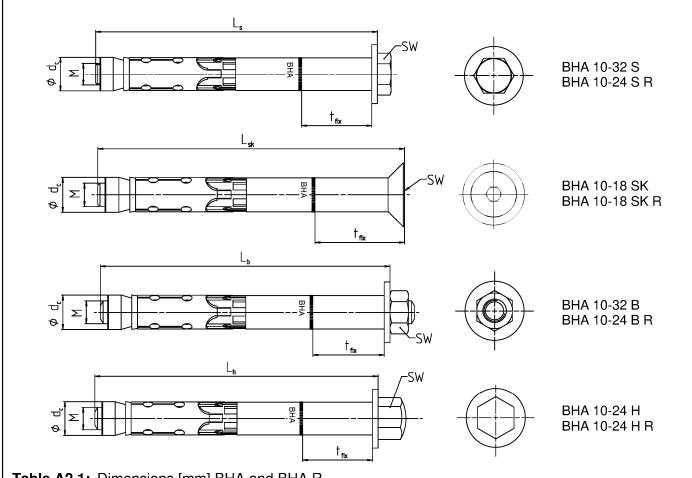


Table A2.1: Dimensions [mm] BHA and BHA R

Anchor type			BHA 10	BHA 12	BHA 15	BHA 18	BHA 24	BHA 32		
Thread		М	6	8	10	12	16	16 20 24		
Diameter cone nut		dc	10	12	14,8	17,8	23,7	27,5	31,5	
BHA-S, -B			10	13	17	19	24	30	36	
	BHA-SK ¹⁾		4	5	6	8		3)		
Wrench size SW	BHA-H		13	17	17	19	24	3)	
	BHA-S R, -B R, -H R		10	13	17	19	24	3)	
	BHA-SK R ¹⁾		4	5	6	8		3)		
t _{fix} BHA-S, -B, -H + BHA-S R, -	·B R, -H R r	nin	0	0	0	0	0	0	0	
t _{fix} BHA-SK + BHA-SK R ²⁾	K R ²⁾ min		5	6	6	8		3)		
Length of screw / bolt	L_{s} , L_{h} , L_{b} (- t_{fix})	≥	49	74	89	99	124	149	174	
Length of countersunk screw	L _{sk} (- t _{fix})	>	54	79	95	107	3)		·	

¹⁾ Internal hexagon

(Fig. not to scale)

BTI High-Performance Anchor BHA, BHA-I	
Product description Anchor types and dimensions BHA, BHA R	Annex A 2

²⁾ The influence of the thickness of fixture to the characteristic resistance for shear loads, steel failure without lever arm is taken into account, see tables C3.1, C8.1 and C9.1

³⁾ Anchor type not part of assessment

Tak	Table A3.1: Material BHA and BHA R							
		Material						
No.	Designation	ВНА	BHA R					
		Steel	Stainless steel R					
	Steel grade	Zinc plated ≥ 5 μm, ISO 4042:2018	Acc. to EN 10088:2014					
1	Hexagon screw	041-la0.0 FN 100 000 4-0040						
2	Countersunk screw	Steel class 8.8; EN ISO 898-1:2013	Class 80					
3	Cap nut	Ctool slage 0	EN ISO 3506:2020					
4	Hexagon nut	Steel class 8						
5	Threaded rod	Steel $f_{uk} \ge 800 \text{ N/mm}^2$; $f_{yk} \ge 640 \text{ N/mm}^2$	Stainless steel EN 10088:2014 f _{uk} ≥ 800 N/mm²;f _{yk} ≥ 640 N/mm²					
6	Cone nut	Steel EN 10277:2018						
7	Distance sleeve	Steel EN 10305:2016	Stainless steel EN 10088:2014					
8	Expansion sleeve	Steel EN 10139:2020/ EN 10277:2018						
9	Plastic sleeve	ABS (pla	stic)					
10	Washer	Steel EN 10139:2020	Stainless steel EN 10099:2014					
11	Conical washer	Steel EN 10277:2018	Stainless steel EN 10088:2014					

BTI High-Performance Anchor BHA, BHA-I	
Product description Materials BHA and BHA R	Annex A 3

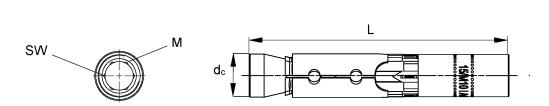


Table A4.1: Anchor Dimensions [mm] BHA-I and BHA-I R

Anchor type BHA-I, BHA-I R	BHA 12/M6 I	BHA 12/M8 I	BHA 15/M10 I	BHA 15/M12 I	
Thread	М	6	8	10	12
Diameter cone nut	dc	12	12	14,8	14,8
Wrench size internal hexagon	SW	6	8	6	8
Anchor length	L	77,5	77,5	90	90

Table A4.2: Material BHA-I and BHA-I R

		Material					
No.	Designation	BHA-I	BHA-I R				
Steel grade		Steel	Stainless steel R				
		Zinc plated ≥ 5 μm, ISO 4042:2018	Acc. to EN 10088:2014				
6	Cone nut	Steel EN 10277:2018	Stainless steel EN 10088:2014				
8	Expansion sleeve Steel EN 10139:2020 / EN 10277:2018		- Stairliess steel LIV 10000:2014				
9 Plastic sleeve ABS			S (plastic)				
12	Internal thread bolt	Steel EN 10277:2018 f _{uk} ≥ 750 N/mm², f _{yk} ≥ 600 N/mm²	Stainless steel EN 10088:2014 $f_{uk} \ge 750 \text{ N/mm}^2, \\ f_{yk} \ge 600 \text{ N/mm}^2$				
Requirements for fixing elements		Steel strength class 5.8, 6.8 or 8.8 EN ISO 898-1:2013	Steel strength class A50, A70 or A80 EN ISO 3506:2010 1.4362, 1.4401, 1.4404, 1.4571, 1.4529				

(Fig. not to scale)

BTI High-Performance Anchor BHA, BHA-I	
Product description Anchor types, dimensions and materials BHA-I, BHA I-R	Annex A 4

