

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-10/0352 of 13 May 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product fischer injection system FIS VL Product family Bonded fastener for use in concrete to which the construction product belongs fischerwerke GmbH & Co. KG Manufacturer Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND Manufacturing plant fischerwerke This European Technical Assessment 23 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is EAD 330499-01-0601 issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces ETA-10/0352 issued on 10 August 2017

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-10/0352 English translation prepared by DIBt

Page 2 of 23 | 13 May 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 23 | 13 May 2020

European Technical Assessment ETA-10/0352 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "fischer injection system FIS VL" is a bonded fastener consisting of a cartridge with injection mortar fischer FIS VL, fischer FIS VL High Speed or fischer FIS VL Low Speed and a steel element according to Annex A4.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3 and B 4, C 1 to C 5
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 to C 3
Displacements under short-term and long-term loading	See Annex C 6
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Page 4 of 23 | 13 May 2020

European Technical Assessment ETA-10/0352

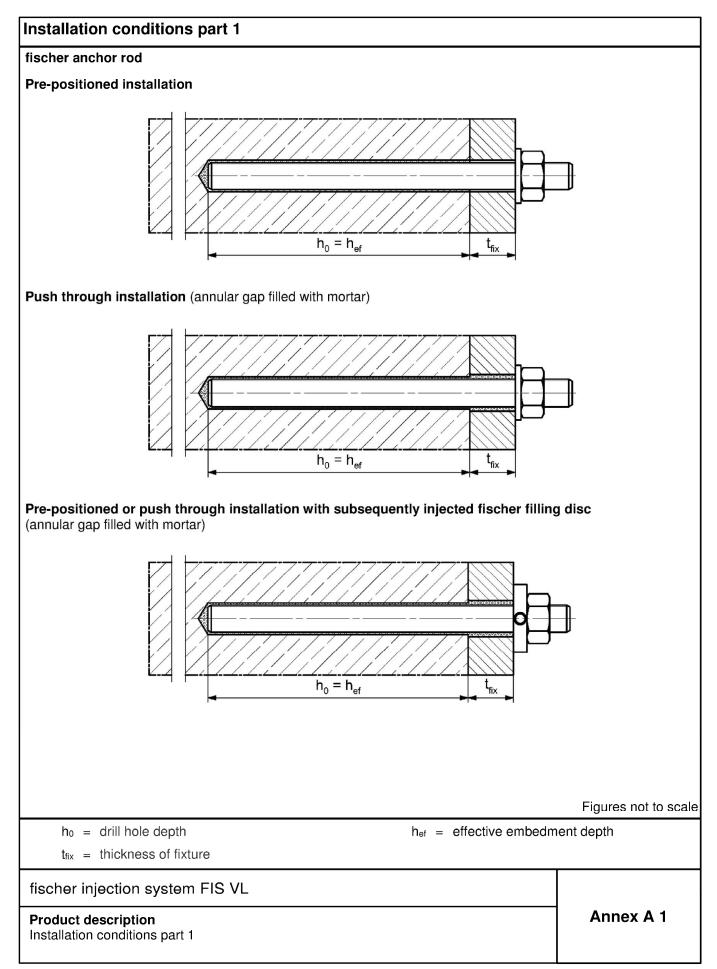
English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

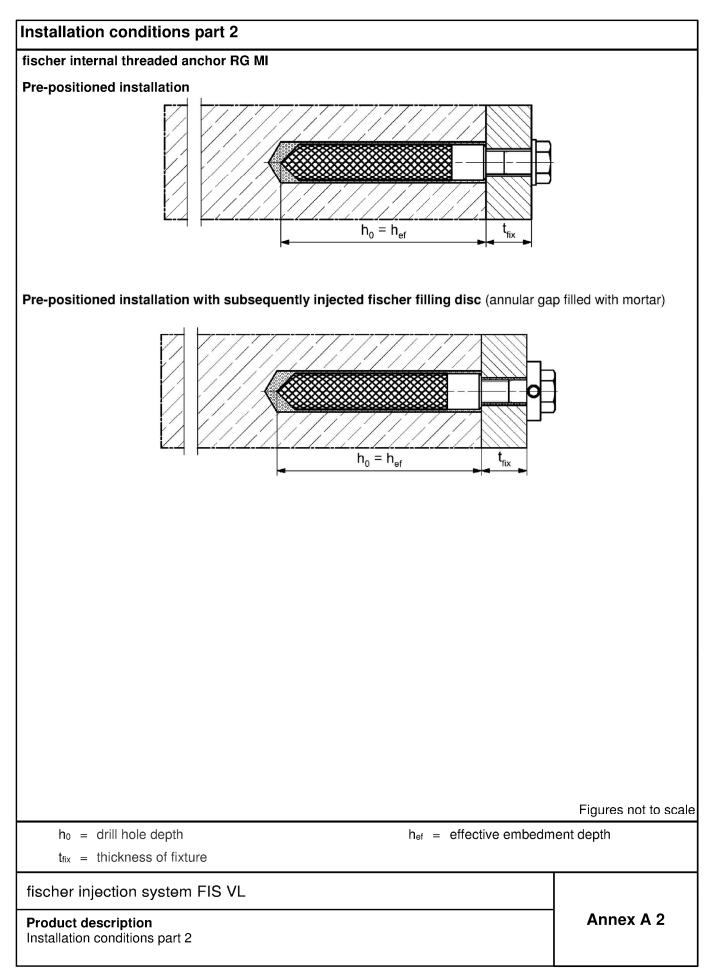
In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

