

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-10/0169 of 14 July 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Upat Express Anchor IMC

Mechanical fastener for use in concrete

Upat Vertriebs GmbH Bebelstraße 11 79108 Freiburg im Breisgau DEUTSCHLAND

Upat

14 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 12/2019

ETA-10/0169 issued on 22 August 2017

European Technical Assessment ETA-10/0169

Page 2 of 14 | 14 July 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-10/0169

English translation prepared by DIBt

Page 3 of 14 | 14 July 2020

Specific Part

1 Technical description of the product

The Upat Express Anchor IMC is an anchor made of zinc plated, hot-dip galvanised or stainless steel which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex
(static and quasi-static loading)	C 3, C 1
Characteristic resistance to shear load	See Annex
(static and quasi-static loading)	C 2
Displacements	See Annex
(static and quasi-static loading)	C 3
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed
Durability	See Annex B 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance				
Reaction to fire	Class A1				
Resistance to fire	No performance assessed				

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

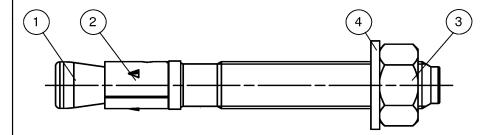
European Technical Assessment ETA-10/0169

Page 4 of 14 | 14 July 2020

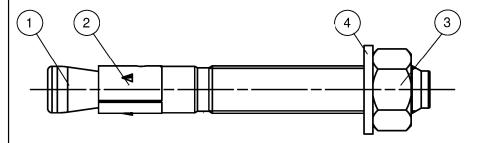
English translation prepared by DIBt

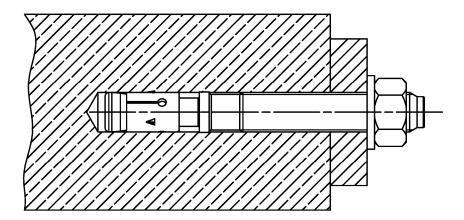
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 14 July 2020 by Deutsches Institut für Bautechnik

Dr.-Ing. Lars Eckfeldt p.p. Head of Department


beglaubigt: Baderschneider

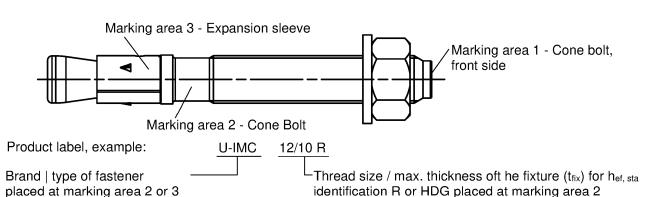

Cone bolt manufactured by cold - forming:

Cone bolt manufactured by turning:

- ① Cone bolt (cold formed or turned)
- ② Expansion sleeve
- 3 Hexagon nut
- Washer

(Fig. not to scale)

Upat Express Anchor IMC


Product description
Installed condition

Annex A 1

Z64043.20

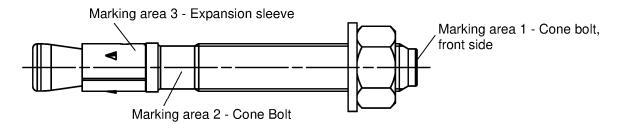


Table A2.1: Letter-code on marking area 1 and maximum thickness of fixture t_{fix} [mm]:

marking		Α	В	С	D	Ε	F	G	Η	_	Κ	L	М	N	0	Р	R	S	Τ	U	٧	W	Χ	Υ	Ζ
max. t _{fix} for h _{ef, sta}	M6-M20	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100	120	140	160	180	200	250	300	350	400
max. t _{fix}	M8, M10	15	20	25	30	35	40	45	50	55	60	70	80	90	100	110	130	150	170	190	210	260	310	360	410
	M12, M16	20	25	30	35	40	45	50	55	60	65	75	85	95	105	115	135	155	175	195	215	265	315	365	415
for h _{ef, red}	M20	30	35	40	45	50	55	60	65	70	75	85	95	105	115	125	145	165	185	205	225	275	325	375	425

IMC K for use with reduced anchorage depth only (hef, red):

Product label, example:

Brand | type of fastener placed at marking area 2 or 3

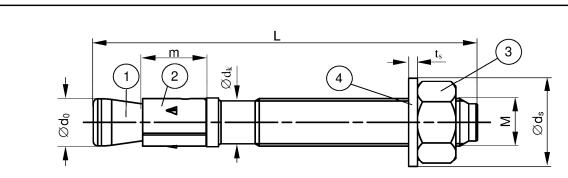
U-IMC

Thread size / max. thickness oft he fixture (t_{fix}) identification K for h_{ef, red} identification R or HDG placed on marking area 2

Table A2.2: Letter-code on marking area 1 and maximum thickness of fixture t_{fix} [mm]:

Markierung	-A-	-B-	-C-	-D-	-E-	-F-	-G-	-H-	- -	-K-	-L	-M-	-N-	-0-	-P-	-R-	-S-	-T-	-U-	-V-	-W-	-X-	-Y-	-Z-
max. t _{fix} for h _{ef, red} M8-M20	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100	120	140	160	180	200	250	300	350	400

Identification for hef, red is the letter-code between 2 hyphen


(Fig. not to scale)

Upat Express Anchor IMC

Product description

Product label and letter code

Annex A 2

Table A3.1: Anchor dimensions [mm]

Part	Decignation					IMC,	IMC R		
Fait	Designation	esignation				M10	M12	M16	M20
		М	_	M6	M8	M10	M12	M16	M20
1	Cone bolt	$\emptyset d_0$		5,9	7,9	9,9	11,9	15,9	19,6
		Ø d _k	_ =	5,2	7,1	8,9	10,8	14,5	18,2
2	Expansion sleeve	m		10	11,5	13,5	16,5	21,5	33,5
3	Hexagon nut	SW	_	10	13	17	19	24	30
4	Washer	ts	ts		1,4	1,8	2,3	2,7	2,7
4	vvasner	Ø d₅	- ≥	11,5	15	19	23	29	36
Thickness of	fixturo	+	≥	0	0	0	0	0	0
Thickness of	nxture	t _{fix}	<u></u>	200	200	250	300	400	500
Length of fastener		L _{min}	_	45	56	71	86	120	139
Length of las	terier	L _{max}	= =	245	261	316	396	520	654

(Fig. not to scale)

Upat Express Anchor IMC

Product description
Dimensions

Annex A 3

Table A4.1: Materials I	IMC (zinc r	olated > 5um	ISO	4042:2018)
i abic hill waterals		Jialoa - Oaiii.	\cdot	1012.20101

Part	Designation	Material							
1	Cone bolt	Cold form steel or free cutting steel							
2	Expansion sleeve	Cold strip, EN 10139:2016 1)							
3	Hexagon nut	Steel, property class min. 8, EN ISO 898-2:2012							
4	Washer	Cold strip, EN 10139:2013							

¹⁾ Optional stainless steel EN 10088:2014

Table A4.2: Materials IMC HDG (hot-dip galvanised \geq 50 μ m, ISO 10684: 2004 ²⁾)

Part	Designation	Material
1	Cone bolt	Cold form steel or free cutting steel
2	Expansion sleeve	Stainless steel EN 10088:2014
3	Hexagon nut	Steel, property class min. 8, EN ISO 898-2:2012
4	Washer	Cold strip, EN 10139:2016

 $^{^{1)}}$ Alternative method sherardized \geq 50 μm , EN 13811:2003

Table A4.3: Materials IMC R

Part	Designation	Material
1	Cone bolt	Stainless steel EN 10088:2014
2	Expansion sleeve	Stainless steel EN 10088:2014
3	Hexagon nut	Stainless steel EN 10088:2014 ISO 3506-2: 2009; property class min. 70
4	Washer	Stainless steel EN 10088:2014

Upat Express Anchor IMC

Product description
Materials

Annex A 4

Specifications of intended use Anchorages subject to: Express Anchor IMC, IMC R M61) M81) M10 M12 M16 M20 Zinc plated 1 Steel Material Hot-dip galvanized HDG _2) J Stainless steel Static and quasi-static loads _2) Reduced anchorage depth Uncracked concrete

Base materials:

 Reinforced or unreinforced normal concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

· Structures subject to dry internal conditions:

IMC, IMC HDG

IMC R

 For all other conditions according to EN 1993-1-4:2015-10 corresponding to corrosion resistance class CRC III

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Design of fastenings according to EN 1992-4:2018 and TR 055

Upat Express Anchor IMC	
Intended Use Specifications	Annex B 1

 $^{^{1)}}$ Use of IMC 6 (gvz/R) and IMC 8 (gvz/HDG/R) with h_{ef} = 30mm restricted to anchoring of structural components which are statically indeterminate

²⁾ Anchor type not part of the assessment

n parame	eters						
R		M6	M8	M10	M12	M16	M20
d 0 =	_	6	8	10	12	16	20
d _{cut} ≤	_	6,45	8,45	10,45	12,50	16,50	20,55
h _{ef,sta} =	-	30 ¹⁾	40	50	65	80	105
h _{ef,red} =	- [mm]	_2)	30 ¹⁾	40	50	65	80
h _{1,sta} ≥	- []	40	56	68	85	104	135
$h_{1,\text{red}} \geq$	-	_2)	46 ¹⁾	58	70	89	110
d _f ≤	-	7	9	12	14	18	22
_		4	15	30	50	100	200
T _{inst} =	[Nm]	_3)	15	30	40	70	200
	$\begin{array}{ccc} \textbf{R} & d_0 & = \\ d_{\text{out}} & \leq \\ h_{\text{ef,sta}} & = \\ h_{\text{ef,red}} & = \\ h_{1,\text{sta}} & \geq \\ h_{1,\text{red}} & \geq \\ d_f & \leq \\ \end{array}$	$\begin{array}{ccc} d_0 & = & \\ d_{cut} & \leq & \\ h_{ef,sta} = & \\ h_{ef,red} = & \\ h_{1,sta} \geq & \\ h_{1,red} \geq & \\ d_f & \leq & \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

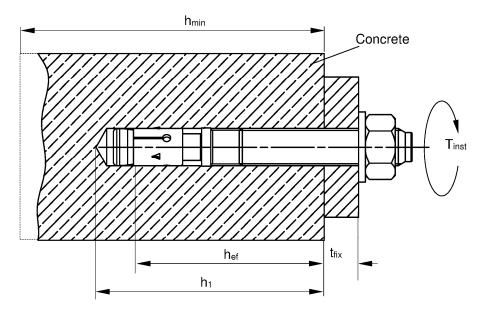
¹⁾ Use restricted to anchoring of structural components which are statically indeterminate

4

10

20

35


80

150

Required torque moment

IMC R

³⁾ Anchor type not part of the assessment

 h_{ef} = Effective embedment depth t_{fix} = Thickness of the fixture

h₁ = Depth of drill hole to deepest point h_{min} = Minimum thickness of concrete member

 $T_{inst} = Required setting torque$

(Fig. not to scale)

Upat Express Anchor IMC	
Intended Use Installation parameters	Annex B 2

²⁾ No performance assessed

Installation instructions

- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener
- Checking before placing the fastener to ensure that the strength class of the concrete in which the
 fastener is to be placed is in the range given and is not lower than that of the concrete to which the
 characteristic loads apply
- · Check of concrete being well compacted, e.g. without significant voids
- Hammer or hollow drilling

No.

- Drill hole created perpendicular +/- 5° to concrete surface, positioning without damaging the reinforcement
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application

Hollow		Continue with step	3, 4 and 5		
Hammer drilling					
	1	2	3	4	5

1		and vacuum cleaner							
2	Clean drill hole	-							
3		Set anchor							
4	Expand anchor with	prescribed installation torque T _{inst}							
5	Fin	ished installation							
	Types of drills								
Hammer d	rill								
Hollow dr									

Create drill hole with hammer drill

Description

Create drill hole with hollow drill

Upat Express Anchor IMC	
Intended Use Installation instructions	Annex B 3

Table C1.1: Characteristic values of **tension** resistance under static and quasi-static action