Specifications of intended use									
Anchorages subject	ct to:								
Size		10	12	15	18	24	28	32	
LICE DE C	BHA-S, -B	✓							
High Performance Anchor	BHA-H, -S R, -B R, -H R			1				1)	
-15. ProfiteEddw+risks2562441	BHA-SK, BHA-SK R			/			1)		
High Performance Anchor BHA-I, BHA-I R		1)		/		1	1)		
Hammer drilling with standard drill bit									
Hammer drilling with hollow drill bit with				✓					
automatic cleaning									
Static and quasi-stat									
Cracked and uncrac	ked concrete								
Fire exposure	C1 BHA					,			
	C1 BHA R	99.50	<i>'</i>				1)		
Seismic	C2 BHA	2)			/	<u> </u>			
performance category	C2 BHA R		1				1)		
Category	C1 BHA-I, BHA-I R	1)	2	2)		1)			
	C2 BHA-I, BHA-I R	''	2	-,			'',		

¹⁾ Anchor type not part of the assessment

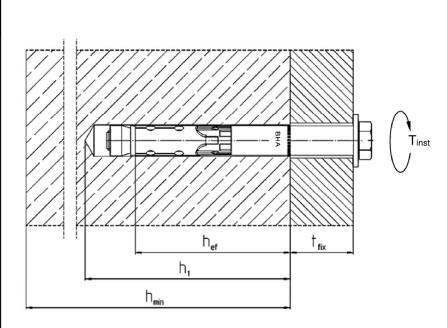
Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibres (cracked and uncracked) of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (BHA, BHA R, BHA-I, BHA-I R)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions, if no particular aggressive conditions exist (BHA R, BHA-I R)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used)


Design:

Electronic copy of the ETA by DIBt: ETA-09/0159

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- · Design of fastenings according to EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018

BTI High-Performance Anchor BHA, BHA-I	
Intended use Specifications	Annex B 1

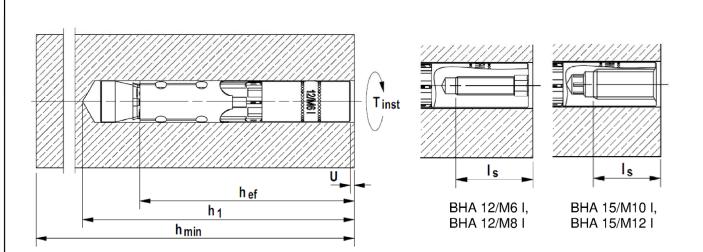
²⁾ No performance assessed

 $h_{ef} = ffective embedment depth$ $t_{fix} = ffective embedment depth$

 $h_1 =$ Depth of drill hole to deepest point $h_{min} =$ Minimum thickness of concrete member

 $T_{inst} = Required setting torque$

Table B2.1: Installation parameters BHA and BHA R


	·								
Anchor type BHA S, -SK, -B, -H and			ВНА	ВНА	ВНА	ВНА	ВНА	ВНА	ВНА
BHASR,	-SK R, -B R, -H R		10	12	15	18	24	28	32
Nominal d	rill hole diameter	d 0	10	12	15	18	24	28	32
Maximum	diameter of drill bit	d _{cut} ≤	10,45	12,50	15,50	18,50	24,55	28,55	32,70
Depth of d	rill hole to deepest h	<u>n₁ ≥</u> [mm]	55	80	90	105	125	155	180
Diameter of clearance hole $d_f \leq$		12	14	17	20	26	31	35	
Diameter of counter sunk BHA SK		18	22	25	32	1)			
Depth of counter sunk, 90° BHA SK R [mm]		SK R	5,0	5,8	5,8	8,0	• • • • • • • • • • • • • • • • • • • •		
	BHA S		10	22,5	40	80	160	180	200
De audies d	ВНА В	_		17,5	38		120	180	200
Required setting	ВНА Н	_		22,5	22,5		90	1)	
torque	BHA SK	T _{inst} [Nm]			40			1)	
'	BHA S R, BHA B R	_	15 25			160	1)	
	BHA H R	_		25	40	l 100 l	100		
	BHA SK R	_	10				1)		

¹⁾ Anchor type not part of assessment

(Fig. not to scale)

BTI High-Performance Anchor BHA, BHA-I	
Intended use Installation parameters BHA, BHA R	Annex B 2

hef = Effective embedment depth

 h_1 = Depth of drill hole to deepest point h_{min} = Minimum thickness of conrete member