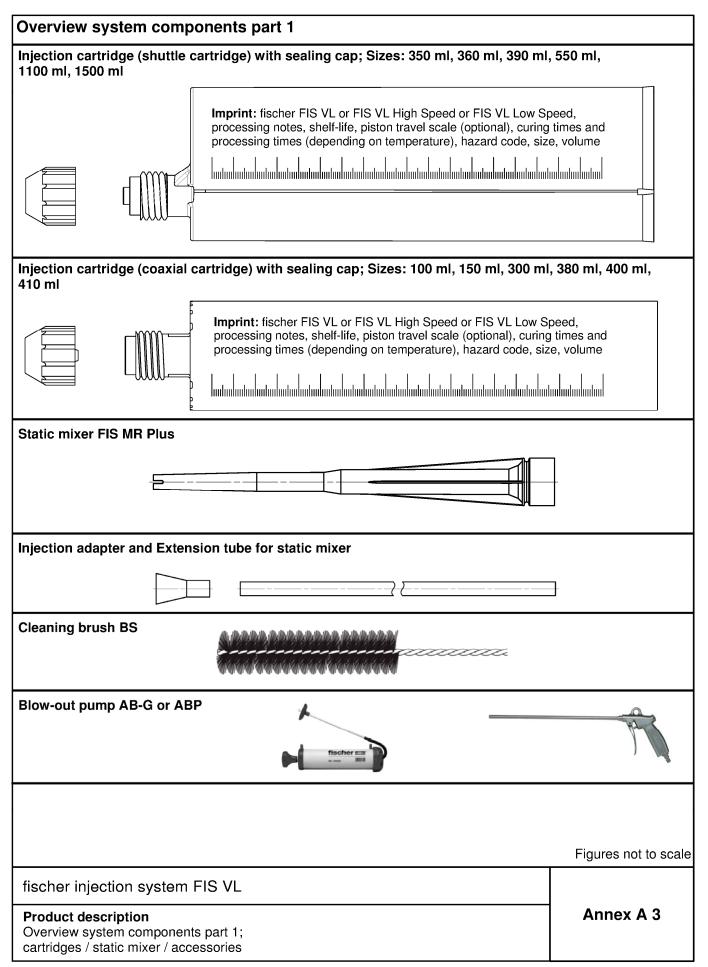
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 13 May 2020 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of department

beglaubigt: Baderschneider



Overview system components part 2	
fischer anchor rod	
Size: M6, M8, M10, M12, M16, M20, M24, M27, M30	
fischer internal threaded anchor RG MI	
Size: M8, M10, M12, M16, M20	
Screw / threaded rod / washer / hexagon nut	
fischer filling disc with injection adapter	
	Figures not to scale
	Figures not to scale
fischer injection system FIS VL	
Product description Overview system components part 2; steel components	Annex A 4

Page 9 of European Technical Assessment ETA-10/0352 of 13 May 2020

English translation prepared by DIBt

Tabl	e A5.1: Materials	3		
Part	Designation		Material	
1	Injection cartridge		Mortar, hardener, filler	
		Steel	Stainless steel R	High corrosion resistant steel HCR
	Steel grade	zinc plated	acc. to EN 10088-1:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4:2015	acc. to EN 10088-1:2014 Corrosion resistance class CRC V acc. to EN 1993-1-4:2015
2	Anchor rod	Property class 4.8, 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 µm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised \geq 40 µm EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 > 8\%$ fracture elongation	$\begin{array}{l} \mbox{Property class 50, 70 or 80} \\ \mbox{EN ISO 3506-1:2009} \\ 1.4401; 1.4404; 1.4578; \\ 1.4571; 1.4439; 1.4362; \\ 1.4062, 1.4662, 1.4462; \\ \mbox{EN 10088-1:2014} \\ f_{uk} \leq 1000 \mbox{ N/mm}^2 \\ \mbox{A}_5 > 8\% \\ \mbox{fracture elongation} \end{array}$	$\begin{array}{l} \mbox{Property class 50 or 80} \\ \mbox{EN ISO 3506-1:2009} \\ \mbox{or property class 70 with} \\ \mbox{f}_{yk} = 560 \ N/mm^2 \\ \mbox{1.4565; 1.4529;} \\ \mbox{EN 10088-1:2014} \\ \mbox{f}_{uk} \leq 1000 \ N/mm^2 \\ \mbox{A}_5 > 8\% \\ \mbox{fracture elongation} \end{array}$
3	Washer ISO 7089:2000	zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hotdip galvanised ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014
4	Hexagon nut	Property class 4, 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014
5	fischer internal threaded anchor RG MI	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K)	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014
6	Commercial standard screw or threaded rod for fischer internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 µm, ISO 4042:2018/Zn5/An(A2K) $A_5 > 8 \%$ fracture elongation	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014 A ₅ > 8 % fracture elongation	$\begin{array}{c} \mbox{Property class 70} \\ \mbox{EN ISO 3506-1:2009} \\ \mbox{1.4565; 1.4529;} \\ \mbox{EN 10088-1:2014} \\ \mbox{A}_5 > 8 \ \% \\ \mbox{fracture elongation} \end{array}$
7	fischer filling disc similar to DIN 6319-G	zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529; EN 10088-1:2014

