

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-11/0079 of 28 July 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

BERNER multicompound system MCS Uni Plus

Bonded anchor for use in concrete

Berner Trading Holding GmbH Bernerstraße 6 74653 Künzelsau DEUTSCHLAND

Berner Herstellwerk 6
Berner manufacturing plant 6

34 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

ETA-11/0079 issued on 20 October 2015

European Technical Assessment ETA-11/0079

Page 2 of 34 | 28 July 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-11/0079

Page 3 of 34 | 28 July 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "BERNER multicompound system MCS Uni Plus" is a bonded fastener consisting of a cartridge with injection mortar MCS Uni Plus, MCS Uni Plus WE or MCS Uni Plus S and a steel element according to Annex A5.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance				
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3 to B 6, C 1 to C 8				
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 to C 4				
Displacements under short-term and long-term loading	See Annex C 9 and C 10				
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 11 to C 14				

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-11/0079

Page 4 of 34 | 28 July 2020

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

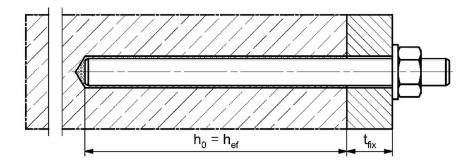
The system to be applied is: 1

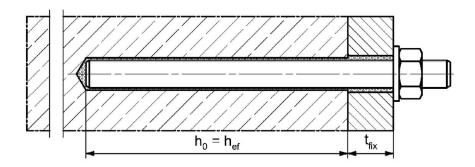
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

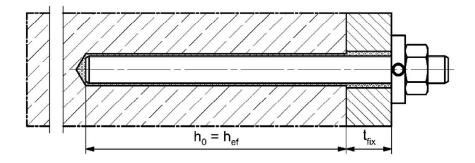
Issued in Berlin on 28 July 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department


beglaubigt: Baderschneider


Installation conditions part 1

BERNER anchor rod


Pre-positioned installation

Push through installation (annular gap filled with mortar)

Pre-positioned or push through installation with subsequently injected BERNER filling disc (annular gap filled with mortar)

Figures not to scale

 $h_0 = drill hole depth$

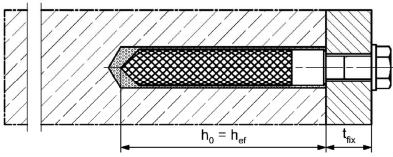
hef = effective embedment depth

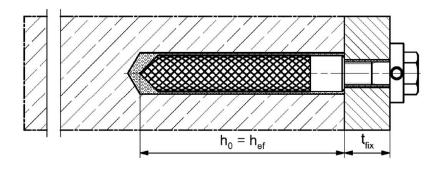
 t_{fix} = thickness of fixture

BERNER multicompound system MCS Uni Plus

Product description

Installation conditions part 1


Annex A 1


Installation conditions part 2

BERNER Internal threaded anchor MCS Plus I

Pre-positioned installation

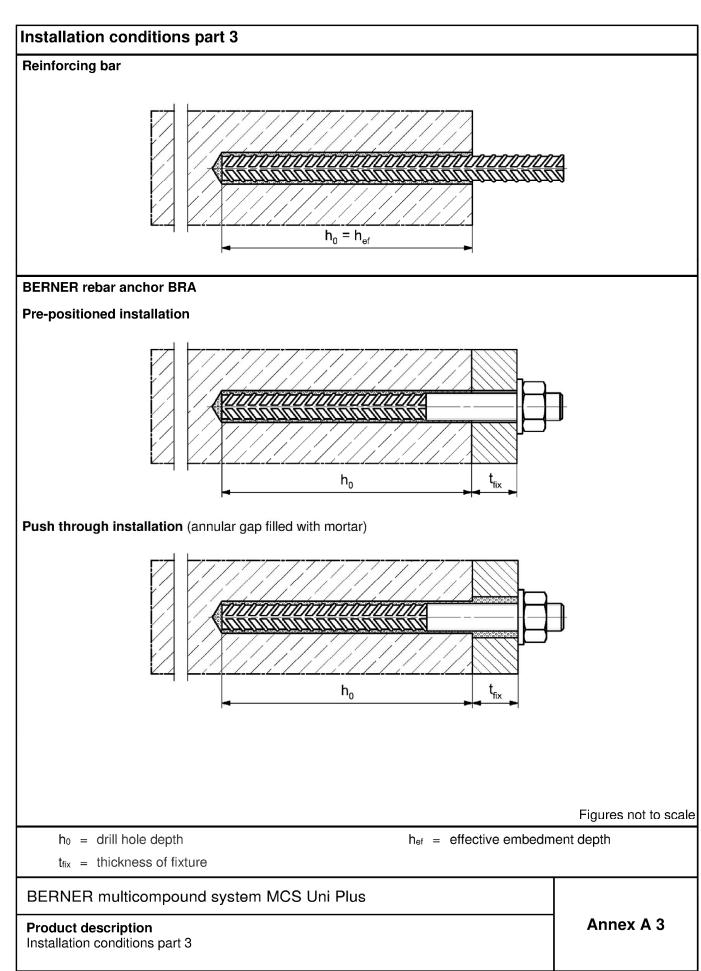
Pre-positioned installation with subsequently injected BERNER filling disc (annular gap filled with mortar)

Figures not to scale

 $h_0 = drill hole depth$

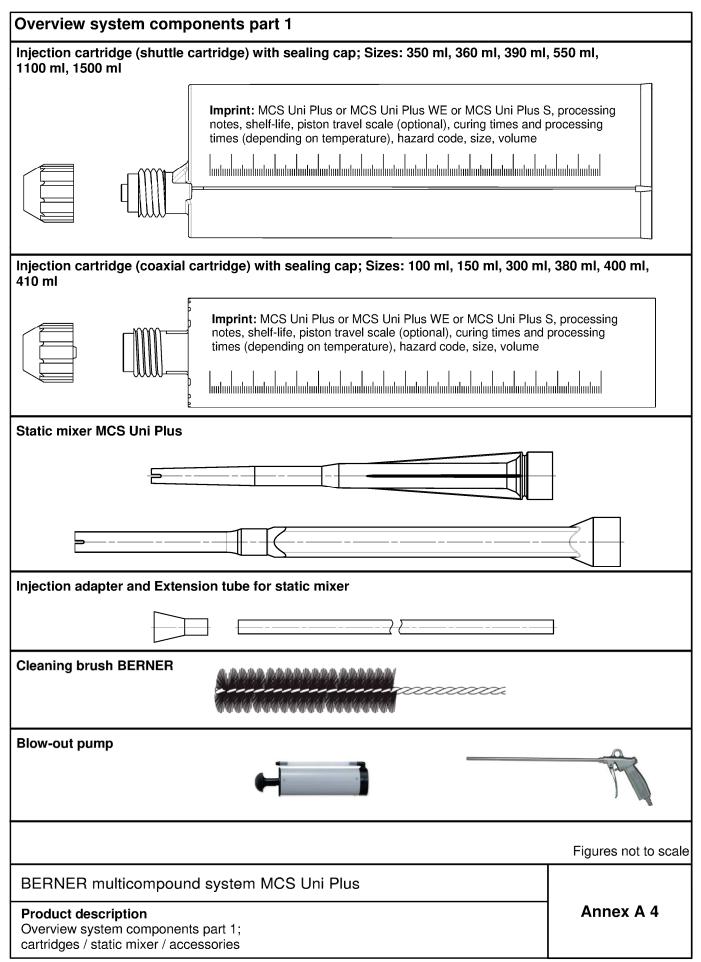
h_{ef} = effective embedment depth

 t_{fix} = thickness of fixture


BERNER multicompound system MCS Uni Plus

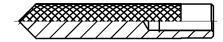
Product description

Installation conditions part 2

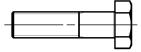

Annex A 2

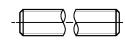
Z64822.20

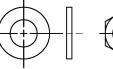
Overview system components part 2


BERNER anchor rod

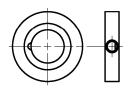
Size: M6, M8, M10, M12, M16, M20, M24, M27, M30