T_{inst} = Required setting torque U = Required gap after torqueing

s = Screw-in depth

Table B3.1: Installation parameters BHA-I and BHA-I R

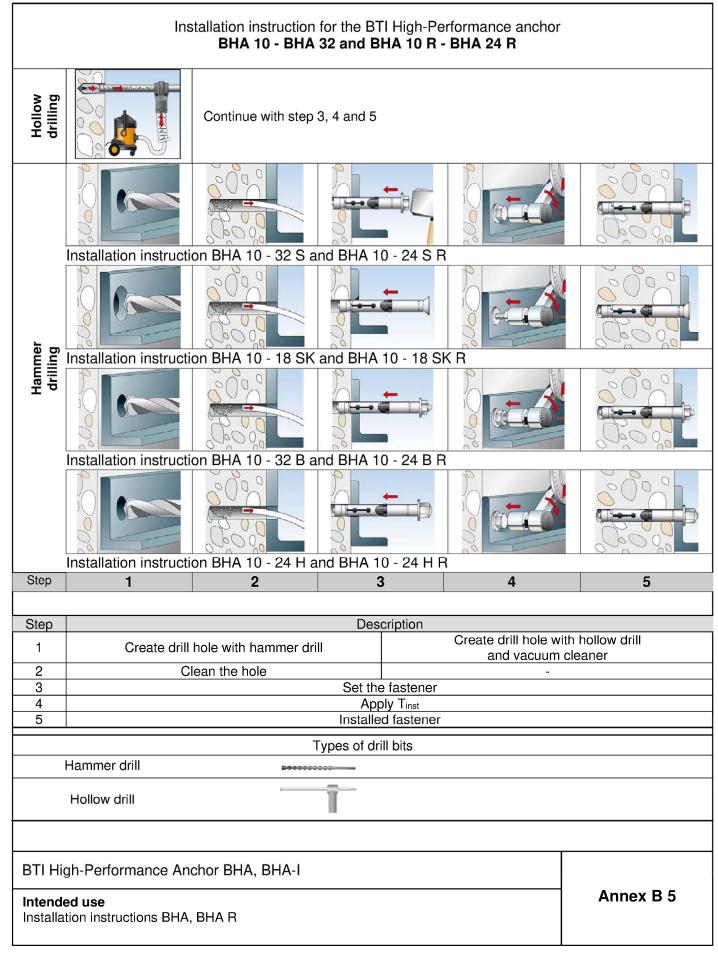
Anchor type BHA-I and BHA-I R				BHA 12/M6 I	BHA 12/M8 I	BHA 15/M10 I	BHA 15/M12 I	
Nominal drill hole diameter	d₀		_		12	15		
Maximum bit diameter	d _{cut}	≤		12	2,50	15,50		
Depth of drill hole	h ₁	≥	[mm]	3	85	95		
Diameter of clearance hole	df	≤	_	7	9	12	14	
Required gap after torquing1)	U		_		3 - :	5		
Required setting torque ¹⁾	T _{inst}		[Nm]		15	25		
Minimum screw-in depth	ls	≥	- [mm]	11 + U	13 + U	10 + U	12 + U	
Maximum screw-in depth	Is	≤	- [mm]		20 +	U		
Maximum torque on fixture in combination with screws and threaded rods strength class ≥ 5.8 resp. \geq A50	max	T_{fix}	[Nm]	3	8	15	20	

¹⁾ At least one of the requirements concerning the gap U or the required setting torque T_{inst} have to be fulfilled

(Fig. not to scale)

BTI High-Performance Anchor BHA, BHA-I	
Intended use Installation parameters BHA-I, BHA-I R	Annex B 3

Installation instructions:


- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener
- Checking before placing the fastener to ensure that the strength class of the concrete in which
 the fastener is to be placed is in the range given and is not lower than that of the concrete to
 which the characteristic loads apply
- · Check of concrete being well compacted, e.g. without significant voids
- Hammer or hollow drilling according to Annex B5 and B6
- Drill hole created perpendicular +/- 5° to concrete surface, positioning without damaging the reinforcement
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application

BTI High-Performance Anchor BHA, BHA-I

Intended Use
Installation instructions

Annex B 4

Installation instruction for the BTI High-Performance anchor internal thread BHA-I and BHA-I R Continue with step 2, 3, and 4 Hammer Step 3 Description Step Create Create drill hole with hammer drill, drill hole with hollow drill 1 clean drill hole and vacuum cleaner Hammering in the anchor flushed with the surface of the concrete 2 Tighten the anchor. The included hexagon bit in the package should be used. Other tightening methods are 3 Tighten the anchor in the concrete until the gap U is 3 - 5 mm or the required setting torque Tinst is reached. Only one of the above requirements has to be fulfilled. Attach the fixture and use a suitable screw or anchor rod. The length of the screw or anchor rod should be determined depending on the thickness of fixture tfix, admissible tolerances, and available thread length ls,max and I_{s,min} including the gap U. Tighten the screw with the torque \leq max T_{fix} (max T_{fix} see table B3.1) Types of drill bits Hammer drill Hollow drill BTI High-Performance Anchor BHA, BHA-I Annex B 6 Intended use Installation instructions BHA-I, BHA-I R

min $\{N^{0}_{Rk,c}, N_{Rk,p}\}^{4}$

Table C1.1: Performance chara for BHA and BHA		s of tensic	on resis	tance ui	nder sta	tic and c	quasi-sta	itic loads	3	
Anchor type BHA-S, -SK, -B, -H and BHA-S R, -SK R, -B R, -H R			BHA 10	BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	BHA 32	
Steel failure										
BHA-S, -B,			16,1	29,3	46,4	67,4	125,3	195,8	282,0	
BHA-H, BHA-H R, -B R	N _{Rk,s}	[kN]	16,1	29,3	46,4	67,4	125,3	2	2)	
BHA-SK			16,1	29,3	46,4	67,4		2)		
Partial factor	γMs ¹⁾	[-]				1,5				
BHA-S R		[LAN]]	16,1	29,3	46,4	67,4	125,3	2	2)	
BHA-SK R	$-N_{Rk,s}$	[kN]	16,1	29,3	46,4	67,4		2)		
Partial factor	γMs ¹⁾	[-]				1,6				
Pullout failure										
Characteristic resistance in cracked concrete C20/25 BHA and BHA R		_p [kN]	7,5	12,0	16,0	25,0	34,4	48,1	63,3	
Characteristic resistance in uncracked concrete C20/25 BHA	— N _{Rk,p}		12,5	22,9	28,8	35,2	49,2	68,8	90,4	
Characteristic resistance in uncracked concrete C20/25 BHA R			12,5	20,0	28,8	35,2	49,2	:	2)	
		C25/30				1,12				
		C30/37		1,22						
Increasing factors for N _{Rk,p} for		C35/45				1,32				
cracked and uncracked concrete	ψс	C40/50	1,41							
		C45/55				1,50				
		C50/60				1,58				
Installation factor	γinst	[-]				1,0				
Concrete cone failure and splitting	g failure									
Effective embedment depth	h _{ef}	[mm]	40	60	70	80	100	125	150	
Factor for cracked concrete	k _{cr,N}	r 1				7,73)				
Factor for uncracked concrete	k _{ucr,N}	—[- <u>]</u>				11,03)				
Spacing	S _{cr,N}		120	180	210	240	300	375	450	
Edge distance	Ccr,N	 [mm]	60	90	105	120	150	187,5	225	
Spacing (splitting)	Scr,sp		190	300	320	340	380	480	570	
Edge distance (splitting)	Ccr,sp		95	150	160	170	190	240	285	
						_				

¹⁾ In absence of other national regulations

Characteristic resistance (splitting)

 $N^0_{Rk,sp}$ [kN]

