

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-11/0192 of 22 January 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	EJOT H1 eco and EJOT H4 eco
Product family to which the construction product belongs	Nailed-in plastic anchor for fixing of external thermal insulation composite systems with rendering in concrete and masonry
Manufacturer	EJOT Baubefestigungen GmbH In der Stockwiese 35 57334 Bad Laasphe DEUTSCHLAND
Manufacturing plant	EJOT manufacturing plant 1, 2, 3, 4
This European Technical Assessment contains	18 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330196-01-0604
This version replaces	ETA-11/0192 issued on 5 January 2018

European Technical Assessment ETA-11/0192 English translation prepared by DIBt

Page 2 of 18 | 22 January 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 18 | 22 January 2020

Specific Part

1 Technical description of the product

The nailed-in anchors EJOT H1 eco and EJOT H4 eco consist of an anchor sleeve with an enlarged shaft, spreading zone subsequently, an insulation plate made of virgin polyethylene, a mounting plug made of polyamide and accompanying specific nail of galvanised steel. For the anchor length of 95 mm (only H1 eco) and for the anchor length of 115 – 135 mm (only H4 eco) the accompanying specific nail of galvanised steel may have an overmoulding of polyamide. The serrated expanding part of the anchor sleeve is slotted.

The anchor may in addition be combined with the anchor plates SBL 140 plus and VT 90.

An illustration and the description of the product are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verification and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety and accessibility in use (BWR 4)

Essential characteristic	Performance
Characteristic tension resistance	See Annex C 1
Edge distances and spacing	See Annex B 2
Plate stiffness	See Annex C 2, C 3
Displacements	See Annex C 2, C 3

3.2 Energy economy and heat retention (BWR 6)

Essential characteristic	Performance
Point thermal transmittance	See Annex C 2, C 3

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330196-01-0604, the applicable European legal act is: [97/463/EC].