fischer injection system FIS VL

Product description

Materials

Annex A 5

Specifications	of intended u	use (part 1)									
Table B1.1:		e and performan	-								
Anchorages subjec	t to			VL with							
		Anch	or rod		nternal threaded chor RG MI						
Hammer drilling with standard drill bit	644000000	all sizes									
Hammer drilling with hollow drill bit (fischer FHD, Helle "Duster Expert"; Bosch "Speed Clean"; Hilti "TE-CD, TE-YD", DreBo "D-Plus", DreBo "D-Max")	r 			it diameter (d₀) o 35 mm							
Static and quasi	uncracked concrete	all sizes	Tables: C1.1 C3.1	all sizes	Tables: C2.1 C3.1 C5.1 C6.2						
static load, in	cracked concrete	M10 bis M20	C4.1 C6.1		_2)						
Use	1 dry or wet concrete		all s	izes							
category I	2 water filled hole ¹⁾	M 12 t	o M 30	М	8 bis M 20						
Installation direction	n	D3 (downward	and horizontal and u	ıpwards (e.g. ov	erhead) installation)						
Installation temperature			$T_{i,min} = -10 \ ^{\circ}C \ tc$	$T_{i,max} = +40 \ ^{\circ}C$							
In-service	Temperature range I	-40 °C to +80		ort term tempera g term temperat							
temperature	Temperature range II	-40 °C to +120		ort term tempera g term temperat							
²⁾ No performant	ce assessed	30ml, 400 ml, 410 m									
fischer injection	n system FIS	VL									
Intended use Specifications (pa	ırt 1)				Annex B 1						

Specifications of intended use (part 2)

Base materials:

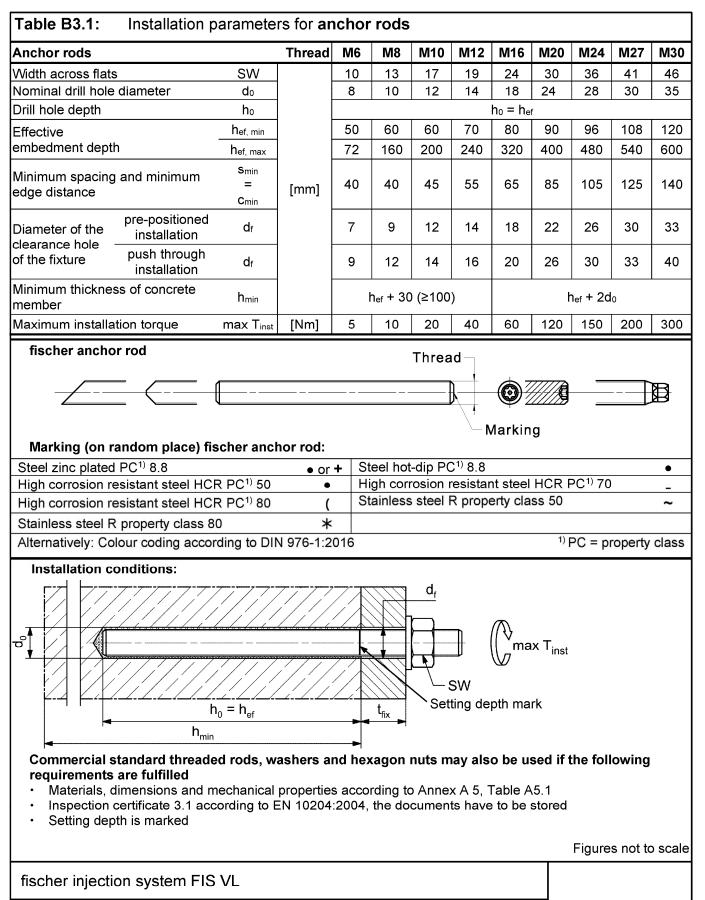
Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- For all other conditions according to EN1993-1-4:2015 corresponding to corrosion resistance classes to Annex A 5 table A5.1.

Design:

- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with: EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.


Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- Anchorage depth should be marked and adhered to on installation
- Overhead installation is allowed

fischer injection system FIS VL

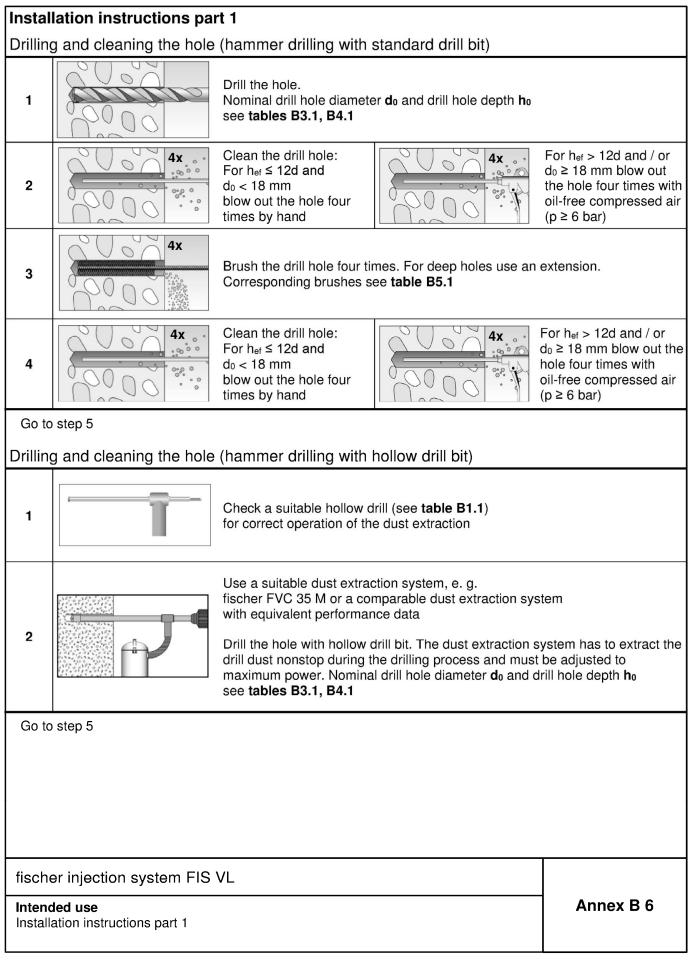
Intended use Specifications (part 2) Annex B 2