BTI High-Performance Anchor BHA, BHA-I	
Performances Performance characteristics of tension resistance for BHA and BHA R	Annex C 1

²⁾ Anchor type no performance assessed ³⁾ Based on concrete strength as cylinder strength

⁴⁾ N⁰_{Rk,c} acc. EN 1992-4:2018

Table C2.1: Performance characteristics of tension	n resistance under static and quasi-static loads
for BHA-I and BHA-I R	

Anchor type BHA-I and BHA-I R			BHA 12/M6 I	BHA 12/M8 I	BHA 15/M10 I	BHA 15/M12 I	
Steel failure							
Anchor in combination with screw	/ threa	ded rod	of galvanised s	teel complying	with DIN EN IS	SO 898	
Strength class 5.8			10	19	29	43	
Strength class 6.8	$N_{Rk,s}$	[kN]	12	23	35	44	
Strength class 8.8			16	27	44	44	
Partial factor	γMs ¹⁾	[-]		1	,5		
Anchor in combination with screw	/ threa	ded rod	of stainless ste	el complying w	ith DIN EN ISC	3506	
Screw/thread strength class A50	N _{Rk,s}	[kN]	10	19	29	43	
Partial factor	γMs ¹⁾	[-]		2,	86		
Screw/thread strength class A70	N _{Rk,s}	[kN]	14	26	41	54	
Partial factor	γ _{Ms} 1)	[-]		1,	87		
Screw/thread strength class A80	N _{Rk,s}	[kN]	16	29	46	46	
Partial factor	γMs ¹⁾	[-]		1,	60		
Pullout failure	·	, , ,					
Characteristic resistance in cracked concrete C20/25	_N _{Rk,p}	[kN]	9,	0	12,0		
Characteristic resistance in uncracked concrete C20/25	— і Ч КК,р	[KIN]	20	,0	28,8		
		C25/30		1,	12		
		C30/37	1,22				
Increasing factors for N _{Rk,p}		C35/45	1,32				
for cracked and uncracked concrete	Ψο	C40/50	1,41		41		
		C45/55		1,5	50		
		C50/60		1,5	58		
Installation factor	γinst	[-]		1,	0		
Concrete cone failure and splitting	failure)					
Effective embedment depth	h _{ef}	[mm]	60			'0	
Factor for cracked concrete	$k_{\text{cr,N}}$	_r 1		7,7	7 ²⁾		
Factor for uncracked concrete	$k_{\text{ucr},N}$	-[-]		11,	02)		
Spacing	Scr,N		18			10	
Edge distance	C _{cr} ,N	-[mm]	90)		05	
Spacing (splitting)	Scr,sp	[30	0	3	20	
Edge distance (splitting)	C _{cr,sp}		15	0	1	60	
Characteristic resistance (splitting)	$N^0_{Rk,s}$	p[kN]		min {N ⁰ _{Rk}	,c, N _{Rk,p} } ³⁾		

BTI High-Performance Anchor BHA, BHA-I	
Performances Performance characteristics of tension resistance for BHA-I and BHA-I R	Annex C 2

¹⁾ In absence of other national regulations2) Based on concrete strength as cylinder strength

³⁾ N⁰_{Rk,c} acc. EN 1992-4:2018

Anchor type BHA-S, -SK, -B, -H BHA-S R, -SK R, -B R, -H R	and		BHA 10	BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	BHA 32
Installation factor	γinst	[-]		•		1,0	•		
Steel failure without lever arm									
BHA-S			18,0	33,0	59,0	76,0	146,0	176,4	217,0
BHA-B	$-V^0$ Rk,s	[kN]	16,0	27,2	42,8	61,9	119,0	148,8	169,0
ВНА-Н	_		16,0	27,2	42,8	61,9	119,0	3	
	t _{fix} 2)	[mm]	≥	10	≥	15			
	$V^0_{Rk,s}$	[kN]	18,0	33,0	59,0	76,0	†		
BHA-SK ———	t _{fix} 2)	[mm]	· ·	10		15	1	3)	
	V ⁰ Rk,s	[kN]		1		1	-		
Partial factor		[KIN]	8,0	14,0	23,0	34,0			
	γMs ¹⁾	- [-]				1,25			
Factor for ductility	k ₇	FL-N 17	40.0	00.0	50.0	1,0	1.10.0	3	١
BHA-S R	V ⁰ Rk,s	[kN]	18,0	33,0	59,0	76,0	146,0		
Partial factor	γMs ¹⁾	[-]				1,33			<u> </u>
BHA-B R, -H R	V ⁰ Rk,s	[kN]	16,0	27,2	42,8	61,9	119,0	3)
Partial factor	γMs ¹⁾	[-]			I	1,25	1		
	t _{fix} 2)	[mm]		10		15	-		
BHA-SK R	V ⁰ Rk,s	[kN]	18,0	33,0	59,0	76,0	3)		
DI II CONTR	t _{fix} 2)	[mm]	<	10	<	15			
	V^0 Rk,s	[kN]	8,0	14,0	23,0	34,0			
Partial factor	γ _{Ms} 1)	[-]				1,33			
Factor for ductility	k ₇					1,0			
Steel failure with lever arm and	d concret	e pryou	t failure						
Characteristic bending resistance BHA-S, -SK, -B, -H	$M^0_{Rk,s}$	[Nm]	12	30	60	105	266	518	896
Partial factor	γMs ¹⁾	[-]				1,25	1		
Characteristic bending resistance BHA R		[Nm]	12	30	60	105	266	3)
BHA-BR, -HR	4.5			ı		1,25			
Partial factor BHA-S R, -SK R	— γ _{Ms} ¹⁾	[-]				1,33			
21,7, 311, 3111						1,00			
Factor for pryout failure	k ₈	[-]	1,0			2	,0		
Concrete edge failure									
Effective embedment depth for calculation	I _f =	_ [mm]				h _{ef}			
Outside diameter of a fastener	d _{nom}	_ []	10	12	15	18	24	28	32

BTI High-Performance Anchor BHA, BHA-I	
Performances Performance characteristics of shear resistance for BHA and BHA R	Annex C 3