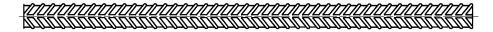


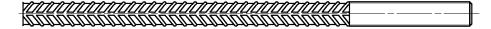

BERNER internal threaded anchor MCS Plus I


Size: M8, M10, M12, M16, M20

Screw / threaded rod / washer / hexagon nut




BERNER filling disc BFD with injection adapter


Reinforcing bar

Nominal diameter: $\phi 8$, $\phi 10$, $\phi 12$, $\phi 14$, $\phi 16$, $\phi 20$, $\phi 25$, $\phi 28$

BERNER rebar anchor BRA

Size: M12, M16, M20, M24

Figures not to scale

BERNER multicompound system MCS Uni Plus

Product description

Overview system components part 2;

steel components

Annex A 5

English translation prepared by DIBt

Part	Designation		Material					
1	Injection cartridge							
		Steel	Stainless steel R	High corrosion resistant steel HCR				
	Steel grade	zinc plated	acc. to EN 10088-1:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4:2015	acc. to EN 10088-1:2014 Corrosion resistance class CRC V acc. to EN 1993-1-4:201				
2	Anchor rod	Property class 4.8, 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 μ m, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised \geq 40 μ m EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 > 12\%$ fracture elongation	EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12\%$ fracture elongation	Property class 50 or 80 EN ISO 3506-1:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529; EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12\%$ fracture elongation				
			$_{1}$ $A_{5} > 8$ %, for applications with seismic performance category					
3	Washer ISO 7089:2000	zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571;	1.4565; 1.4529; EN 10088-1:2014				
4	Hexagon nut	Property class 4, 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014				
5	BERNER internal threaded anchor MCS Plus I	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K)	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014				
6	Commercial standard screw or threaded rod for BERNER internal threaded anchor MCS Plus I	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 μ m, ISO 4042:2018/Zn5/An(A2K) $A_5 > 8$ % fracture elongation	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014 A ₅ > 8 % fracture elongation	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014 A ₅ > 8 % fracture elongation				
7	BERNER filling disc similar to DIN 6319-G	zinc plated ≥ 5 µm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 µm EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529; EN 10088-1:2014				
8	Reinforcing bar EN 1992-1-1:2004 and AC:2010, Annex C	Bars and de-coiled rods, class f_{yk} and k according to NDP or $f_{uk} = f_{tk} = k \cdot f_{yk}$		I/NA				
9	BERNER rebar anchor BRA	$\begin{array}{c} \text{Rebar part:} \\ \text{Bars and de-coiled rods class B or C with } f_{yk} \\ \text{and k according to NDP or NCL of EN} \\ f_{uk} = f_{tk} = k \cdot f_{yk} \\ \end{array}$						
	ONED multinomaria	ad ayatam MOC Uni Diva						
	RNER multicompour duct description	nd system MCS Uni Plus		Annex A 6				

Specifications of intended use (part 1)

Anchorages subject	to	BERNER MCS Uni Plus with									
	Ancho	or rod	BERNER internal threaded anchor MCS Plus I		Reinforcing bar		BERNER rebar anchor BRA				
Hammer drilling with standard drill bit	54440000000 	all sizes									
Hammer drilling with hollow drill bit (BERNER Cleandrill dustless, fischer "FHD", Heller "Duster Expert"; Bosch "Speed Clean"; Hilti "TE-CD, TE-YD"), DreBo D-Plus, DreBo D-Max	<u> </u>	Nominal drill bit diameter (d₀) 12 mm to 35 mm									
Static and quasi static load, in	uncracked concrete	all sizes	Tables: C1.1 C4.1	all sizes	Tables: C2.1 C4.1	all sizes	Tables: C3.1 C4.1	all sizes	Tables: C3.2 C4.1		
static load, iii	cracked concrete	M8 to M30	C5.1 C9.1	_2)	C6.1 C9.2	φ 10 to φ 28	C7.1 C10.1		C8.1 C10.2		
Seismic performance category (only	C1 ¹⁾	M10 to M30	Tables: C11.1 C12.1 C13.1		2)	_2)		_2)			
hammer drilling with standard / hollow drill bits)	C2 ¹⁾	M12 M16 M20 M24	Tables: C11.1 C12.1 C14.1		- 7						
Use I1	dry or wet concrete				all s	sizes					
category I2	water filled hole	M 12 to	o M 30	all s	izes	_2	2)	_2	2)		
Installation direction		D3 (d	ownward	and horizo	ntal and u	ipwards (e	.g. overhe	ad) install	ation)		
Installation temperature				T _{i,min} :	= -10 °C to	$T_{i,max} = +$	40 °C				
In-service	Temperature range I	-40	°C to +80) °C		ort term ter g term tem					
temperature	Temperature range II	-40	°C to +12	0 °C		ort term ter g term tem					
1) Not for MCS Ur 2) No performance		S Uni Plu	s WE								

Intended use

Specifications (part 1)

Annex B 1

Specifications of intended use (part 2)

Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

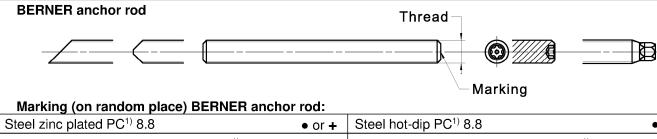
Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- For all other conditions according to EN1993-1-4:2015 corresponding to corrosion resistance classes to Annex A 6 table A6.1.

Design:

- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with:
 EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.

Installation:


- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- Anchorage depth should be marked and adhered to on installation
- Overhead installation is allowed

BERNER multicompound system MCS Uni Plus	
Intended use Specifications (part 2)	Annex B 2

Maximum installation torque

Table B3.1: Installation parameters for anchor rods												
Anchor rods Thread M6 M8 M10 M12 M16 M20 M24 M27 M30												
Width across flats		SW		10	13	17	19	24	30	36	41	46
Nominal drill hole o	diameter	d_0		8	10	12	14	18	24	28	30	35
Drill hole depth		h ₀						$h_0 = h_e$	f			
Effective		h _{ef, min}] [50	60	60	70	80	90	96	108	120
embedment depth	-	h _{ef, max}] [72	160	200	240	320	400	480	540	600
Minimum spacing and minimum edge distance		Smin = Cmin	[mm]	40	40	45	55	65	85	105	125	140
Diameter of the	pre-positioned installation	df		7	9	12	14	18	22	26	30	33
clearance hole of the fixture	push through installation	df		9	12	14	16	20	26	30	33	40
Minimum thickness of concrete hmin			h _{ef} + 30 (≥100)			h _{ef} + 2d ₀						

10

20

40

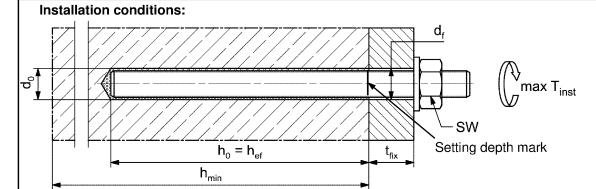
60

120

150

200

300


Steel zinc plated PC ¹⁾ 8.8	● or +	Steel hot-dip PC ¹⁾ 8.8	•
High corrosion resistant steel HCR PC1) 50	•	High corrosion resistant steel HCR PC1) 70	_
High corrosion resistant steel HCR PC1) 80	(Stainless steel R property class 50	~
Stainless steel R property class 80	*		