Intended use

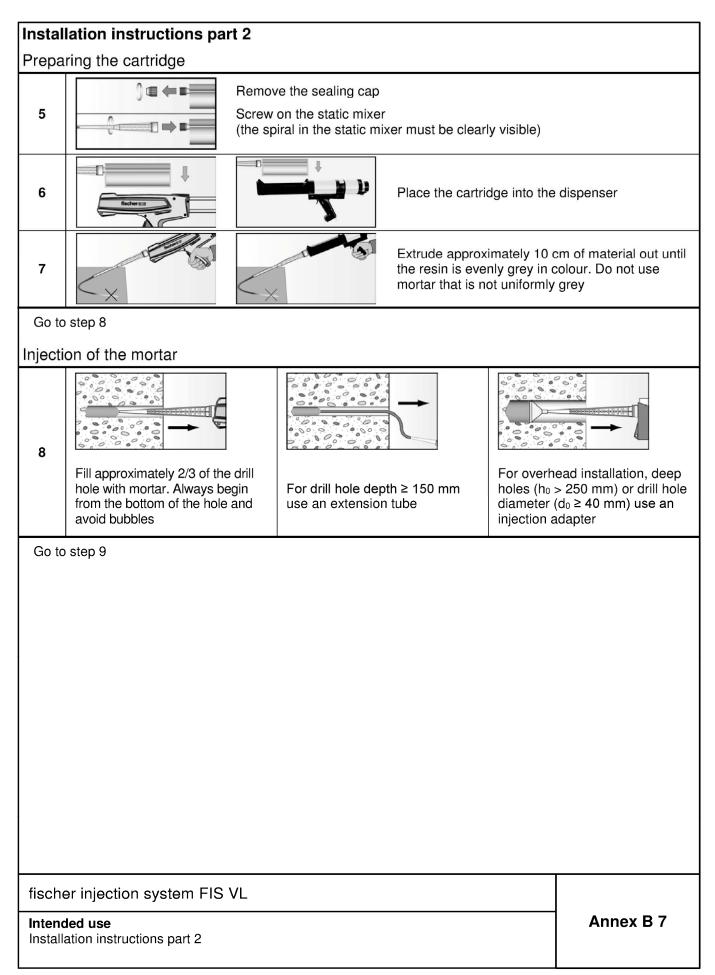
Installation parameters anchor rods

Annex B 3

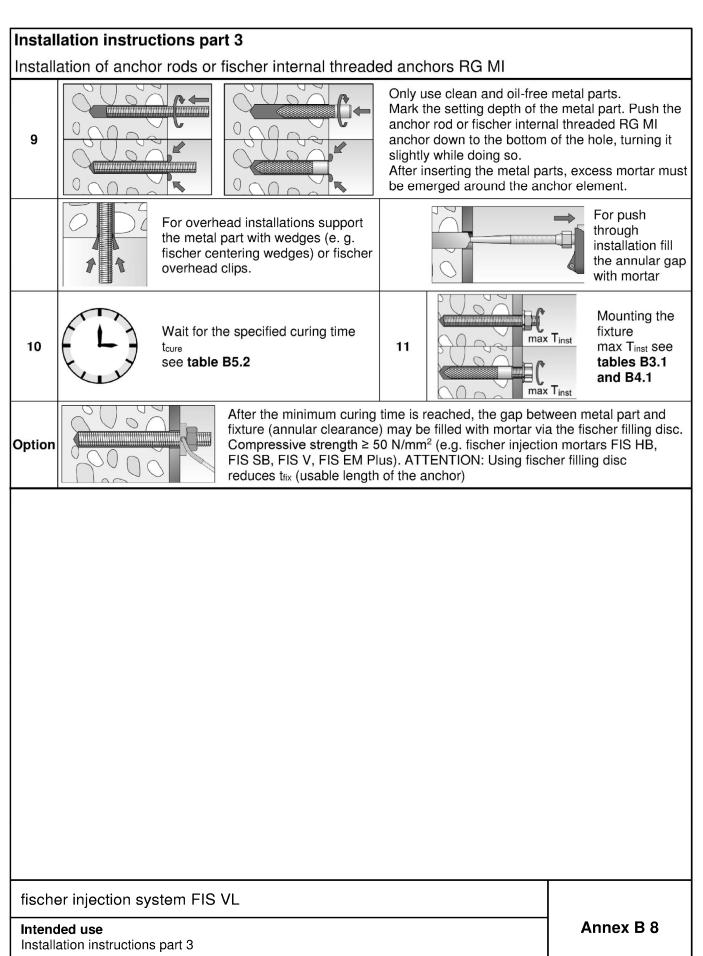
nternal threaded anchors R	G MI 1	Thread	M8	M10	M12	M16	M20
Diameter of anchor	$d_{\text{nom}} = d_{\text{H}}$		12	16	18	22	28
Nominal drill hole diameter	do		14	18	20	24	32
Drill hole depth	h₀				$h_0 = h_{ef} = L_H$		
Ξffective embedment depth (h _{ef} = L _H)	h _{ef}		90	90	125	160	200
Minimum spacing and minimum edge distance	Smin = Cmin	[mm]	55	65	75	95	125
Diameter of clearance hole in he fixture	df		9	12	14	18	22
Minimum thickness of concrete member	h _{min}		120	125	165	205	260
Maximum screw-in depth	I _{E,max}		18	23	26	35	45
Minimum screw-in depth	I _{E,min}		8	10	12	16	20
Maximum installation torque	max T _{inst}	[Nm]	10	20	40	80	120
Marking: Anchor size Stainless ste	el \rightarrow additic	onal R ; e.g	g.: M10 R	CR ; e.g.: M10			read
Marking: Anchor size Stainless ste	e.g.: M10 el → additic on resistant rods (includi	Ma Ma steel → steel → a ng nut an	g.: M10 R dditional H	must comply $\frac{d_{f}}{d_{f}}$			
Marking: Anchor size of Stainless ste High corrosid Retaining bolt or threaded r strength class of Annex A 5 Installation conditions:	e.g.: M10 el → additic on resistant rods (includi	Ma Ma steel → steel → a ng nut an	g.: M10 R dditional H	must comply $\frac{d_{f}}{d_{f}}$	with the appro	opriate mater	



Nominal drill hole diameter	d₀	8	10	12	14	16	18	20	24	25	28	30	35
Steel brush diameter BS	db	[mm]	11	14	16	2	0	25	26	27	30	4	0
Table B5.2	Maxi	imum pr	ocessin	g time	e of th	ie mor	tar ar						I
Temperature	belov	w the list	0	num te	mper	ature)			•	um cur	ing tim		
anchoring bas [°C]	se	FIS VL High Spe	F	IS VL		FIS VL w Spee	ed H	FIS VL ligh Spe		FIS \		FIS Low S	
-10 to	-5 ²⁾	-		-		-		12 h		-		-	
> -5 to	0 ²⁾	5 min		-		-		3 h		24 ł	า	-	
> 0 to	5 ²⁾	5 min	1	3 min		-		3 h		3 h		6	h
> 5 to 1	0	3 min		9 min		20 min		50 mir	1	90 m	in	3	h
> 10 to 2	20	1 min	į	5 min		10 min		30 mir	1	60 m	iin	2	h
> 20 to 3	30	-		4 min		6 min		-		45 m	iin	60 r	nin
> 30 to 4	40	-		2 min		4 min		-		35 m	iin	30 r	nin
²⁾ Minimal cartrie	dge ten	perature -	-5°C										


fischer injection system FIS VL

Intended use Cleaning brush (steel brush) Processing time and curing time Annex B 5