Type of anchor / size	М6	M8	M10	M12	M16	M20				
Steel failure for standard and reduc	rage depti	n IMC								
Characteristic resistance IMC	$N_{Rk,s}$	[kN]	8,3	16,5	27,2	41,6	77,9	107		
Partial factor	γMs ¹⁾	[-]	1,5	1,4	1,4	1,4	1,5	1,5		
Steel failure for standard and reduc	ed ancho	rage depti	IMC R							
Characteristic resistance IMC R	$N_{Rk,s}$	[kN]	10,6	16,5	27,2	41,6	78	111		
Partial factor	γMs ¹⁾	[-]	1,5	1,4	1,4	1,4	1,4	1,5		
Pullout failure for standard anchora	age depth	IMC, IMC	R							
Characteristic resistance C20/25	$N_{Rk,p}$	[kN]	64)	12,5	17,4	25,8	35,2	52,9		
Pullout failure for reduced anchora	ge depth	IMC, IMC F	₹							
Characteristic resistance C20/25	$N_{Rk,p}$	[kN]	_ 5)	64)	12,5	17,4	25,8	35,2		
		C25/30	1,12							
Increasing factors for N _{Rk,p}		C30/37	1,22							
	Ψс	C35/45	1,32							
morodomy radioto for rank,p	Ψ¢	C40/50	1,41							
		C45/55	1,50							
		C50/60	1,58							
Installation factor	γinst	[-]	1,0							
Concrete cone and splitting failure	for standa	ard ancho								
Effective anchorage depth	h _{ef, sta}	[mm]	30 ⁴⁾	40	50	65	80	105		
Factor for uncracked concrete	k _{ucr,N}	[-]				,0 ²⁾				
Spacing	Scr,N	_				ef, sta				
Edge distance	C _{cr} ,N	– [mm]				lef, sta				
Spacing (splitting failure)	Scr,sp		1304)	190	200	290	350	370		
Edge distance (splitting failure)	C _{cr,sp}		65 ⁴⁾	95	100	145	175	185		
Characteristic resistance to splitting	N ⁰ _{Rk,sp}	[kN]	min $\{N^0_{Rk,c}, N_{Rk,p}\}^{3)}$							
Concrete cone and splitting failure for reduced anchorage depth IMC, IMC R										
Effective anchorage depth	h _{ef, red}	[mm]	_5)	304)	40	50	65	80		
Factor for uncracked concrete	K ucr,N	[-]				,0 ²⁾				
Spacing	S _{cr,N}	_				ef, red				
Edge distance	C _{cr} ,N	– [mm]	E/	1 4004)		lef, red	050	070		
Spacing (splitting failure)	S _{cr,sp}		_5)	1904)	200	290	350	370		
Edge distance (splitting failure)	C _{cr,sp}		_5)	95 ⁴⁾	100	145	175	185		

¹⁾ In absence of other national regulations

Upat Express Anchor IMC	
Performances Characteristic values of tension resistance	Annex C 1

²⁾ Based on concrete strength as cylinder strength

³⁾ N⁰Rk,c according to EN 1992-4:2018

⁴⁾ Use restricted to anchoring of structural components which are statically indeterminate

⁵⁾ No performance assessed

Table C2.1: Characteristic values of shear resistance under static and quasi-static action									
Type of anchor / size			М6	M8	M10	M12	M16	M20	
Installation factor			1	,0					
Steel failure without lever arm for	standard and re	educed an	chorage	depth					
Characteristic resistance IMC	\/O	[kN]	6,02)	13,3	21,0	31,3	55,1	67	
IMO	C R	[KIN]	5,32)	12,8	20,3	27,4	51	86	
Steel failure with lever arm for star	Steel failure with lever arm for standard anchorage depth								
Characteristic bending moment	N AO	[Nm]	9,42)	26,2	52,3	91,6	232,2	422	
IMO	CR IVI RK,S	[INIII]	82)	26	52	85	216	454	
Steel failure with lever arm for redu	Steel failure with lever arm for reduced anchorage depth								
Characteristic bending moment	M ₀ p ₁ , -	[Nm]	_3)	19,9 ²⁾	45,9	90,0	226,9	349	
IMC	CR IVI AK,S		-	21 ²⁾	47	85	216	353	
Partial factor steel failure	γMs ¹⁾	— [- <u>]</u>	1,25						
Factor for ductility	k ₇	[-]	1,0						
Concrete pryout failure for standar	rd anchorage d	epth IMC,	IMC R						
Factor for pryout failure	k ₈	[-]	1,4	1,8	2,1	2,3	2,3	2,3	
Concrete pryout failure for reduce	d anchorage de	epth IMC, I	MC R						
Factor for pryout failure	k ₈	[-]	_3)	1,8	2,1	2,3	2,3	2,3	
Concrete edge failure for standard	anchorage de	oth IMC, IN	/IC R						
Effective length of anchor	$I_{f,sta}$	— [mm]	302)	40	50	65	80	105	
Effective diameter of anchor	d _{nom}	[111111]	6	8	10	12	16	20	
Concrete edge failure for reduced	anchorage dep	th IMC, IM	CR						
Effective length of anchor	$I_{f,red}$	— [mm]	_3)	30 ²⁾	40	50	65	80	
Effective diameter of anchor	d_{nom}	[iiiiii]	_3)	8	10	12	16	20	