The system to be applied is: 2+

European Technical Assessment ETA-11/0192

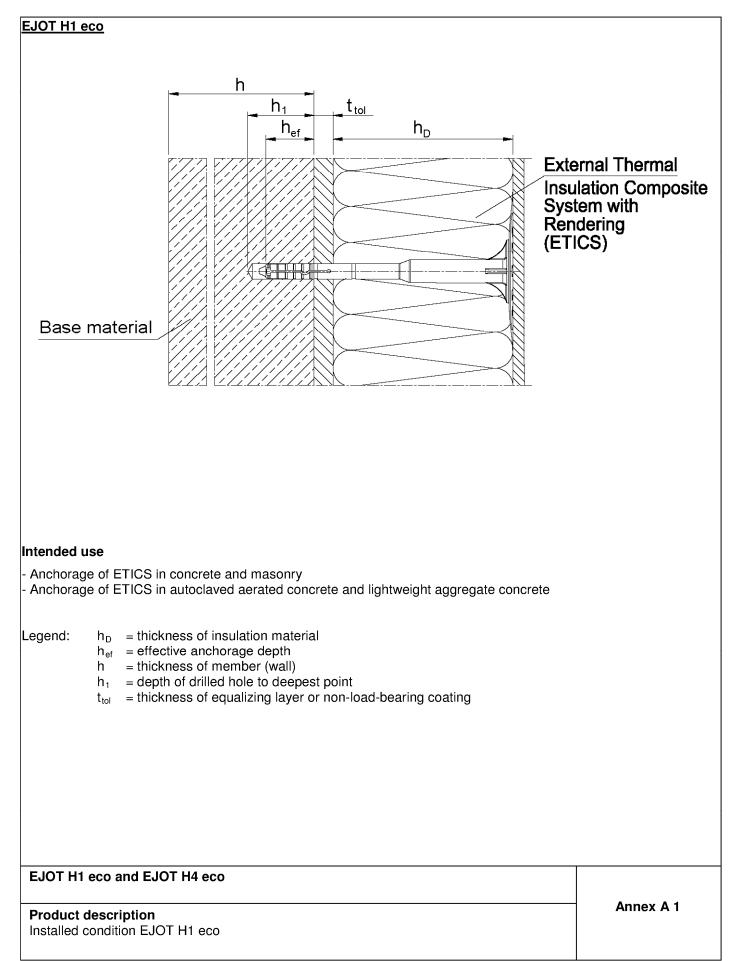
Page 4 of 18 | 22 January 2020

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

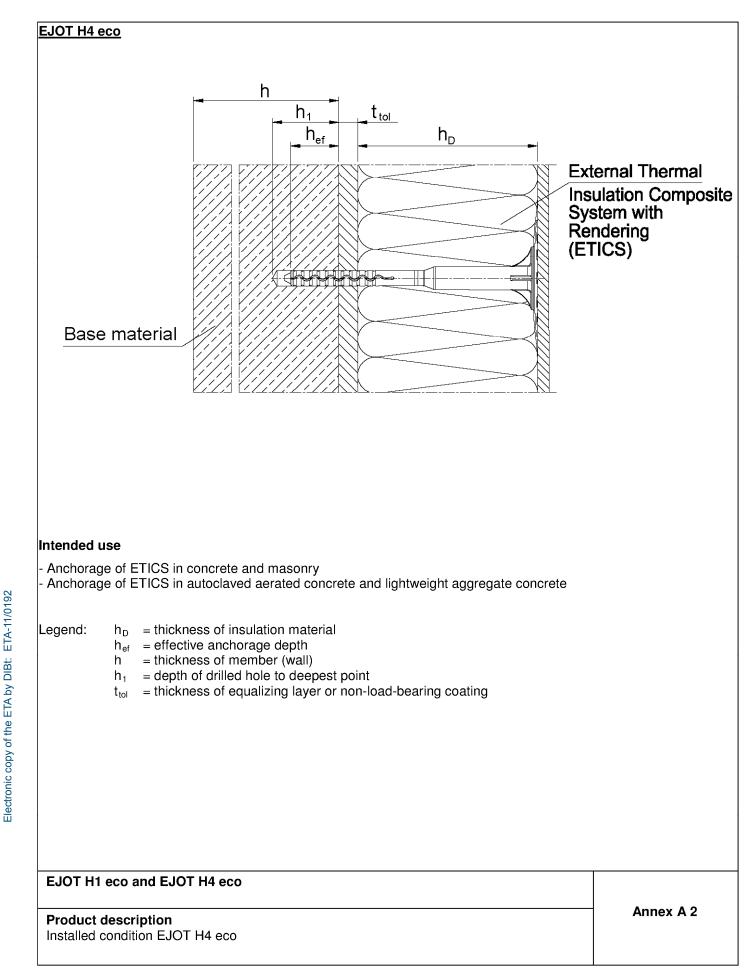
Issued in Berlin on 22 January 2020 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Ziegler

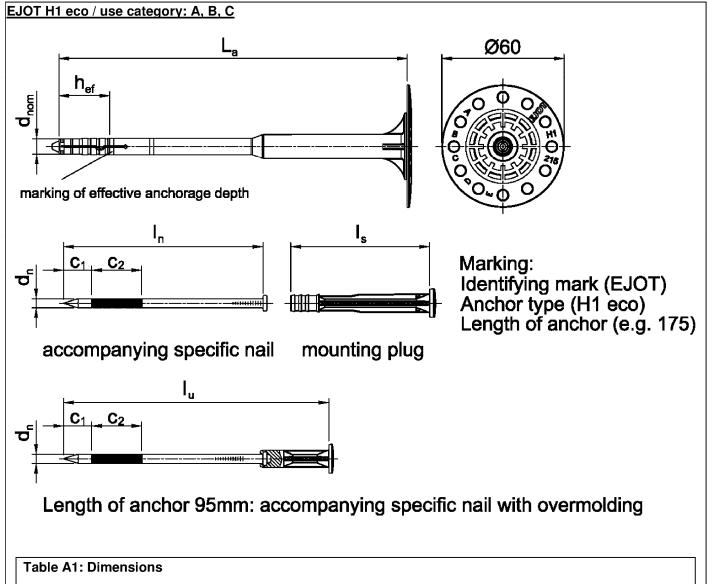
Page 5 of European Technical Assessment ETA-11/0192 of 22 January 2020

English translation prepared by DIBt



Page 6 of European Technical Assessment ETA-11/0192 of 22 January 2020

English translation prepared by DIBt



Page 7 of European Technical Assessment ETA-11/0192 of 22 January 2020

English translation prepared by DIBt

				1					
Anchor		Anchor Mounting Sleeve Plug			Specific nail				
Туре	d _{nom}	h _{ef}	min L _a max L _a	min L _s max L _s	dn	C ₁	C2	min I _n max I _n	l _u
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
EJOT H1 eco	8	25	95 295	32 110	4,5	14	25	60 180	90