Alternatively: Colour coding according to DIN 976-1: 2016

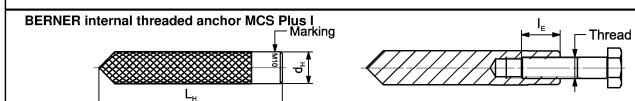
max T_{inst}

[Nm]

1) PC = property class

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled

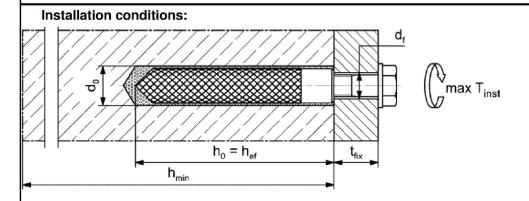
- Materials, dimensions and mechanical properties according to Annex A 6, Table A6.1
- Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- Setting depth is marked


Figures not to scale

BERNER multicompound system MCS Uni Plus	
Intended use Installation parameters anchor rods	Annex B 3

Table	B4.1:	Installation parameters for BERNER internal threaded anchors
		MCS Plus I

Internal threaded anchors MCS Plus I		Thread	M8	M10	M12	M16	M20
Diameter of anchor	$d_{\text{nom}} = d_{\text{H}}$		12	16	18	22	28
Nominal drill hole diameter	d₀		14	18	20	24	32
Drill hole depth	h ₀			•	$h_0 = h_{\text{ef}} = L_{\text{H}}$		
Effective embedment depth $(h_{ef} = L_H)$	h _{ef}		90	90	125	160	200
Minimum spacing and minimum edge distance	Smin = Cmin	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture	df		9	12	14	18	22
Minimum thickness of concrete member	h _{min}		120	125	165	205	260
Maximum screw-in depth	I _{E,max}		18	23	26	35	45
Minimum screw-in depth	$I_{E,min}$] [8	10	12	16	20
Maximum installation torque	max T _{inst}	[Nm]	10	20	40	80	120

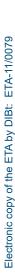


Marking: Anchor size e. g.: M10

Stainless steel → additional R; e.g.: M10 R

High corrosion resistant steel → additional HCR; e.g.: M10 HCR

Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 6, Table A6.1


Figures not to scale

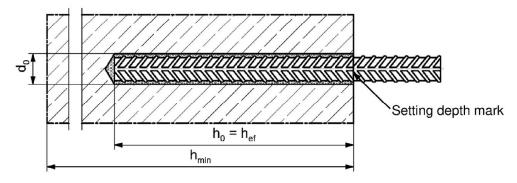
BERNER multicompound system MCS Uni Plus

Intended use

Installation parameters BERNER internal threaded anchors MCS Plus I

Annex B 4

Table B5.1: Installation parameters for reinforcing bars										
Nominal diameter of the bar φ 8 ¹⁾ 10 ¹⁾ 12 ¹⁾ 14 16 20 25 28									28	
Nominal drill hole diameter	d ₀		10 12	12 14	14 16	18	20	25	30	35
Drill hole depth	h ₀					h ₀ =	= h _{ef}			
Effective	$h_{\text{ef},\text{min}}$		60	60	70	75	80	90	100	112
embedment depth	h _{ef,max}		160	200	240	280	320	400	500	560
Minimum spacing and minimum edge distance	Smin = Cmin	[mm]	40	45	55	60	65	85	110	130
Minimum thickness of concrete member	h _{min}		h _{ef} + 30 (≥ 100)			h _{ef} + 2d ₀				


¹⁾ Both drill hole diameters can be used

Reinforcing bar

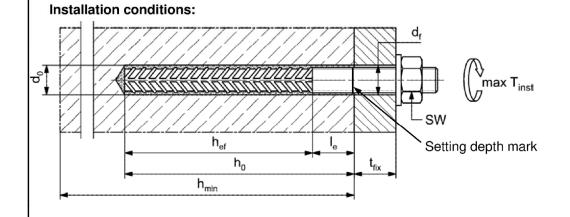
- The minimum value of related rib area f_{R,min} must fulfil the requirements of EN 1992-1-1:2004+AC:2010
- The rib height must be within the range: 0,05 · φ ≤ h_{rib} ≤ 0,07 · φ
 (φ = Nominal diameter of the bar, h_{rib} = rib height)

Installation conditions:

Figures not to scale

BERNER multicompound system MCS Uni Plus	
Intended use Installation parameters reinforcing bars	Annex B 5

Rebar anchor BRA	-	Thread	M1	9 1)	M16	M20	M24	
Nominal diameter of the bar		IIII eau			16	20	25	
	φ		12 19					
Width across flats	SW				24	30	36	
Nominal drill hole diameter	d₀		14	16	20	25	30	
Orill hole depth	h ₀	h _{ef} + l _e						
-ffeetive embedment death	$h_{\text{ef,min}}$		70		80	90	96	
Effective embedment depth	h _{ef,max}		140		220 300		380	
Distance concrete surface to welded joint	l _e		100					
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	5	5	65	85	105	
pre-positioned anchorage	≤ d _f		1	4	18	22	26	
clearance hole push through anchorage	≤ d _f		1	8	22	26	32	
Minimum thickness of concrete member	h _{min}		$h_0 + 30$ $h_0 + 2d_0$					
Maximum installation torque	max T _{inst}	[Nm]	4	0	60	120	150	


¹⁾ Both drill hole diameters can be used

BERNER rebar anchor BRA

Marking frontal e. g: BRA (for stainless steel);

BRA HCR (for high corrosion resistant steel)

Figures not to scale

BERNER multicompound system MCS Uni Plus

Intended use
Installation parameters BERNER rebar anchor BRA

Annex B 6

English translation prepared by DIBt

Table B7.1: Parameters of the cleaning brush (steel brush with steel bristles)

The size of the cleaning brush refers to the drill hole diameter

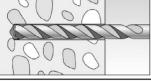
Nominal drill hole diameter	d ₀	[mm]	8	10	12	14	16	18	20	24	25	28	30	35
Steel brush diameter	dь	[mm]	9	11	14	16	2	0	25	26	27	30	4	0

Table B7.2 Maximum processing time of the mortar and **minimum curing** time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

Temperature at anchoring base	Maxir	num processing twork	g time	Minimum curing time ¹⁾ t _{cure}				
[°C]	MCS Uni Plus WE	MCS Uni Plus	MCS Uni Plus S	MCS Uni Plus WE	MCS Uni Plus	MCS Uni Plus S		
-10 to -5 ²⁾	-	-	-	12 h	-	-		
> -5 to 0 ²⁾	5 min	-	-	3 h	24 h	-		
> 0 to 5 ²⁾	5 min	13 min	-	3 h	3 h	6 h		
> 5 to 10	3 min	9 min	20 min	50 min	90 min	3 h		
> 10 to 20	1 min	5 min	10 min	30 min	60 min	2 h		
> 20 to 30	-	4 min	6 min	-	45 min	60 min		
> 30 to 40	-	2 min	4 min	-	35 min	30 min		

¹⁾ In wet concrete or water filled holes the curing times must be doubled

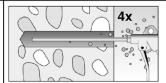
BERNER multicompound system MCS Uni Plus	
Intended use	Annex B 7
Cleaning brush (steel brush)	
Processing time and curing time	


²⁾ Minimal cartridge temperature +5°C

Installation instructions part 1

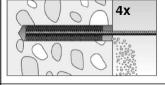
Drilling and cleaning the hole (hammer drilling with standard drill bit)

1

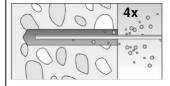

Drill the hole.