Page 18 of European Technical Assessment ETA-10/0352 of 13 May 2020

Anchor rod / standard threa	ded rod			M6	M8	M10	M12	M16	M20	M24	M27	M30
Bearing capacity under tens			el fai									
		4.8		8	15(13)	23(21)	33	63	98	141	184	224
Steel zinc plated		5.8		10		29(27)	43	79	123	177	230	281
	erty s	8.8	1	16	· · ·	47(43)	68	126	196	282	368	449
Or Contracted of the sector of	Property class	50	[kN]	10	19	29	43	79	123	177	230	281
Characteristic Steel zinc plated Stainless steel R and high corrosion	<u>م</u>	70	-	14	26	41	59	110	172	247	322	393
resistant steel HCR		80	-	16	30	47	68	126	196	282	368	449
Partial factors ¹⁾	1			_		I		_		-		_
		4.8						1,50				
Steel zinc plated	~	5.8						1,50				
Steel zinc plated Steel zinc plated Stainless steel R and high corrosion	Property class	8.8	[-]					1,50				
$\overline{\mathbf{R}} \stackrel{\mathbb{R}}{\leftarrow} Stainless steel R and$	de la	50						2,86				
		70					1,	50 ²⁾ / 1,	87			
resistant steel HCR		80						1,60				
Bearing capacity under shea	ar load,	stee	failu	r e ³⁾								
without lever arm	1	4.0		4	0(0)	1 4 (1 0)	00	00	50	05	110	105
Steel zinc plated		4.8		4	9(8)	14(13)	20	38	59	85	110	135
Characteristic Characteristic entry Stainless steel R and high corrosion	s rt	5.8		6		17(16)	25	47	74	106	138	168
C Later C Late	Property class	<u>8.8</u> 50	[kN]	8 5	9	23(21)	34	63 39	98	141	184	225
ୁ ଅଟି Stainless steel R and ନୁ ଅଟି high corrosion	L L L L	<u> </u>	-		13	15 20	21 30	- 39 - 55	61 86	89 124	115 161	141 197
ingli conosion resistant steel HCR		80			15	20	30	55 63	- 8	124	184	225
Ductility factor		60 k7	[-]	0	15	23	34	1,0	90	141	104	225
with lever arm		Π/	-					1,0				
		4.8		6	15(13)	30(27)	52	133	259	448	665	899
. ू Steel zinc plated		5.8		7	-	37(33)	65	166	324	560	833	1123
Steel zinc plated	perty ass	8.8		12		60(53)	105	266	519	896	1333	1797
	Prop	50	[Nm]	7	19	37	65	166	324	560	833	1123
G is Stainless steel R and		70		10	26	52	92	232	454	784	1167	1573
e resistant steel HCR		80		12	30	60	105	266	519	896	1333	1797
Partial factors ¹⁾			•									
-		4.8						1.25				
Steel zinc plated	₹,	5.8						1.25				
$\underline{a}_{\underline{a}} \xrightarrow{s} \underline{a}_{\underline{a}}$	Property class	8.8	[-]					1.25				
et for this steel R and bigh corrosion	L A C	50						<u>2.38</u> 25 ²⁾ / 1.	56			
resistant steel HCR		<u>70</u> 80	-				1.4	<u>23-77.</u> 1.33	00			
 In absence of other nation Only admissible for high c rods) Values in brackets are val standard threaded rods ad 	orrosion	ations resis dersi	stant s zed th	readed	l rods w	ith sma	ller stre	nd A₅ >		-		
fischer injection system												
Performances										An	nex C	1

Table C2.1:					or steel fai ed anchors	ilure under s RG MI	tension / sł	near load o	f
fischer internal	threade	ed anchors	RG MI		M8	M10	M12	M16	M20
Bearing capacit	y unde	r tension lo	oad, ste	el fai	ure	1	1	1	1
		Property	5.8		19	29	43	79	123
Charact.	NI	class	8.8	11.N I 1	29	47	68	108	179
resistance with screw	$N_{Rk,s}$	Property	R	[kN]	26	41	59	110	172
		class 70	HCR		26	41	59	110	172
Partial factors ¹⁾									
		Property	5.8				1,50		
Partial factors		class	8.8	[-]			1,50		
Farliar lactors	γMs,N	Property	R	[-]			1,87		
		class 70	HCR				1,87		
Bearing capacit	y unde	r shear loa	d, steel	failu	re				
Without lever a	rm								
		Property	5.8		9,2	14,5	21,1	39,2	62,0
Charact. resistance with	$V^0_{Rk,s}$	class	8.8	[kN]	14,6	23,2	33,7	54,0	90,0
screw	V RK,S	Property	R	נגואן	12,8	20,3	29,5	54,8	86,0
		class 70	HCR		12,8	20,3	29,5	54,8	86,0
Ductility factor			k 7	[-]			1,0		
With lever arm									
		Property	5.8		20	39	68	173	337
Charact. resistance with	M ⁰ Rk,s	class	8.8	[Nm]	30	60	105	266	519
screw	IVI HK,S	Property	R	נואוון	26	52	92	232	454
		class 70	HCR		26	52	92	232	454
Partial factors ¹⁾									
		Property	5.8				1,25		
Partial factors	2014- X	class	8.8	[-]			1,25		
	γMs,V	Property	R	[-]			1,56		
		class 70	HCR				1,56		

fischer injection system FIS VL

Performances

Characteristic values for steel failure under tension / shear load of fischer internal threaded anchor RG $\ensuremath{\mathsf{MI}}$