Electronic copy of the ETA by DIBt: ETA-09/0159

English translation prepared by DIBt

Anchor type BHA-I and BHA-I R			BHA 12/M6 I	BHA 12/M8 I	BHA 15/M10 I	BHA 15/M12 I
Installation factor	γinst	[-]		1	,0	-
Steel failure without lever arm	·					
Anchor in combination with screw	ı / threade	d rod o	f galvanised s	teel complying	with DIN EN IS	SO 898:2013
Strength class 5.8			5	9	15	21
Strength class 6.8	V^0 Rk,s	[kN]	6	11	18	24
Strength class 8.8			8	14	23	24
Partial factor	$\gamma {\sf Ms}^{1)}$			1	,25	
Factor for ductility	k 7	· [-]		1	,0	
Anchor in combination with screw		d rod o	f stainless ste	el complying w	ith DIN EN ISC	3506:2010
Strength class A50	$V^0_{Rk,s}$	[kN]	5	9	15	21
Partial factor	γ Ms $^{1)}$	[-]		2	,38	
Strength class A70	V^0 Rk,s	[kN]	7	13	20	30
Partial factor	γ _{Ms} ¹⁾	[-]		1	,56	•
Strength class A80	V ⁰ Rk,s	[kN]	8	15	23	32
Partial factor	γMs ¹⁾			1	,33	•
Factor for ductility	k ₇	· [-]		1	,0	
Steel failure with lever arm and co	ncrete pr	out fai	lure			
Anchor in combination with screw /				complying with	DIN EN ISO 89	8:2013
Strength class 5.8		Ĭ	8	19	37	65
Strength class 6.8	$M^0_{Rk,s}$	[Nm]	9	23	44	78
Strength class 8.8		[]	12	30	60	105
Partial factor	γ _{Ms} 1)			1	,25	
Factor for ductility	k ₇	· [-]			1,0	
Anchor in combination with screw		l rod of	stainless steel		-	06:2010
Strength class A50	M ⁰ Rk,s	[Nm]	8	19	37	65
Partial factor	γ _{Ms} 1)	[-]			,38	
Strength class A70	M ⁰ Rk,s	[Nm]	11	26	52	92
Partial factor	γ _{Ms} 1)	[-]		l	,56	
Strength class A80	M ⁰ Rk,s	[Nm]	12	30	60	105
Partial factor	γMs ¹⁾	[]	· -	I	,33	
Factor for ductility	k ₇	[-]			1,0	
Factor for pryout failure	k ₈	- ' '			2,0	
Concrete edge failure	1.0				_,0	
Effective embedment depth for calculation	l _f =	[mm]			h _{ef}	
Outside diameter of fastener	d _{nom}	ا [12		15
) In absence of other national regulation	S					
BTI High-Performance Anchor E	SHA, BHA-	·I				

4,8

7,5

10,8

0,1

0,1

0,1

0,2

0,6

1,0

1,6

2,6

7,2

10,1

13,2

1,8

2,4

14,4

25,2

39,7

4,0

5,9

			R30		R60			
Anchor type		N _{Rk,s,fi,30} [kN]	N _{Rk,p,fi,30} [kN]	N ⁰ _{Rk,c,fi,30} [kN]	N _{Rk,s,fi,60} [kN]	N _{Rk,p,fi,60} [kN]	N ⁰ Rk,c,fi,60 [kN]	
BHA 10, BHA 10 R		0,2	1,8	1,8	0,2	1,8	1,8	
BHA 12, BHA 12 R		2,0	3,0	5,0	1,3	3,0	5,0	
BHA 15, BHA 15 R		3,2	4,0	7,4	2,3	4,0	7,4	
BHA 18, BHA 18 R		4,8	6,3	10,3	3,9	6,3	10,3	
BHA 24, BHA 24 R		8,9	9,0	18,0	7,3	9,0	18,0	
BHA 28		13,9	12,6	31,4	11,3	12,6	31,4	
BHA 32		20,0	16,5	49,6	16,3	16,5	49,6	
BHA 12/M6-I,	5.8, A50 ¹⁾	0,1			0,1		5,0	
BHA 12/M6-I R	8.8, A70, A80 ^{1) 2)}	0,2	0.0	F 0	0,2	2,3		
BHA 12/M8-I,	5.8, A50 ¹⁾	1,3	2,3	5,0	0,8			
BHA 12/M8-I R	8.8, A70, A80 ^{1) 2)}	2,0			1,3			
BHA 15/M10-I,	5.8, A50 ¹⁾	2,0			1,4		7,4	
BHA 15/M10-I R	8.8, A70, A80 ^{1) 2)}	3,2		_ ,	2,3			
BHA 15/M12-I,	5.8/A50 ¹⁾	3,0	3,0	7,4	2,4	3,0		
BHA 15/M12-I R	8.8, A70, A80 ^{1) 2)}	4,8			3,9			
			R90		R120			
Anchor type		N _{Rk,s,fi,90} [kN]	N _{Rk,p,fi,90} [kN]	N ⁰ _{Rk,c,fi,90} [kN]	N _{Rk,s,fi,120} [kN]	N _{Rk,p,fi,120}	N ⁰ Rk,c,fi,120 [kN]	
BHA 10, BHA 10 R		0,1	1,8	1,8	0,1	1,5	1,5	
BHA 12, BHA 12 R		0,6	3,0	5,0	0,2	2,4	4,0	
BHA 15, BHA 15 R		1,4	4,0	7,4	1,0	3,2	5,9	
BHA 18, BHA 18 R		3,0	6,3	10,3	2,6	5,0	8,2	
		1 '	+ '		· · · · · · · · · · · · · · · · · · ·	· · · · · ·	· · · · · ·	