Nominal drill hole diameter **d**₀ and drill hole depth **h**₀ see **tables B3.1, B4.1, B5.1, B6.1**

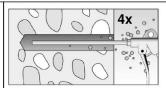
2



Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand


For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$

3



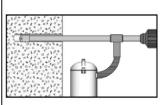
Brush the drill hole four times. For deep holes use an extension. Corresponding brushes see **table B7.1**

4

Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand

For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air $(p \ge 6 \text{ bar})$

Go to step 5


Drilling and cleaning the hole (hammer drilling with hollow drill bit)

1

Check a suitable hollow drill (see **table B1.1**) for correct operation of the dust extraction

2

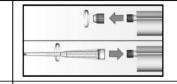
Use a suitable dust extraction system, e. g. BWDVC PERM M-1 or a comparable dust extraction system with equivalent performance data

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Nominal drill hole diameter d_0 and drill hole depth h_0 see tables B3.1, B4.1, B5.1, B6.1

Go to step 5

BERNER multicompound system MCS Uni Plus

Intended use


Installation instructions part 1

Annex B 8

Installation instructions part 2

Preparing the cartridge

Remove the sealing cap

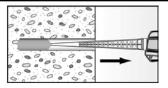
Screw on the static mixer (the spiral in the static mixer must be clearly visible)

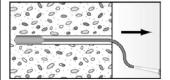
5

Place the cartridge into the dispenser

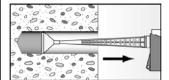
7

8




Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey

Go to step 8


Injection of the mortar

Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles

For drill hole depth ≥ 150 mm use an extension tube

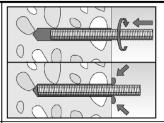
For overhead installation, deep holes ($h_0 > 250$ mm) or drill hole diameter ($d_0 \ge 40$ mm) use an injection adapter

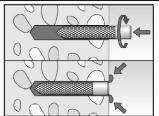
Go to step 9

BERNER multicompound system MCS Uni Plus

Intended use

Installation instructions part 2

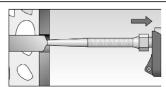

Annex B 9


Z64822.20

Installation instructions part 3

Installation of anchor rods or BERNER internal threaded anchors MCS Plus I

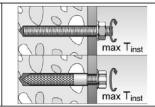
9



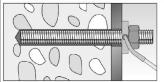
Only use clean and oil-free metal parts. Mark the setting depth of the metal part. Push the anchor rod or BERNER internal threaded MCS Plus I anchor down to the bottom of the hole. turning it slightly while doing so. After inserting the metal parts, excess mortar must

be emerged around the anchor element.

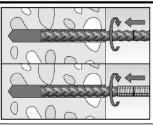
For overhead installations support the metal part with wedges (e.g. centering wedges) or overhead clips.


For push through installation fill the annular gap with mortar

10

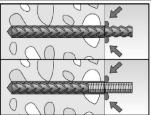

Wait for the specified curing time see table B7.2

11


Mounting the fixture max T_{inst} see tables B3.1 and B4.1

Option

After the minimum curing time is reached, the gap between metal part and fixture (annular clearance) may be filled with mortar via the BERNER filling disc BFD. Compressive strength ≥ 50 N/mm² (e.g. injection mortars MCS Uni Plus or MCS Diamond). ATTENTION: Using BERNER filling disc BFD reduces t_{fix} (usable length of the anchor).


Installation reinforcing bars and BERNER rebar anchor BRA

Only use clean and oil-free reinforcing bars or BERNER rebar anchor BRA. Mark the setting depth. Turn while using force to push the reinforcement bar or the BERNER rebar anchor BRA into the filled hole up to the setting depth

9

Electronic copy of the ETA by DIBt: ETA-11/0079

When the setting depth mark is reached, excess mortar must be emerged from the mouth of the drill hole.

10

Wait for the specified curing time t_{cure} see table B7.2

11

Mounting the fixture max Tinst see table B6.1

BERNER multicompound system MCS Uni Plus

Intended use

Installation instructions part 3

Annex B 10

Z64825.20

English translation prepared by DIBt

Table C1.1: Charact anchor								on / sl	near Id	ad of	BERN	ER				
Anchor rod / standard threa	aded rod			М6	M8	M10	M12	M16	M20	M24	M27	M30				
Bearing capacity under ten	sion load	d, ste	el fail	lure 3)							-					
φ,		4.8		8	15(13)	23(21)	33	63	98	141	184	224				
Steel zinc plated		5.8		10	19(17)	29(27)	43	79	123	177	230	281				
ce ce	ropert	8.8	[[.]	16	29(27)	47(43)	68	126	196	282	368	449				
Characteristics Stainless steel R and high corrosion	Property class	50	[kN]	10	19	29	43	79	123	177	230	281				
ြင္ထိုက္တို့ high corrosion	"	70		14	26	41	59	110	172	247	322	393				
resistant steel HCR		80		16	30	47	68	126	196	282	368	449				
Partial factors 1)																
		4.8						1,50								
ੈ Steel zinc plated	_{>}	5.8						1,50								
ial factors standing Nas. N	ropert	8.8	[-]					1,50								
Stainless steel R and high corrosion	Property class	50	[-]					2,86								
	"	_70					1,	50 ²⁾ / 1,	87							
resistant steel HCR		80						1,60			85 110 13 106 138 16 141 184 22 448 665 89 560 833 112 784 1167 157					
Bearing capacity under she	ear load,	steel	failu	r e 3)												
without lever arm																
o ×		4.8		4	9(8)	14(13)	20	38	59	85	110	135				
it is Steel zinc plated	_{>}	5.8		6	11(10)	17(16)	25	47	74	106	138	168				
9	ropert	8.8	[kN]	8	15(13)	23(21)	34	63	98	141	184	225				
Characteristics Stainless steel B and high corrosion Stainless steel B and high corrosion	Property class	50	[[X] 4]	5	9	15	21	39	61	89	115	141				
high corrosion	"	70		7	13	20	30	55	86	124	161	197				
resistant steel HCR		80		8	15	23	34	63	98	141	184	225				
Ductility factor		k ₇	[-]					1,0								
with lever arm			· · · · · · · · · · · · · · · · · · ·					1	1	1						
۶., ۶ «		4.8		6		30(27)	52	133	259	448	665	899				
Steel zinc plated	≥	5.8		7		37(33)	65	166	324	560		1123				
19.4	per	8.8	[Nm]	12	30(26)	60(53)	105	266	519	896	1333	1797				
Stainless steel R and high corrosion	Property class	50	[]	7	19	37	65	166	324	560		1123				
l ∺ high corrosion	-	_70		10	26	52	92	232	454	784		1573				
eresistant steel HCR		80		12	30	60	105	266	519	896	1333	1797				
Partial factors 1)	1															
<u> </u>		4.8						1.25								
Steel zinc plated	s rty	<u>5.8</u>						1.25								
Steel zinc plated Stainless steel R and high corrosion	Property class	8.8 50	[-]					1.25 2.38								
high corrosion	۾ م	70					1 :	2.30 25 ²⁾ / 1.	56							
Tingit contestor		70					1 14									