Electronic copy of the ETA by DIBt: ETA-10/0169

Upat Express Anchor IMC	
Performances Characteristic values of shear resistance	Annex C 2

¹⁾ In absence of other national regulations ²⁾ Use restricted to anchoring of structural components which are statically indeterminate

³⁾ No performance assessed

Table C3.1: Minimum thickness of concrete members, minimum spacing and minimum edge distance

Type of anchor / size IMC, IMC R			М6	М8	M10	M12	M16	M20	
	Effective anchorage depth	h _{ef, sta}		30 ²⁾	40	50	65	80	105
lard rage th	Minimum thickness of member	h _{min}		100	100	100	120	160	200
Standard anchorage depth	Minimum spacing	Smin	[mm]	40	40	50 (70¹))	70	90 (120 ¹⁾)	120
	Minimum edge distance	Cmin		40	40 (45 ¹⁾)	50 (55 ¹⁾)	70	90 (80¹))	120
	Effective anchorage depth	h _{ef, red}		_3)	302)	40	50	65	80
ced rage th	Minimum thickness of member	h _{min}		_3)	100	100	100	120	160
Reduced anchorage depth	Minimum spacing	Smin	[mm] _	_3)	40 (50 ¹⁾)	50	70	90	120 (140 ¹⁾)
- <u>e</u>	Minimum edge distance	Cmin		_3)	40 (45 ¹⁾)	80	100	120	120

¹⁾ Values for IMC R

Table C3.2: Displacements under static and quasi static tension loads

Type of anchor / size IMC, IMC R			М6	M8	M10	M12	M16	M20				
Standard anchorage depth	h _{ef, sta}	[mm]	30	40	50	65	80	105				
Tension load C20/25	N	[kN]	2,8	6,1	8,5	12,6	17,2	25,8				
Displacements	δ_{N0}	_	1,9	0,6	0,9	1,5 (1,9 ¹⁾)	1,8	1,8 (2,01))				
Displacements	$\delta_{N\infty}$	[mm]		3,1 (2,71)								
Reduced anchorage depth	$h_{\text{ef, red}}$		_2)	30	40	50	65	80				
Tension load C20/25	N	[kN]	_2)	2,8	6,1	8,5	12,6	17,2				
Dianlessments	δ_{N0}	_ [mm]	- ′	0,4	0,7	0,7	0,9	1,0				
Displacements	δ _{N∞}	- [mm]			1	,6 (1,7 ¹⁾)						

¹⁾ Values for IMC R

Table C3.3: Displacements under static and quasi static shear loads

Type of anchor / size IMC, IMC R			М6	M8	M10	M12	M16	M20
Shear load IMC	٧	[kN]	3,4	7,6	12,0	17,9	31,5	38,2
Displacements IMC	δνο	— [mm]	0,7	1,5	1,6	2,0	3,0	2,6
	δν∞		1,1	2,3	2,4	3,0	4,5	3,9
Shear load IMC R	V	[kN]	3,0	7,3	11,6	15,7	29,1	49,0
Displacements IMC R	δνο	— [mm]	1,5	1,4	2,1	2,6	2,7	4,6
	δν∞		2,3	2,2	3,2	3,9	4,1	7,0

Upat Express Anchor IMC	
Performances Minimum thickness of concrete members, minimum spacing and minimum edge distance Displacements due to tension and shear loads	Annex C 3

²⁾ Use restricted to anchoring of structural components which are statically indeterminate

³⁾ No performance assessed

²⁾ No performance assessed