9,0

12,6

16,5

2,3

3,0

18,0

31,4

49,6

5,0

7,4

5,6

8,8

12,6

0,1

0,1

0,4

0,6

0,9

1,4

1,9

3,0

BHA 24, BHA 24 R

BHA 28

BHA 32

Electronic copy of the ETA by DIBt: ETA-09/0159

BHA 12/M6-I,

BHA 12/M8-I,

BHA 12/M6-I R

BHA 12/M8-I R

BHA 15/M10-I,

BHA 15/M12-I, BHA 15/M12-I R

BHA 15/M10-I R

5.8, A50¹⁾

5.8, A50¹⁾

5.8, A50¹⁾

5.8/A50¹⁾

8.8, A70, A80^{1) 2)}

8.8, A70, A80^{1) 2)}

8.8, A70, A80^{1) 2)}

8.8, A70, A80^{1) 2)}

BTI High-Performance Anchor BHA, BHA-I	
Performances Performance characteristics of tension resistance under fire exposure	Annex C 5

¹⁾ Intermediate values by linear interpolation

²⁾ In combination with screw / threaded rod strength class 8.8, A70, A80

Deutsches
Institut
für
Bautechnik

3

1,6

2,6

English translation prepared by DIBt

		R	30	R	60
Anchor type		V _{Rk,s,fi,30} [kN]	M ⁰ Rk,s,fi,30 [Nm]	V _{Rk,s,fi,60} [kN]	M ⁰ Rk,s,fi,60 [Nm]
BHA 10, BHA 10 R		0,3	0	0,3	0
BHA 12, BHA 12 R		2,0	2	1,3	1
BHA 15, BHA 15 R		3,2	4	2,3	3
BHA 18, BHA 18 R		4,8	7	3,9	6
BHA 24, BHA 24 R		8,9	19	7,3	15
BHA 28		13,9	37	11,3	30
BHA 32		20,0	64	16,3	52
BHA 12/M6 I,	5.8, A50 ¹⁾	0,2	0	0,2	0
BHA 12/M6 I R	8.8, A70, A80 ^{1) 2)}	0,3	0	0,3	0
BHA 12/M8 I,	5.8, A50 ¹⁾	1,3	1	0,8	1
BHA 12/M8-I R	8.8, A70, A80 ^{1) 2)}	2,0	2	1,3	1
BHA 15/M10 I,	5.8, A50 ¹⁾	2,0	3	1,4	2
BHA 15/M10-I R	8.8, A70, A80 ^{1) 2)}	3,2	4	2,3	3
BHA 15/M12-I,	5.8/A50 ¹⁾	3,0	4	2,4	4
BHA 15/M12-I R	8.8, A70, A80 ^{1) 2)}	4,8	7	3,9	6
		R		R1	20
Anchor type		V _{Rk,s,fi,90} [kN]	M ⁰ _{Rk,s,fi,90} [Nm]	$V_{Rk,s,fi,120}$ [kN]	M ⁰ Rk,s,fi,120 [Nm]
BHA 10, BHA 10 R		0,2	0	0,1	0
BHA 12, BHA 12 R		0,6	1	0,2	0
BHA 15, BHA 15 R		1,4	2	1,0	1
BHA 18, BHA 18 R		3,0	5	2,6	4
BHA 24, BHA 24 R		5,6	12	4,8	10
BHA 28		8,8	23	7,5	20
BHA 32		12,6	40	10,8	34
BHA 12/M6-I,	5.8, A50 ¹⁾	0,1	0	0,1	0
BHA 12/M6-I [°] R	8.8, A70, A80 ^{1) 2)}	0,2	0	0,1	0
BHA 12/M8-I,	5.8, A50 ¹⁾	0,4	1	0,1	0
BHA 12/M8-I R	8.8, A70, A80 ^{1) 2)}	0,6	1	0,2	0
BHA 15/M10 I,	5.8, A50 ¹⁾	0,9	2	0,6	1
BHA 15/M10-I R	8.8, A70, A80 ^{1) 2)}	1,4	3	1,0	1
	, ,	.,.		· , =	

¹⁾ Intermediate values by linear interpolation

BHA 15/M12 I,

BHA 15/M12-I R

8.8, A70, A80^{1) 2)}

5.8/A50¹⁾

Table C6.2: Minimum spacings and minimum edge distances of anchors under **fire exposure** for tension and shear loads

1,9

3,0

4

6

Anchor type			BHA 10	BHA 12 BHA 12-I	BHA 15 BHA 15-I	BHA 18	BHA 24	BHA 28	BHA 32		
Cassina	Scr,N,fi					4x h _{ef}					
Spacing	Scr,N,fi Smin,fi		40	50	60	70	80	100	120		
	C _{cr} ,N,fi	[mm]				2 x h _{ef}					
Edge distance	Cmin,fi	[]	$c_{\text{min},\text{fi}} = 2 \text{ x h}_{\text{ef}} \; ,$ for fire exposure from more than one side $c_{\text{min},\text{fi}} \geq 300 \; \text{mm}$								

BTI High-Performance Anchor BHA, BHA-I

Perfomances
Performance characteristics of shear resistance under fire exposure
Minimum spacings and minimum edge distances of anchors under fire exposure

²⁾ In combination with screw / threaded rod strength class 8.8, A70, A80

Table C7.1: Minimum thickness of concrete member, minimum spacing and minimum edge distances **BHA, BHA R**

Anchor type BHA-S, -SK, -B, -H and BHA-S R, -SK R, -B R, -H R				BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	BHA 32
Minimum thickness of concrete member	h _{min}	[mm]	80	120	140	160	200	250	300
Minimum spacing,	Smin		40	50	60	70	80	100	120
cracked concrete	for c ≥		40	80	120	140	180	200	260
Minimum edge distance,	Cmin	– [mm]	40	50	60	70	80	100	120
cracked concrete	for s ≥		40	80	120	160	200	220	280
Minimum spacing,	Smin		40	60	70	80	100	120	160
uncracked concrete	for c ≥		70	100	100	160	200	220	360
Minimum edge distance,	Cmin	– [mm]	40	60	70	80	100	120	180
uncracked concrete	for s ≥		70	100	140	200	220	240	380

Intermediate values may be calculated by linear interpolation

Table C7.2: Minimum thickness of concrete member, minimum spacing and minimum edge distances **BHA-I, BHA-I R**

Anchor type BHA-I and BHA-I R			BHA 12/M6 I BHA 12/M8 I	BHA 15/M10 I BHA 15/M12 I
Minimum thickness of concrete member	h _{min}	[mm]	125	150
Minimum spacing,	Smin		50	60
cracked concrete	for c ≥	- [mm]	80	120
Minimum edge distance,	Cmin		50	60
cracked concrete	for s ≥	_	80	120
Minimum spacing,	Smin		60	70
uncracked concrete	for c ≥	_ [mm]	100	100
Minimum edge distance,	Cmin	– [mm] –	60	70
uncracked concrete	for s ≥	_	100	140

Intermediate values may be calculated by linear interpolation.