Table C3.1:	Characteristi	c val	ues fo	or con	crete	failur	e unde	er tens	ion / s	hear lo	bad	
Size							4	All size	s			
Tension load												
Installation fact	or	γinst	[-]				See an	nex C 4	4 to C 5			
Factors for the	e compressive stren	gth of	concr	ete > C	20/25							
	C25/30							1,05				
	C30/37							1,10				
Increasing	C35/45	Ψc	r 1					1,15				
factor for TRK	C40/50	Υc	[-]					1,19				
	C45/55							1,22				
	C50/60							1,26				
Splitting failur	е		1									
	h / h _{ef} ≥ 2,0							1,0 h _{ef}				
Edge distance	2,0 > h / h _{e f} > 1,3	Ccr,sp	[mm]					5 h _{ef} - 1,				
	h / h _{ef} ≤ 1,3		-					2,26 h _e	f			
Spacing		Scr,sp						2 C _{cr,sp}				
Concrete cone												
Uncracked con		k ucr,N	[-]					11,0				
Cracked concre	ete	k cr,N						7,7				
Edge distance		Ccr,N	[mm]					1,5 h _{ef}				
Spacing		Scr,N						2 c _{cr,N}				
	stained tension load	k	1									
Temperature ra	inge		[-]			C / 80 °	С		7.	2 °C / 1		
Factor		$\Psi^{\rm 0}_{\rm sus}$	[-]			0,74				0,87	7	
Shear load												
Installation factor	or	γinst	[-]					1,2				
Concrete pry-o			_									
Factor for pry-o		k ₈	[-]					2,0				
Concrete edge			1									
Effective length shear loading	of fastener in	lf	[mm]		for d _{nom} for d _{nom}					0 mm)		
Calculation dia	ameters				1				1	1	1	
Size				M6	M8	M10	M12	M16	M20	M24	M27	M30
fischer anchor r standard thread		dnom		6	8	10	12	16	20	24	27	30
fischer internal threade RG MI		d _{nom}	[mm]	_1)	12	16	18	22	28	_1)	_1)	_1)
	e not part of the asse tion system FIS \		nt									
Performance Characteristic	s values for concrete f	ailure	under t	ension	/ shear	load				Anı	nex C	3

Z41139.20

Table C4.1: Characteristic values for combined pull-out and concrete failure for fischer anchor rods and standard threaded rods in hammer drilled holes; uncracked or cracked concrete Anchor rod / standard threaded rod M6 **M**8 M10 M12 M16 M20 M24 M27 M30 Combined pullout and concrete cone failure Calculation diameter d [mm] 6 8 10 12 16 20 24 27 30 **Uncracked concrete** Characteristic bond resistance in uncracked concrete C20/25 Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete) Tem-I: 50 °C / 80 °C 9,0 11,0 11.0 11.0 10,0 9.5 8,5 9.0 8.5 perature [N/mm²] $\tau_{\mathsf{Rk},\mathsf{ucr}}$ II: 72 °C / 120 °C 8,0 6,5 9.5 9.5 9,0 8,5 7,5 7,0 7,0 range <u>Hammer-drilling with standard drill bit or hollow drill bit (water filled hole)¹⁾</u> Tem-I: 50 °C / 80 °C _2) _2) _2) 9.5 8,5 8,0 7,5 7,0 7,0 $[N/mm^2]$ perature $\tau_{\rm Rk,ucr}$ II: 72 °C / 120 °C _2) _2) _2) 7,5 7,0 6,5 6,0 6,0 6,0 range Installation factors Dry or wet concrete 1,2 [-] γinst _2) _2) _2) 1,4 ¹⁾ Water filled hole Cracked concrete Characteristic bond resistance in cracked concrete C20/25 Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete) Tem-_2) _2) _2) _2) _2) I: 50 °C / 80 °C 6,0 6,0 6,0 5,5 perature $[N/mm^2]$ $\tau_{\rm Rk,cr}$ II: 72 °C / 120 °C _2) _2) _2) _2) _2) 5.0 6,0 6,0 5.0 range Hammer-drilling with standard drill bit or hollow drill bit (water filled hole)¹⁾ Tem-_2) _2) _2) _2) I: 50 °C / 80 °C _2) _2) 5.0 5.0 4.5 perature [N/mm²] $\tau_{\mathsf{Rk.cr}}$ _2) II: 72 °C / 120 °C _2) _2) 4,0 4,0 4,0 _2) _2) _2) range Installation factors Dry or wet concrete 1,2 [-] γinst _2) _2) _2) 1,4¹⁾ Water filled hole ¹⁾ Only with coaxial cartridges: 380ml, 400 ml, 410 ml