175; $t_{tol} = 10$)

Determination of maximum thickness of insulation h_D [mm] for EJOT H1 eco:

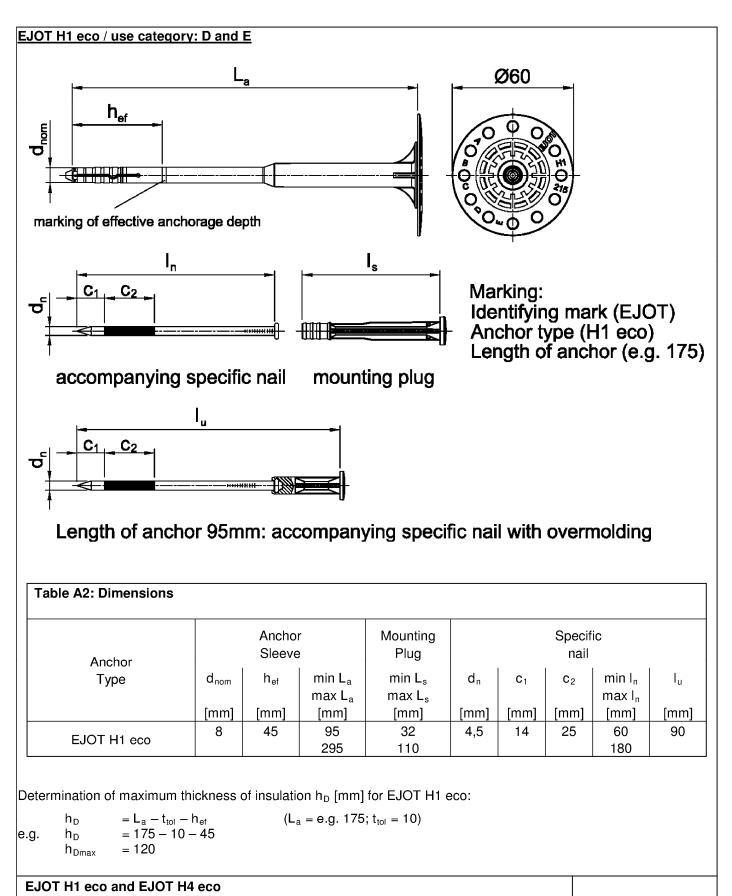
e.G.

$$\begin{array}{ll} h_{D} & = L_{a} - t_{tol} - h_{ef} & (L_{a} = e.g. \\ h_{D} & = 175 - 10 - 25 \\ h_{Dmax} & = 140 \end{array}$$

.

EJOT H1 eco and EJOT H4 eco

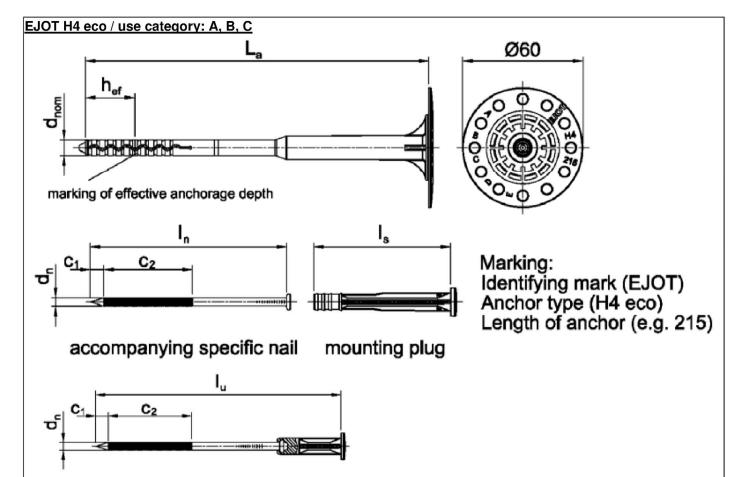
. .