BTI High-Performance Anchor BHA, BHA-I	
Performances Minimum thickness of concrete member, minimum spacing and minimum edge distances	Annex C 7

Table C8.1: Performance characteristics of tension and shear resistance for seismic performance category C1 for BHA-S, -SK, -B, -H and BHA-S R, -SK R, -B R, -H R										
Anchor type B BHA-S R, -SK	HA-S, -SK, -B, -H and R, -B R, -H R			BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	BHA 32	
Steel failure										
	BHA-S, -B			29,3	46,4	67,4	125,3	195,8	282,0	
	BHA-H, -H R, -B R	N _{Rk,s,C1}	[kN]	29,3	46,4	67,4	125,3	3)	
Characteristic	BHA-SK			29,3	46,4	67,4		3)		
resistance of tension load	Partial factor	γMs,C1 ¹⁾	[-]			1,	,5			
C1	BHA-S R	N _{Rk,s,C1}	[kN]	29,3	46,4	67,4	125,3	3)	
	BHA-SK R			29,3	46,4	67,4		3)		
	Partial factor	γMs,C1 ¹⁾	[-]			1,	,6			
Pullout failure	e									
Characteristic		$N_{Rk,p,C1}$	[kN]	12,0	16,0	25,0	36,0	50,3	66,1	
tension load ir	n cracked concrete C1	γMp,C1 ¹⁾	[-]	1,5						
Steel failure v	without lever arm									
Characteristic	c resistance of shear load	C1								
BHA-S		_		25,0	41,0	60,0	123,0	141,0	200,0	
BHA-B		$V_{\rm Rk,s,C1}$	[kN]	17,0	30,0	46,0	103,0	117,0	169,0	
ВНА-Н				17,0	30,0	46,0	103,0			
		t _{fix} 2)	[mm]	≥ 10	≥	15				
BHA-SK		$V_{Rk,s,C}$	[kN]	25,0	41,0	60,0		3)		
BITA OIL		t _{fix} 2)	[mm]	< 10	<	15				
		$V_{Rk,s,C}$	[kN]	11,0	16,0	27,0				
Partial factor		γMs,C1 ¹⁾	[-]				25			
BHA-S R		V _{Rk,s,C1}	[kN]	25,0	41,0	60,0	123,0	-	-	
Partial factor		γMs,C1 ¹⁾	[-]			1,				
BHA-B R, -H F	₹	$V_{Rk,s,C1}$		17,0	30,0	46,0	103,0	-	-	
Partial factor		γMs,C1 ¹⁾	[-]		Г	1,2	25			
BHA-SK R		t _{fix} 2)	[mm]	≥ 10	≥ .					
		V _{Rk,s,C1}	[kN]	25,0	41,0	60,0		3)		
		t _{fix} ²⁾	[mm]	< 10	<					
		V _{Rk,s,C1}	[kN]	11,0	16,0	27,0				
Partial factor		γMs,C1 ¹⁾	· [-]	1,33						
Factor for ann	ular gap	αgap				0,	50			

BTI High-Performance Anchor BHA, BHA-I	
Performances Performance characteristics of tension and shear resistance for seismic performance category C1	Annex C 8

¹⁾ In absence of other national regulations
2) The thickness of the fixture has influence to the characteristic resistance for shear loads, steel failure without lever arm

³⁾ No performance assessed

0,50

	Performance charactocategory C2 for BHA							performa	nce
Anchor type BH BHA-S R, -SK F	IA-S, -SK, -B, -H and R, -B R, -H R			BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	BHA 32
Steel failure	, _ , , , , , , , , , , , , , , , , , ,								
	BHA-S, -B			29,3	46,4	67,4	125,3	19	5,8
	BHA-H, -H R, -B R	— N _{Rk,s,C2}	[kN]	29,3	46,4	67,4	125,3	3)
Characteristic	BHA-SK			29,3	46,4	67,4		3)	
resistance of	Partial factor	γMs,C2 ¹⁾	[-]	, , , , , , , , , , , , , , , , , , ,	, ,		,5		
tension load C2	BHA-S R	·		29,3	46,4	67,4	125,3	3)
02	BHA-SK R	$$ $N_{Rk,s,C2}$	[kN]	29,3	46,4	67,4		3)	
	Partial factor	γMs,C2 ¹⁾	[-]		, , ,	1	,6		
Pullout failure	•	7					, -		
Characteristic re	esistance of	N _{Rk,p,C2}	[kN]	6,2	11,3	21,8	43,0	65	.9
tension load in	cracked concrete C2	γ _{Mp,C2} 1)	[-]	- ,	,-		,5		, -
Steel failure w	ithout lever arm	/ WIP, OZ	L J				, -		
	resistance of shear lo	ad C2							
BHA-S				14,7	28,9	41,0		100,7	
ВНА-В		$V_{Rk,s,C2}$	[kN]	9,8	20,9	34,1	61,9	67	,2
ВНА-Н				9,8	20,9	34,1	61,9	3)
		t _{fix} 2)	[mm]	≥ 10	≥	15		•	
DI IA OK		$V_{Rk,s,C2}$	[kN]	14,8	23,3	33,8		3)	
BHA-SK		t _{fix} 2)	[mm]	< 10	<	15	- 3)		
		$V_{Rk,s,C2}$	[kN]	6,3	9,1	15,1			
Partial factor		γMs,C2 ¹⁾	[-]			1,	25		
BHA-S R		$V_{Rk,s,C2}$	[kN]	14,7	28,9	41,0	100,7	3)
Partial factor		γ _{Ms,C2} 1)	[-]			1,	33		
BHA-B R, -H R		V _{Rk,s,C2}	[kN]	9,8	20,9	34,1	61,9	3)
Partial factor		γMs,C2 ¹⁾	[-]	•		1,	25		
		t _{fix} 2)	[mm]	≥ 10	≥	15			
		$V_{Rk,s,C2}$	[kN]	14,8	23,3	33,8	1	3/	
BHA-SK R		t _{fix} ²⁾	[mm]	< 10	<	15	1	3)	
		$V_{Rk,s,C2}$	[kN]	6,3	9,1	15,1	1		
Partial factor		γMs,C2 ¹⁾			•	1,	33		
,	1	/-	— [-]						