¹⁾ In absence of other national regulations

resistant steel HCR

BERNER multicompound system MCS Uni Plus

Performances

Characteristic values for steel failure under tension / shear load of BERNER anchor rods and standard threaded rods

80

Annex C 1

1.33

²⁾ Only admissible for high corrosion resist. steel HCR, with f_{yk} / $f_{uk} \ge 0.8$ and $A_5 > 12$ % (e.g. BERNER anchor rods)

³⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot dip galvanised standard threaded rods according to EN ISO 10684:2004+AC:2009

Table C2.1:						re under te ors MCS PI		ar load of		
internal threade	d anch	ors MCS P	lus I		M8	M10	M12	M16	M20	
Bearing capacit	y unde	r tension lo	ad, ste	el fai	lure					
		Property	5.8		19	29	43	79	123	
Charact. resistance with	$N_{Rk,s}$	class	8.8	[kN]	29	47	68	108	179	
screw	INHK,S	Property	R	[KIN]	26	41	59	110	172	
		class 70	HCR		26	41	59	110	172	
Partial factors1)										
		Property	5.8				1,50			
Partial factors	2/14 11	class	8.8	[-]			1,50			
artial lactors	γMs,N	Property	R	[-]			1,87			
		class 70	HCR				1,87			
Bearing capacit	y unde	r shear loa	d, steel	failu	re					
Without lever a	rm									
		Property	5.8		9,2	14,5	21,1	39,2	62,0	
Charact. resistance with	$V^0_{Rk,s}$	class	8.8	[kN]	14,6	23,2	33,7	54,0	90,0	
screw	V HK,S	Property	R	[[[, 1]	12,8	20,3	29,5	54,8	86,0	
		class 70	HCR		12,8	20,3	29,5	54,8	86,0	
Ductility factor			k ₇	[-]			1,0			
With lever arm							T			
		Property	5.8		20	39	68	173	337	
Charact. resistance with	$M^0_{Rk,s}$	class	8.8	[Nm]	30	60	105	266	519	
screw	IVI HK,S	Property	R	_	26	52	92	232	454	
		class 70	HCR		26	52	92	232	454	
Partial factors ¹⁾										
		Property	5.8				1,25			
Partial factors	γMs,V	class 8.8	[-1	1,25						
	/ IVIS, V	Property	R	[-]			1,56			
		class 70	HCR				1,56			

1)	ln	absence	ot	other	national	regul	ations
----	----	---------	----	-------	----------	-------	--------

BERNER multicompound system MCS Uni Plus	
Performances Characteristic values for steel failure under tension / shear load of BERNER internal	Annex C 2
I threaded anchor MCS Plus I	

Table C3.1: Characte reinforci	ristic values ng bars	s for	steel	failure	under	tension	ı / shea	r load (of	
Nominal diameter of the bar		ф	8	10	12	14	16	20	25	28
Bearing capacity under tens	ion load, stee	el fail	ure							-
Characteristic resistance	N _{Rk,s}	[kN]				As ·	f uk ¹⁾			
Bearing capacity under shea	r load, steel	failur	'e							
Without lever arm										
Characteristic resistance	V ⁰ Rk,s	[kN]				0,5 · A	∖s · f uk¹)			
Ductility factor	k ₇	[-]				1	,0			
With lever arm	<u>.</u>	•								
Characteristic resistance	M ⁰ Rk,s	[Nm]				1,2 · W	√ _{el} · f _{uk} ¹)			

¹⁾ fuk or fyk respectively must be taken from the specifications of the reinforcing bar

Table C3.2: Characteristic values for **steel failure** under tension / shear load of **BERNER rebar anchors BRA**

BERNER rebar anchor BRA			M12	M16	M20	M24
Bearing capacity under tensi	ion load, ste	el fail	ure	-	-	
Characteristic resistance	$N_{Rk,s}$	[kN]	63	111	173	270
Partial factor ¹⁾						•
Partial factor	γMs,N	[-]		1	,4	
Bearing capacity under shea	r load, stee	failu	œ .			
Without lever arm						
Characteristic resistance	V^0 Rk,s	[kN]	30	55	86	124
Ductility factor	k ₇	[-]		1	,0	•
With lever arm						
Characteristic resistance	M^0 _{Rk,s}	[Nm]	92	233	454	785
Partial factor ¹⁾				•		•
Partial factor	γMs,V	[-]		1,	.56	

¹⁾ In absence of other national regulations

BERNER multicompound system MCS Uni Plus

Performances
Characteristic values for steel failure under tension / shear load of reinforcing bars and BERNER rebar anchors BRA

Annex C 3

Size								All size				
								All Size	:5			
Tension load Installation factor	A M		гэ			lee enn	ov C E	to C 0	and C :	13 to C1	1	
		γinst	[-]	-4- 6		see ann	ex C 5	10 0 6	and C	13 10 01	4	
Factors for the	compressive stren	igth of	concr	ete > C	20/25			4.05				
-	C25/30							1,05				
	C30/37							1,10				
Increasing _ factor for \tau_{Rk}	C35/45	Ψ_{c}	[-]					1,15				
Tactor for TRK	C40/50							1,19				
_	C45/55							1,22				
Culittie e feilus	C50/60							1,26				
Splitting failure								4.0.1-				
_	$\frac{h / h_{ef} \ge 2.0}{2.0 \cdot h / h}$	_		1,0 h _{ef}								
Edge distance _	$\frac{2.0 > h / h_{ef} > 1.3}{h / h < 4.2}$	C _{cr,sp}	[mm]	4,6 h _{ef} - 1,8 h 2,26 h _{ef}								
Specing	h / h _{ef} ≤ 1,3											
Spacing Concrete cone	foiluro	S _{cr,sp}						2 C _{cr,sp}	1			
		L.						11.0				
Uncracked concrete $k_{ucr,N}$ Cracked concrete $k_{cr,N}$ [-] 7,7												
	te							-				
Edge distance		Ccr,N	[mm]					1,5 h _{ef}				
Spacing $s_{cr,N}$ t^{trimin} $2 c_{cr,N}$												
		DI	[-]		50 04	2 / 22 2				10.00 / 4	20.00	
	emperature range					C / 80 °	<u> </u>		/	'2 °C / 1		
Factor		$\Psi^0_{ ext{sus}}$	[-]			0,74				0,8	7	
Shear load												
Installation facto	or	γinst	[-]					1,0				
Concrete pry-o												
Factor for pry-ou		k ₈	[-]					2,0				
Concrete edge	failure											
Effective length shear loading	of fastener in	If	[mm]			≤ 24 mı > 24 mı				0 mm)		
Calculation dia	meters											
Size				M6	M8	M10	M12	M16	M20	M24	M27	M3
BERNER ancho		d _{nom}		6	8	10	12	16	20	24	27	30
internal threaded MCS Plus I	d anchors	d _{nom}	[mm]	_1)	12	16	18	22	28	_1)	_1)	_1)
rebar anchor BF	RA	d _{nom}		_1)	_1)	_1)	12	16	20	25	_1)	_1)
Size (nominal di	ameter of the bar)		ф	8	10	12	1.	4	16	20	25	28
Reinforcing bar		d _{nom}	[mm]	8	10	12	1.	4	16	20	25	28
¹⁾ Anchortyp n	ot part of the assess	sment			•	'	•	'	'	'	'	
BERNER m	ulticompound sys	stem I	MCS I	Jni Plu	ıs							
Performances Characteristic	s values for concrete t	ailure	under t	ension	/ shear	load				An	nex C	4