Product description

Marking and dimension of the anchor sleeve EJOT H1 eco; use category: A, B, C Expansion element

Page 8 of European Technical Assessment ETA-11/0192 of 22 January 2020

English translation prepared by DIBt



Product description

Marking and dimension of the anchor sleeve EJOT H1 eco; use category: D and E Expansion element

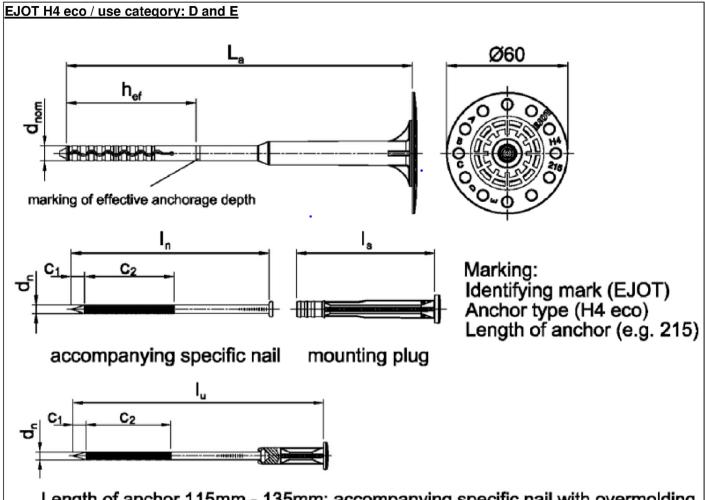
Length of anchor 115mm - 135mm: accompanying specific nail with overmolding

Anchor	Anchor sleeve		Mounting Specific plug / nail overmoulding						
type	d _{nom}	h _{ef}	min L _a max L _a	min L _s max L _s	d _n	C ₁	C ₂	min I _n max I _n	l _u
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
EJOT H4 eco	8	25	155 355	72 110	4,3	7	45	80 244	-
EJOT H4 eco	8	25	115 135	32	4,3	7	45	-	110 130

Determination of maximum thickness of insulation hp [mm] for EJOT H4 eco:

 h_D e.g. h_{D} h_{Dmax} = 180

 $\begin{array}{l} = L_a - t_{tol} - h_{ef} \\ = 215 - 10 - 45 \end{array}$


 $(L_a = e.g. 215; t_{tol} = 10)$

EJOT H1 eco and EJOT H4 eco

Product description

Marking and dimension of the anchor sleeve EJOT H4 eco, use category: A, B, C Expansion element

Length of anchor 115mm - 135mm: accompanying specific nail with overmolding

Table A4: Dime	Anchor sleeve			Mounting Specific plug / nail					
Anchor type	d _{nom}	h _{ef}	min L _a max L _a	overmoulding min L _s max L _s	dn	C ₁	C ₂	min I _n max I _n	l _u
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
EJOT H4 eco	8	65	155 355	72 110	4,3	7	45	80 244	-
EJOT H4 eco	8	65	115 135	32	4,3	7	45	-	110 130

Determination of maximum thickness of insulation h_D [mm] for EJOT H4 eco:

 h_D h_D e.g.

 $= L_a - t_{tol} - h_{ef}$ = 215 - 10 - 65 = 140 h_{Dmax}

 $(L_a = e.g. 215; t_{tol} = 10)$

EJOT H1 eco and EJOT H4 eco

Product description

Marking and dimension of the anchor sleeve EJOT H4 eco, use category: D and E Expansion element

Page 11 of European Technical Assessment ETA-11/0192 of 22 January 2020

English translation prepared by DIBt

Table A5: Materials		
Name	Materials	
Anchor sleeve	virgin Polyethylene PE-HD colours: yellow, orange, red, blue, grey, na	iture, green
Mounting plug	Polyamide, PA GF 50	
Specific nail	Steel, electro galvanized ≥ 5 µm according passivated, f _{yk} ≥ 670 N/mm²	to EN ISO 4042:2018, blue
BL 140 plus		d_d [mm] 20,0 d [mm] 2,0 Material 1) 2)
т 90		$\begin{tabular}{ c c c c } \hline VT & 90 \\ \hline colour & nature \\ \hline d_d & [mm] & 17,5 \\ \hline d & [mm] & 1,2 \\ \hline Material & {}^{(1) 2)} \\ \hline \end{tabular}$
		¹⁾ Polyamide, PA 6 ²⁾ Polyamide, PA GF 50
EJOT H1 eco and EJOT	Н4 есо	
Product description Materials of EJOT H1 ecc Slip on plates with EJOT		Annex A 7

Page 12 of European Technical Assessment ETA-11/0192 of 22 January 2020

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

• The anchor may only be used for transmission of wind suction loads and shall not be used for the transmission of dead loads of the thermal insulation composite system.