[-]

 $lpha_{ extsf{gap}}$

Factor for annular gap

BTI High-Performance Anchor BHA, BHA-I	
Performances Performance characteristics of tension and shear resistance for seismic performance category C2	Annex C 9

¹⁾ In absence of other national regulations ²⁾ The thickness of the fixture has influence to the characteristic resistance for shear loads, steel failure without lever arm

³⁾ No performance assessed

Anchor type BHA-S, -SK, -B, -H and BHA-S R, -SK R, -B R, -H R			BHA 10	BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	BHA 32
Tension load cracked concrete	N	[kN]	3,6	5,7	7,6	11,9	17,1	24,0	31,5
Corresponding displacements	δηο	[mm]	1,0	1,0	1,0	1,0	1,0	0,7	0,7
Corresponding displacements		· [mm]	1,7	1,6	1,6	1,6	1,8	1,3	1,1
Tension load uncracked concrete	N	[kN]	6,0	11,2	14,1	17,2	24,0	33,6	44,2
Corresponding displacements	δηο	- [mm]	0,6	1,0	1,0	1,0	1,0	0,3	0,3
Corresponding displacements	δ _{N∞}	– [mm]	1,7	1,6	1,6	1,6	1,8	1,3	1,1

Table C10.2: Displacements under static and quasi static tension loads for BHA-I and BHA-I R

Anchor type BHA-I and BHA-I R			BHA 12/M6 I BHA 12/M8 I	BHA 15/M10 I BHA 15/M12 I
Tension load cracked concrete	N.I.	[LNI]	4,3	5,7
Tension load uncracked concrete	- N	[kN]	9,5	14,1
Carragnanding displacements	δνο	[200.000]	1,7	1,9
Corresponding displacements	δ _{N∞}	—— [mm]	2,2	2,9

Table C10.3: Displacements under static and quasi static shear loads for BHA-S and BHA-SK

Anchor type BHA-S and BHA-S	K		BHA 10	BHA 12	BHA 15	BHA 18	ВНА 24	BHA 28	ВНА 32
Shear load in cracked and uncracked concrete	V	[kN]	10,3	18,9	33,7	43,4	83,4	99,4	124,0
Corresponding	δνο	– [mm]	2,4	2,7	4,4	5,0	7,0	6,0	8,0
displacements	δν∞	_ [[[]]]	3,6	4,1	6,6	7,5	10,5	9,0	12,0

Table C10.4: Displacements under static and quasi static shear loads for BHA-B and BHA-H

Anchor type BHA-B and BHA-H			BHA 10	BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	ВНА 32
Shear load in cracked and uncracked concrete	V	[kN]	8,9	15,4	23,4	35,4	68,0	83,4	96,6
Corresponding	δνο	[mm]	2,2	2,3	3,0	5,0	7,0	5,0	5,0
displacements	δγ∞	– [mm]	3,3	3,5	4,5	7,5	10,5	7,5	7,5

BTI High-Performance Anchor BHA, BHA-I	
Performances Displacements under tension and shear loads	Annex C 10

Table C11.1:	Displacements under static and quasi static shear loads
	for BHA-S R, BHA-SK R, BHA-B R and BHA-H R

,,	,						
Anchor type BHA-S R, -SK R, -B R, -H R			BHA 10	BHA 12	BHA 15	BHA 18	BHA 24
Shear load in cracked and uncracked concrete	٧	[kN]	10,3	16,0	24,6	37,7	68,0
Corresponding	δνο	[mm]	3,5	3,5	3,7	5,7	9,0
displacements	δν∞	— [mm]	5,3	5,3	5,6	8,6	13,5

Table C11.2: Displacements under static and quasi static shear loads for BHA-I and BHA-I R

Anchor type: BHA-I and BHA-I R			BHA 12/M6 I	BHA 12/M8 I	BHA 15/M10 I	BHA 15/M12 I
Shear load in cracked and uncracked concrete	V	[kN]	4,6	8,3	13,3	13,7
Corresponding	δνο	[mm]	2,6	2,6	2,2	2,2
displacements	δν∞	— [mm]	3,9	3,9	3,3	3,3

Table C11.3: Displacements under **tension loads** for **seismic performance category C2** for BHA and BHA R

Anchor type BHA-S, -SK, -B, -H and BHA-S R, -SK R, -B R, -H R			BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	BHA 32
Displacement DLS	$\delta_{\text{N,C2 (DLS)}}$	[mm]	1,55	2,63	2,04	4,26	3,	06
Displacement ULS	δ N,C2 (ULS)	- [mm]	8,71	11,07	7,30	11,70	11	,44

Table C11.4: Displacements under **shear loads** for **seismic performance category C2** for BHA and BHA R

Anchor type BHA-S, -S BHA-S R, -SK R	SK and	BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	BHA 32
Displacement DLS	δv,c2 (DLS)	3,53	4,18	4,67	5,59	4,	79
Displacement ULS	δv,c2 (ULS)	m] 6,62	7,38	9,03	14,09	9,95	
Anchor type BHA-B, -H BHA-B R, -H R	l and	BHA 12	BHA 15	BHA 18	BHA 24	BHA 28	BHA 32
Displacement DLS	δv,c2 (DLS)	3,42	4,26	4,29		4,79	
Displacement ULS	δv,c2 (ULS)	m] 5,26	6,66	7,95	7,69	9,	95

BTI High-Performance Anchor BHA, BHA-I	
Performances Displacements under tension and shear loads	Annex C 11