Table C5.1: Charac		oluge for	comb	-inod		ut and	conor	ata fai	iluro fo	- DED	NISD
	cteristic va or rods an										INEL
l .	cked or c									,	
Anchor rod / standard thr	eaded rod		М6	M8	M10	M12	M16	M20	M24	M27	M30
Combined pullout and co	ncrete con	e failure									
Calculation diameter	d	[mm]	6	8	10	12	16	20	24	27	30
Uncracked concrete											
Characteristic bond resis	tance in un	icracked (concre	te C20/	25						
Hammer-drilling with standa	ard drill bit c	<u>r hollow d</u>	rill bit (dry or w	et conc	rete)					
Tem- I: 50 °C / 80 °C	_	[2]	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
perature II: 72 °C / 120 °	°C T _{Rk,ucr}	[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Hammer-drilling with standa	a <u>rd drill bit c</u>	<u>r hollow d</u>	י l <u>rill bit (י</u>	water fil	led hole) ¹⁾	l				1
Tem- I: 50 °C / 80 °C	 C		_2)	_2)	_2)	9,5	8,5	8,0	7,5	7,0	7,0
perature II: 72 °C / 120 °	°C TRk,ucr	[N/mm ²]	_2)	_2)	_2)	7,5	7,0	6,5	6,0	6,0	6,0
Installation factors											
Dry or wet concrete	0.5	[-1					1,0				
Water filled hole	—— γinst	[-]	_2)	_2)	_2)			1,2	2 ¹⁾		
Cracked concrete											
Characteristic bond resis											
Hammer-drilling with standa	<u>ard drill bit o</u>	<u>r hollow d</u>	<u>rill bit (</u>	dry or w	et conc	rete)	ı		т	т	1
Tem- I: 50 °C / 80 °C		[N/mm ²]	_2)	5,5	6,0	6,0	6,0	5,5	4,5	4,0	4,0
range II: 72 °C / 120 °C	°C T _{Rk,cr}	[[]]	_2)	4,5	5,0	6,0	6,0	5,0	4,0	3,5	3,5
Hammer-drilling with standa	ard drill bit c	r hollow d	rill bit (water fil	led hole) 1)					
Tem- I: 50 °C / 80 °C		27	_2)	_2)	_2)	5,0	5,0	4,5	4,0	3,5	3,5
range II: 72 °C / 120 °C	°C T _{Rk,cr}	[N/mm ²]	_2)	_2)	_2)	4,0	4,0	4,0	3,5	3,0	3,0
Installation factors						·	·				
Dry or wet concrete	- 2/:	[-]					1,0				
Water filled hole	—— γinst	[-]	_2)	_2)	_2)			1.2	2 ¹⁾		

1,21)

Water filled hole

BERNER multicompound system MCS Uni Plus	
Performances Characteristic values for combined pull-out and concrete failure for BERNER anchor rod and standard threaded rods	Annex C 5

 $^{^{1)}}$ Only with coaxial cartridges: 380ml, 400 ml, 410 ml $^{2)}\,\mathrm{No}$ performance assessed

Table C6.1: Characteristic values for combined pull-out and concrete failure for BERNER internal threaded anchors MCS Plus I in hammer drilled holes; uncracked concrete

BERNER Internal threaded a	anchor		M8	M10	M12	M16	M20				
Combined pullout and cond	rete con	e failure									
Calculation diameter	d	[mm]	12	16	18	22	28				
Uncracked concrete											
Characteristic bond resistance in uncracked concrete C20/25											
Hammer-drilling with standard	l drill bit c	r hollow c	Irill bit (dry or	wet concrete	<u>)</u>						
Tem- 1: 50 °C / 80 °C	_	[N]//21	10,5	10,0	9,5	9,0	8,5				
range II: 72 °C / 120 °C	- τ _{Rk,ucr}	[N/mm ²]	9,0	8,0	8,0	7,5	7,0				
Hammer-drilling with standard	l drill bit c	r hollow c	Irill bit (water	filled hole)1)							
Tem- 1: 50 °C / 80 °C		[N]/mayma21	10,0	9,0	9,0	8,5	8,0				
range II: 72 °C / 120 °C	- τ _{Rk,ucr}	[N/mm ²]	7,5	6,5	6,5	6,0	6,0				
Installation factors	Installation factors										
Dry or wet concrete		r 1	1,0								
Water filled hole	– γinst	[-]			1,2 ¹⁾						

¹⁾ Only with coaxial cartridges: 380 ml, 400 ml, 410 ml

BERNER multicompound system MCS Uni Plus

Performances
Characteristic values for combined pull-out and concrete failure for BERNER internal threaded anchors MCS Plus I

Annex C 6

 Z64825.20
 8.06.01-38/20

Table C7.1: Characteristic values for combined pull-out and concrete failure for reinforcing bars in hammer drilled holes; uncracked or cracked concrete													
Nominal diameter of th	Nominal diameter of the bar φ 8 10 12 14 16 20 25 28												
Combined pullout and	concrete con	e failure											
Calculation diameter	d	[mm]	8	10	12	14	16	20	25	28			
Uncracked concrete													
Characteristic bond res	sistance in un	cracked	concret	e C20/25	5								
Hammer-drilling with sta	ndard drill bit c	r hollow d	rill bit (d	ry or wet	concret	<u>e)</u>							
Tem- I: 50 °C / 80) °C	[FA 1 / 27]	11,0	11,0	11,0	10,0	10,0	9,5	9,0	8,5			
range II: 72 °C / 12	20 °C τ _{Rk,ucr}	lk,ucr [N/mm²]	9,5	9,5	9,0	8,5	8,5	8,0	7,5	7,0			
Installation factor													
Dry or wet concrete	γinst	[-]				1	,0						
Cracked concrete													
Characteristic bond res	sistance in cr	acked cor	ncrete C	20/25									
Hammer-drilling with sta	ndard drill bit c	r hollow d	rill bit (d	ry or wet	t concret	<u>e)</u>							
Tem- I: 50 °C / 80) °C	FN 1 / 27	_1)	3,0	5,0	5,0	5,0	4,5	4,0	4,0			
range II: 72 °C / 12	20 °C τ _{Rk,cr}	[N/mm ²]	_1)	3,0	4,5	4,5	4,5	4,0	3,5	3,5			
Installation factor													
Dry or wet concrete	γinst	[-]				1	,0						

1)	No	per	form	nance	assessed
----	----	-----	------	-------	----------

BERNER multicompound system MCS Uni Plus	
Performances Characteristic values for combined pull-out and concrete failure for reinforcing bars	Annex C 7

anchors BRA

Table C8.	1: Characteristic values for combined pull-out and concrete failure for
	BERNER rebar anchors BRA in hammer drilled holes; uncracked o
	cracked concrete

cracke	ed concre	ete				
BERNER rebar anchor BR	RA.		M12	M16	M20	M24
Combined pullout and co	ncrete con	e failure				
Calculation diameter	d	[mm]	12	16	20	25
Uncracked concrete						
Characteristic bond resis	tance in ur	cracked	concrete C20/25	5		
Hammer-drilling with standa	ard drill bit c	r hollow d	rill bit (dry or we	t concrete)		
Tem- I: 50 °C / 80 °C		FN.1/ 07	11,0	10,0	9,5	9,5
perature II: 72 °C / 120 °	C τ _{Rk,ucr}	[N/mm ²]	9,0	8,5	8,0	7,5
Installation factors						
Dry or wet concrete	γinst	[-]		1	,0	
Cracked concrete						
Characteristic bond resist	tance in cr	acked cor	ncrete C20/25			
Hammer-drilling with standa	ard drill bit c	r hollow d	rill bit (dry or we	t concrete)		
Tem- I: 50 °C / 80 °C		[N1/mamma2]	5,0	5,0	4,5	4,0
perature	°C T _{Rk,cr}	[N/mm ²]	4,5	4,5	4,0	3,5
Installation factors						
Dry or wet concrete	γinst	[-]		1	,0	