Base materials:

- Normal weight concrete (use category A) according to Annex C 1
- Solid masonry (use category B), according to Annex C 1
- Hollow or perforated masonry (use category C), according to Annex C 1
- · Lightweight aggregate concrete (use category D), according to Annex C 1
- Autoclaved aerated concrete (use category E), according to Annex C 1
- For other base materials of the use categories A, B, C, D or E the characteristic resistance of the anchor may be determined by job site tests according to EOTA Technical Report TR 051 edition December 2016.

Temperature Range:

• 0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)

Design:

- The anchorages are designed under the responsibility of an engineer experienced in anchorages and masonry work with the partial safety factors $\gamma_M = 2,0$ and $\gamma_F = 1,5$, if there are no other national regulations.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Fasteners are only to be used for multiple fixings of thermal insulation composite systems.

Installation:

- Hole drilling by the drill modes according to Annex C 1
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Installation temperature from 0°C to +40°C
- Exposure to UV due to solar radiation of the anchor not protected by rendering \leq 6 weeks

EJOT H1 eco und EJOT H4 eco

Intended use Specifications Annex B 1

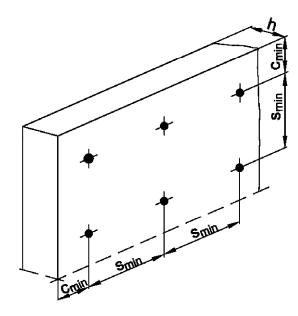


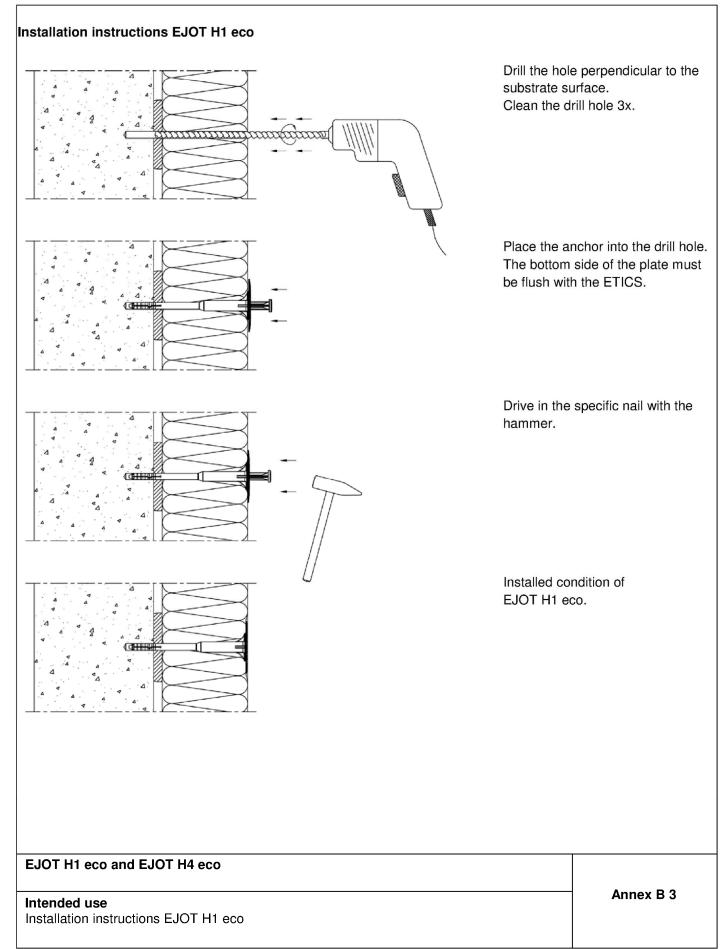
Table B1: Installation parameters								
Anchor type	EJOT	H1 eco	EJOT H4 eco					
		ABC	D and E	ABC	D and E			
Drill hole diameter	d ₀ [mm] =	8	8	8	8			
Cutting diameter of drill bit	d _{cut} [mm] ≤	8,45	8,45	8,45	8,45			
Depth of drilles hole to deepest point	h₁ [mm] ≥	35	55	35	75			
Effective anchorage depth	h _{ef} [mm] ≥	25	45	25	65			

Table B2: Anchor distances and dimensions of members

Anchor type		EJOT H1 eco / EJOT H4 eco
Minimum allowable spacing	$s_{min} \geq [mm]$	100
Minimum allowable edge distance	$c_{min} \geq [mm]$	100
Minimum thickness of member	h ≥ [mm]	100