²⁾ No Performance assessed

fischer injection system FIS VL

Performances

Characteristic values for combined pull-out and concrete failure for fischer anchor rod and standard threaded rods

Table C5.1: Characteristic values for combined pull-out and concrete failure for fischer internal threaded anchors RG MI in hammer drilled holes; uncracked concrete

Internal ti	hreaded anchor RG	i MI		M8	M10	M12	M16	M20
Combine	d pullout and conc	rete con	e failure					-
Calculatio	n diameter	d	[mm]	12	16	18	22	28
Uncracke	d concrete							
Character	ristic bond resistar	ice in un	cracked	concrete C20	0/25			
Hammer-o	drilling with standard	drill bit c	r hollow d	rill bit (dry or	wet concrete))		
Tem- perature	I: 50 °C / 80 °C		[N/mm²]	10,5	10,0	9,5	9,0	8,5
range	II: 72 °C / 120 °C	⁻ τ _{Rk,ucr}		9,0	8,0	8,0	7,5	7,0
Hammer-o	drilling with standard	drill bit o	r hollow d	rill bit (water	filled hole) ¹⁾			
Tem- perature	I: 50 °C / 80 °C		[N/mm²]	10,0	9,0	9,0	8,5	8,0
range	II: 72 °C / 120 °C	$\tau_{\rm Rk,ucr}$		7,5	6,5	6,5	6,0	6,0
Installatio	on factors							
Dry or wet	t concrete		[]			1,2		
Water fille	d hole	- γinst	[-]			1,4 ¹⁾		

¹⁾ Only with coaxial cartridges: 380 ml, 400 ml, 410 ml

Electronic copy of the ETA by DIBt: ETA-10/0352

fischer injection system FIS VL

Performances

Characteristic values for combined pull-out and concrete failure for fischer internal threaded anchors RG MI

Deutsches Institut für Bautechnik

Anchor	rod	M6	M8	M10	M12	M16	M20	M24	M27	M30
Displace	ement-Factors	for tensio	n load ¹⁾		•		•	•	•	
Uncrack	ed concrete; T	emperatu	ire range	I, II						
δ N0-Factor	[mm/(N/mm ²)]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12
δ _{N∞-Factor}][[[[[[[[[(][[([[[[[[[[[[[[[[[[[[[[[[[[0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14
Cracked	concrete; Tem	nperature	range I, I		·		·		·	
δ N0-Factor	[mm/(N/mm ²)]	_3)	_3)	0,12	0,12	0,13	0,13	_3)	_3)	_3)
δ N0-Factor	[[[[[[[[(]]]	_3)	_3)	0,27	0,30	0,30	0,30	_3)	_3)	_3)
Displace	ement-Factors	for shear	load ²⁾							
Uncrack	ed or cracked	concrete	; Tempera	ture rang	e I, II					
δ V0-Factor	[mm/k]]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07
δv∞-Factor	[mm/kN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\mathsf{N}^{\infty}} = \delta_{\mathsf{N}^{\infty}\text{-}\mathsf{Factor}} \, \cdot \, \tau_{\mathsf{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

³⁾ No performance assessed

 $\delta_{\text{V0}} = \delta_{\text{V0-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-}\mathsf{Factor}} \, \cdot \, V_{\mathsf{Ed}}$

(V_{Ed}: Design value of the applied shear force)

Table C6.2: Displacements for fischer internal threaded anchors RG MI

Internal threaded anchor RG MI		M8	M10	M12	M16	M20
Displace	ment-Factors	for tension load ¹)			
Uncracke	ed concrete; T	emperature rang	e I, II			
δ_{N0} -Factor	[mm/(N/mm²)]	0,10	0,11	0,12	0,13	0,14
δ _{N∞-Factor}		0,13	0,14	0,15	0,16	0,18
Displace	ment-Factors	for shear load ²⁾		• • •	· · · · · · · · · · · · · · · · · · ·	
Uncracke	ed concrete; T	emperature rang	e I, II			
δ V0-Factor	[mm/kN]	0,12	0,12	0,12	0,12	0,12
δV∞-Factor		0,14	0,14	0,14	0,14	0,14
¹⁾ Calculation of effective displacement:				²⁾ Calculation of effective displacement:		

 $\delta_{N0} = \delta_{N0}$ -Factor · τ_{Ed}

 $\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

 $\delta_{\text{V0}} = \delta_{\text{V0-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-}\mathsf{Factor}}\,\cdot\,V_{\mathsf{Ed}}$

(V $_{\mbox{Ed}}$: Design value of the applied shear force)

fischer injection system FIS VL

Performances

Displacements for anchor rods and fischer internal threaded anchors RG MI