BERNER multicompound system MCS Uni Plus	
Performances Characteristic values for combined pull-out and concrete failure for BERNER rebar	

Annex C 8

8.06.01-38/20

Z64825.20

Electronic copy of the ETA by DIBt: ETA-11/0079

English translation prepared by DIBt

Table (Table C9.1: Displacements for anchor rods												
Anchor	rod	М6	М8	M10	M12	M16	M20	M24	M27	M30			
Displacement-Factors for tension load ¹⁾													
Uncracked concrete; Temperature range I, II													
δ N0-Factor	[mm/(N/mm ²)]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12			
δ _{N∞-Factor}	[[[]]][]]	0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14			
Cracked	concrete; Ten	nperature	range I, I	I									
δ _{N0} -Factor	[mm/(N/mm ²)]	_3)	0,12	0,12	0,12	0,13	0,13	0,13	0,14	0,15			
δ _{N0} -Factor	[[[[[[]]	_3)	0,25	0,27	0,30	0,30	0,30	0,35	0,35	0,40			
Displacement-Factors for shear load ²⁾													
Uncrack	ed or cracked	concrete	; Tempera	ture rang	e I, II								
δv0-Factor	[mm/kN]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07			
δv∞-Factor	[IIIIII/KIN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09			

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed}: Design value of the applied tensile stress)

 $\delta v_0 = \delta v_{0\text{-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

Table C9.2: Displacements for BERNER internal threaded anchors MCS Plus I

-Factors	£				<u> </u>							
Displacement-Factors for tension load ¹⁾												
Uncracked concrete; Temperature range I, II												
(N1/mm2\1	0,10	0,11	0,12	0,13	0,14							
[(-۱۱۱۱۱۸/۱۱	0,13	0,14	0,15	0,16	0,18							
Displacement-Factors for shear load ²⁾												
ncrete; T	emperature rang	e I, II										
[mm/kN]	0,12	0,12	0,12	0,12	0,12							
	0,14	0,14	0,14	0,14	0,14							
((N/mm²)] -Factors ncrete; T	(N/mm²)] 0,10 0,13 -Factors for shear load²) ncrete; Temperature rang	(N/mm²)] 0,10 0,11 0,13 0,14 -Factors for shear load²) ncrete; Temperature range I, II m/kN] 0,12 0,12	(N/mm²)] 0,10 0,11 0,12 0,15 -Factors for shear load²) ncrete; Temperature range I, II 0,12 0,12 0,12 0,12	(N/mm²)] 0,10 0,11 0,12 0,13 0,14 0,15 0,16 -Factors for shear load²) ncrete; Temperature range I, II m/kN] 0,12 0,12 0,12 0,12 0,12							

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{Ed}$: Design value of the applied tensile stress)

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

(V_{Ed}: Design value of the applied shear force)

BERNER multicompound system MCS Uni Plus

Performances

Displacements for anchor rods and BERNER internal threaded anchors MCS Plus I

Annex C 9

³⁾ No performance assessed

²⁾ Calculation of effective displacement:

Table C10.1: Displacements for reinforcing bars											
Nominal of the ba	diameter ar	8	10	12	14	16	20	25	28		
Displace	ment-Factors	for tensior	n load ¹⁾								
Uncrack	ed concrete; T	emperatur	e range I, I	I							
δ _{N0-Factor}	[mama//N1/mama2)]	0,09	0,09	0,10	0,10	0,10	0,10	0,10	0,11		
δ _{N∞-Factor}	[mm/(N/mm²)]	0,10	0,10	0,12	0,12	0,12	0,12	0,13	0,13		
Cracked	concrete; Ten	nperature i	ange I, II								
δ _{N0-Factor}	[_3)	0,12	0,13	0,13	0,13	0,13	0,13	0,14		
δ _{N∞-Factor}	[mm/(N/mm ²)]	_3)	0,27	0,30	0,30	0,30	0,30	0,35	0,37		
Displace	ment-Factors	for shear l	oad ²⁾								
Uncrack	ed or cracked	concrete;	Temperatu	re range I,	II						
δv0-Factor	[100 top /[cN]]	0,11	0,11	0,10	0,10	0,10	0,09	0,09	0,08		
δv∞-Factor	[mm/kN]	0,12	0,12	0,11	0,11	0,11	0,10	0,10	0,09		

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

(V_{Ed}: Design value of the applied shear force)

Table C10.2: Displacements for BERNER rebar anchors BRA

rebar anchor BRA		M12	M16	M20	M24					
Displace	Displacement-Factors for tension load ¹⁾									
Uncracked concrete; Temperature range I, II										
$\delta_{\text{N0-Factor}}$	[mm/(N/mm ²)]	0,10	0,10	0,10	0,10					
δ _{N∞-Factor}	_[[]]]]]	0,12	0,12	0,12	0,13					
Cracked	Cracked concrete; Temperature range I, II									
δ _{N0-Factor}	[mm/(N/mm²)]	0,12	0,13	0,13	0,13					
δ _{N∞-Factor}	[[[[[[]]	0,30	0,30	0,30	0,35					
Displace	ement-Factors	for shear load ²⁾								
Uncracked or cracked concrete; Temperature range I, II										
δ V0-Factor	[mm/kNI]	0,10	0,10	0,09	0,09					
δv∞-Factor	[mm/kN]	0,11	0,11	0,10	0,10					

1) Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta v_0 = \delta v_{0\text{-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

(V_{Ed}: Design value of the applied shear force)

BERNER multicompound system MCS Uni Plus

Performances

Displacements for reinforcing bars and BERNER rebar anchors BRA

Annex C 10

²⁾ Calculation of effective displacement:

³⁾ No performance assessed

Table C11.1: Characteristic values for steel failure under tension / shear load of BERNER anchor rods and standard threaded rods under seismic action performance category C1 or C2