Scheme of distance and spacing

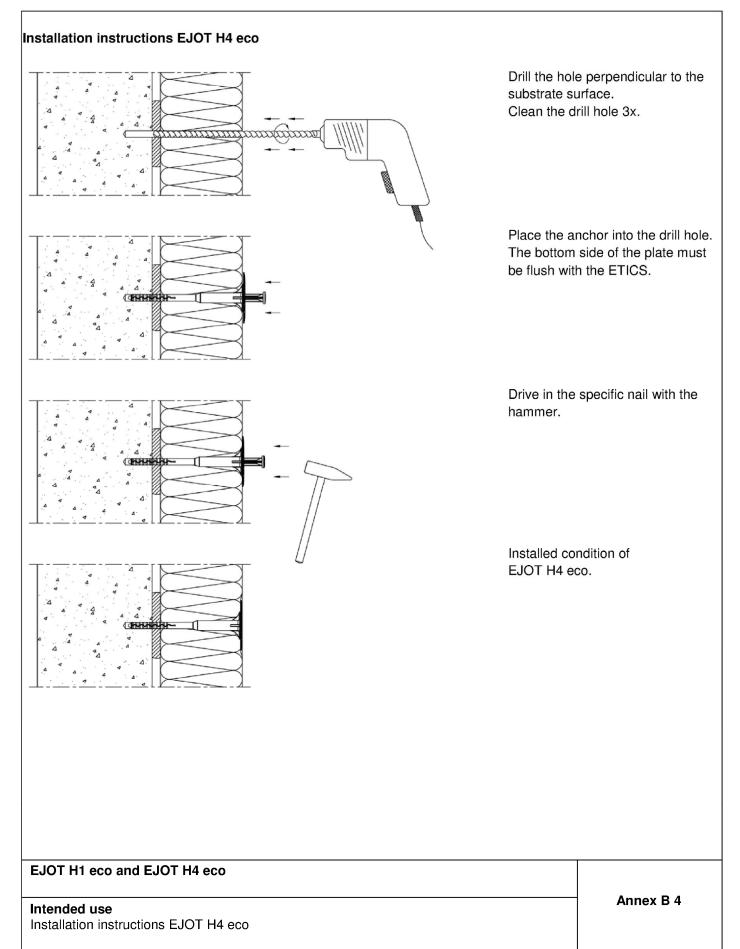
EJOT H1 eco and EJOT H4 eco


Intended use

Installations parameters, Edge distances and spacing Annex B 2

Page 14 of European Technical Assessment ETA-11/0192 of 22 January 2020

English translation prepared by DIBt



Electronic copy of the ETA by DIBt: ETA-11/0192

Page 15 of European Technical Assessment ETA-11/0192 of 22 January 2020

English translation prepared by DIBt

Anchor type					EJOT H1 eco	EJOT H4 eco
Base materials	Bulk density ρ	minimum compressive strength f _b	General remarks	Drill method	N _{Rk}	N _{Rk}
	[kg/dm ³]	[N/mm ²]			[kN]	[kN]
Concrete C12/15 EN 206-1:2000				hammer	0,90	0,50
Concrete C25/25 – C50/60 EN 206-1:2000				hammer	0,90	0,75
Clay bricks, Mz e.g. according to EN 771-1:2011	≥ 1,8	12	Vertically perforation up to 15 %	hammer	0,90	0,75
Sand-lime solid bricks, KS e.g. according to EN 771-2:2011	≥ 1,8	12	Vertically perforation up to 15 %	hammer	0,90	0,75
Vertically perforated clay bricks, HLz e.g. according to EN 771-1:2011	≥ 1,2	20	Vertically perforation more than 15 % and less than 50 %	rotary	0,75 ¹⁾	-
Vertically perforated clay bricks, HIz e.g. according to EN 771-1:2011	≥ 0,9	12	Vertically perforation more than 15 % and less than 50 %	rotary	0,60 ²⁾	0,50 ²⁾
Sand-lime perforated bricks, KSL e.g. according to EN 771-2:2011	≥ 1,4	12	Vertically perforation more than 15 % and less than 50 %	rotary	0,9 ³⁾	0,75 ³⁾
Lightweight aggregate concrete, LAC 4 – LAC 25 e.g. according to EN 1520:2011 / EN 771-3:2011	≥ 1,2	4		hammer	0,9	1,2
Autoclaved aerated concrete, AAC 4 – AAC 7 e.g. according to EN 771-4:2011	≥ 0 ,6	4		rotary	0,5	0,5

¹⁾ The value applies only for outer web thickness \geq 14 mm; otherwise the characteristic resistance shall be determined by job site pull-out tests.

²⁾ The value applies only for outer web thickness \geq 11 mm; otherwise the characteristic resistance shall be determined by job site pull-out tests.

³⁾ The value applies only for outer web thickness ≥ 20 mm; otherwise the characteristic resistance shall be determined by job site pull-out tests.

EJOT H1 eco and H4 eco

Performances Characteristic resistance Annex C 1

EJOT H1 eco							
Table C2: Point thermal transmittance according EOTA Technical Report TR 025:2016-05							
	insulation thickness	point thermal transmittance					
anchor type	h _D [mm]	χ [W/K]					
EJOT H1 eco	60 – 260	0,001					

Table C3: Plate stiffness according EOTA Technical Report TR 026:2016-05								
anchor type	diameter of the anchor plate	load resistance oft the anchor plate	plate stiffness					
	[mm]	[kN]	[kN/mm]					
EJOT H1 eco	60	1,4	0,60					

Table C4: Displacements EJOT H1 eco					
Base materials	Bulk density ρ [kg/dm³]	Minimum Compressive strength f _b [N/mm²]	Tension load N [kN]	Displacements ^δ (N) [mm]	
Concrete C12/15 – C50/60 (EN 206-1:2000)			0,3	0,3	
Clay bricks, Mz (EN 771-1:2011)	≥ 1,8	12	0,3	0,3	
Sand-lime solid bricks, KS (EN 771-2:2011)	≥ 1,8	12	0,3	0,3	
Vertically perforated clay bricks, HLz (EN 771-1:2011)	≥ 1,2	20	0,25	0,4	
Vertically perforated clay bricks, HLz (EN 771-1:2011)	≥ 0,9	12	0,2	0,2	
Sand-lime perforated bricks, KSL (EN 771-2:2011)	≥ 1 ,4	12	0,3	0,3	
Lightweight aggregate concrete, LAC 4 – LAC 25 (EN 1520:2011 / EN 771-3:2011)	≥ 1,2	4	0,3	1,1	
Autoclaved aerated concrete, AAC 4 – AAC 7 (EN 771-4:2011)	≥0,6	4	0,17	0,7	

EJOT H1 eco and EJOT H4 eco

Performances

Point thermal transmittance, plate stiffness, displacements for EJOT H1 eco

Annex C 2

EJOT H4 eco						
Table C5: Point thermal transmittance according EOTA Technical Report TR 025:2016-05						
anchor type	insulation thickness	point thermal transmittance				
	h _D [mm]	χ [W/K]				
EJOT H4 eco	60 – 260	0,001				

Table C6: Plate stiffness according EOTA Technical Report TR 026:2016-05							
anchor type	diameter of the anchor plate	load resistance of the anchor plate	plate stiffness				
	[mm]	[kN]	[kN/mm]				
EJOT H4 eco	60	1,4	0,60				

Table C7: Displacements EJOT H4 eco						
Base materials	Bulk density p [kg/dm³]	Minimum Compressive strength f _b [N/mm²]	Tension load N [kN]	Displacements δ _(N) [kN/mm]		
Concrete C12/15 – C50/60 (EN 206-1:2000)			0,3	0,6		
Clay bricks, Mz (EN 771-1:2011)	≥ 1,8	12	0,25	0,4		
Sand-lime solid bricks, KS (EN 771-2:2011)	≥ 1,8	12	0,25	0,4		
Vertically perforated clay bricks, HLz (EN 771-1:2011)	≥ 0,9	12	0,15	0,6		
Sand-lime perforated bricks, KSL (EN 771-2:2011)	≥ 1,4	12	0,25	0,4		
Lightweight aggregate concrete, LAC 4 – LAC 25 (EN 1520:2011 / EN 771-3:2011)	≥ 1,2	4	0,4	1,3		
Autoclaved aerated concrete, AAC 4 – AAC 7 (EN 771-4:2011)	≥ 0,6	4	0,17	0,6		

EJOT H1 eco and EJOT H4 eco

Performances

Point thermal transmittance, plate stiffness, displacements for EJOT H4 eco

Annex C 3