	perierman		loge	,, <u> </u>	. 0. 02						
Anchor	rod / standard thread	ed rod			M10	M12	M16	M20	M24	M27	M30
Bearing	capacity under tension	on load	l, ste	el fai	lure ¹⁾						
BERNER	R anchor rods and sta	ndard	thre	aded	rods, per	formanc	e catego	ry C1 ²⁾			
ပ	Otaal =ina mlatad		5.8		29(27)	43	79	123	177	230	281
risti nce	Steel zinc plated	ي خ (8.8		47(43)	68	126	196	282	368	449
naracteristi esistance N _{Rk,s,C1}	Stainless steel R and	Property class	50	[kN]	29	43	79	123	177	230	281
Characteristic resistance NRK,S,C1	high corrosion	Pro	70		41	59	110	172	247	322	393
0	resistant steel HCR		80		47	68	126	196	282	368	449
BERNER	R anchor rods and sta	ndard	thre	aded	rods, per	formanc	e categoi	ry C2 ²⁾			
0	0		5.8		_4)	39	72	108	_4)	_4)	_4)
eristi nce .c2	Steel zinc plated	ي ﴿ ا	8.8		_4)	61	116	173	_4)	_4)	_4)
1 - = 8	Stainless steel R and	Property class	50	[kN]	_4)	39	72	108	_4)	_4)	_4)
harac reista N _{RK}	high corrosion	F 2	70		_4)	53	101	152	_4)	_4)	_4)
Ö	resistant steel HCR		80		_4)	61	116	173	_4)	_4)	_4)
Bearing	capacity under shear	load,	steel	failu	re withou	it lever a	r m 1)				
	R anchor rods, perfori										
	Steel zinc plated		5.8		17(16)	25	47	74	106	138	168
eristic nce c1		Property class	8.8	[kN]	23(21)	34	63	98	141	184	225
Characteristic resistance VRK,S, C1	Stainless steel R and high corrosion resistant steel HCR		50		15	21	39	61	89	115	141
nara resis V _R			70		20	30	55	86	124	161	197
ō			80		23	34	63	98	141	184	225
Standar	d threaded rods, perfe	ormano	ce ca	itego	ry C1 ²⁾		l	ı		l	
			5.8		12(11)	17	33	52	74	97	118
Characteristic resistance VRK,S, C1	Steel zinc plated	S If	8.8		16(14)	24	44	69	99	129	158
acte istal	Stainless steel R and	Property class	50	[kN]	11	15	27	43	62	81	99
hara resi V _F	high corrosion	A P. O	70		14	21	39	60	87	113	138
O	resistant steel HCR		80		16	24	44	69	99	129	158
BERNER	R anchor rods and sta	ndard			rods, per						
₽ 🦽	Steel zinc plated		5.8			14	27	43	_4)	_4)	_4)
naracteristi esistance V _{Rk,s, C2}	·	erty is	8.8			22	44	69	_4)	_4)	_4)
naracte esistar V _{Rk,s, (}	Stainless steel R and	Property class	50	[kN]	NPA 4)	14	27	43	_4)	_4)	_4)
Characteristic resistance VRK,S, C2	•		70			20	39	60	_4)	_4)	_4)
	resistant steel HCR		80			22	44	69	_4)	_4)	_4)
Factor for the annular gap α_{gap} [-] 0,5 (1,0) ³⁾											

¹⁾ Partial factors for performance category C1 or C2 see table C12.1;

for BERNER anchor rods MCS Plus A / BCA M the factor for steel ductility is 1,0

BERNER multicompound system MCS Uni Plus

Performances

Characteristic values for steel failure under tension / shear load for BERNER anchor rods and standard threaded rods under seismic action (performance category C1 / C2)

Annex C 11

²⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot dip galvanised standard threaded rods according to EN ISO 10684:2004+AC:2009.

³⁾ Values in brackets are valid for filled annular gaps between the anchor rod and the through-hole in the attachment. It is necessary to use the filling disc according to Annex A 1

⁴⁾ No performance assessed

Table C12.1: Partial factors for BERNER anchor rods, standard threaded rods under seismic action performance category C1 or C2

Anch	or rod / standard threa	M10	M12	M16	M20	M24	M27	M30			
Tens	ion load, steel failure1)										
	Steel zinc plated	S	5.8	-				1,50			
Partial factor	·	class	8.8		1,50						
ial fa	high corrosion	Property class	50			2,86					
Part		rope	70			1,50 ²⁾ / 1,87					
	resistant steel HCR	L L	80		1,60						
Shea	r load, steel failure1)										
	Steel zinc plated	S	5.8	-				1,25			
cto	•	Property class	8.8		1,25						
Partial factor	high corrosion		50	[-]				2,38			
Part			70)	1,25 ²⁾ / 1,56						
	resistant steel HCR	<u> </u>	80					1,33			

¹⁾ In absence of other national regulations

BERNER multicompound system MCS Uni Plus

Performances
Partial factors under seismic action (performance category C1 and C2) for BERNER anchor rods and standard threaded rods

Annex C 12

²⁾ Only admissible for high corrosion resistant steel HCR, with f_{yk} / $f_{uk} \ge 0.8$ and $A_5 > 12$ % (e.g. BERNER anchor rods)

Table C13.1: Characteristic values for combined pull-out and concrete failure for BERNER anchor rods and standard threaded rods in hammer drilled holes under seismic action performance category C1

Anchor r	od / standard thread	M10	M12	M16	M20	M24	M27	M30		
Characte	Characteristic bond resistance, combined pullout and concrete cone failure									
Hammer-	Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete)									
Tem- perature range	I: 50 °C / 80 °C	τ _{Rk,C1}	[N/mm ²]	4,5	5,5	5,5	5,5	4,5	4,0	4,0
	II: 72 °C / 120 °C			4,0	4,5	4,5	4,5	4,0	3,5	3,5
Hammer-	drilling with standar	rd drill b	oit or holl	ow drill b	it (water	filled hol	e ¹⁾)			
Tem-	I: 50 °C / 80 °C		[N1/21	_2)	5,0	5,0	4,5	4,0	3,5	3,5
perature range	II: 72 °C / 120 °C	τ _{Rk,C1}	[N/mm ²]	_2)	4,0	4,0	4,0	3,5	3,0	3,0
Installati	Installation factors									
Dry or wet concrete		r 1	1,0							
Water filled hole		γinst	[-]	_2)			1,2	2 ¹⁾		

¹⁾ Only with coaxial cartridges: 380ml, 400 ml, 410 ml

BERNER multicompound	system	MCS	Uni Plu	S
----------------------	--------	-----	---------	---

Performances

Characteristic values for combined pull-out and concrete failure under seismic action (performance category C1) for BERNER anchor rods and standard threaded rods

Annex C 13

²⁾ No performance assessed

Table C14.1: Characteristic values for combined pull-out and concrete failure for BERNER anchor rods and standard threaded rods in hammer drilled holes under seismic action performance category C2

			•	.						
Anchor rod / standard threaded rod M12 M16 M20										
Characteristic bond resistance, combined pullout and concrete cone failure										
Hammer-drilling with standard drill bit or hollow drill bit (dry or wet concrete)										
Tem- I: 50 °C / 80 °C	_	[N]/mmm2]	1,5	1,3	2,1					
range II: 72 °C / 120 °C	τ _{Rk,C2}	[N/mm ²]	1,3	1,2	1,9					
Hammer-drilling with standard drill bit or hollow drill bit (water filled hole 3)										
Tem- I: 50 °C / 80 °C	_	[N/mm²]	1,3	1,1	1,8					
perature II: 72 °C / 120 °C	τ _{Rk,C2}		1,1	1,0	1,6					
Installation factors										
Dry or wet concrete		[-]	1,0							
Water filled hole	γinst		_4)	1,2 ³⁾						
Displacement-Factors for tens	sion load	d ¹⁾								
δ N,C2 (DLS)-Factor	[mm//	N/mm²)]	0,20	0,13	0,21					
$\delta_{N,C2}$ (ULS)-Factor		N/111111-)]	0,38	0,18	0,24					
Displacement-Factors for she	ar load²)								
δv,C2 (DLS)-Factor	[mn	n/kN]	0,18	0,10	0,07					
δ V,C2 (ULS)-Factor	[11111	II/KIN]	0,25	0,14	0,11					

1) Calculation of effective displacement:

 $\delta_{\text{N,C2 (DLS)}} = \delta_{\text{N,C2 (DLS)-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta \text{N,C2 (ULS)} = \delta \text{N,C2 (ULS)-Factor}$. τEd

 $(\tau_{Ed}$: Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{\text{V,C2 (DLS)}} = \delta_{\text{V,C2 (DLS)-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{\text{V,C2 (ULS)}} = \delta_{\text{V,C2 (ULS)-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

BERNER multicompound system MCS Uni Plus

Performances

Characteristic values for combined pull-out and concrete failure under seismic action (performance category C2) for BERNER anchor rods and standard threaded rods

Annex C 14

³⁾ Only with coaxial cartridges: 380ml, 400 ml, 410 ml

⁴⁾ No performance assessed