

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-11/0374 of 22 October 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product Hilti metal expansion anchor HSA Product family Mechanical fastener for use in uncracked concrete to which the construction product belongs Manufacturer Hilti Aktiengesellschaft **Business Unit Anchors** 9494 Schaan FÜRSTENTUM LIECHTENSTEIN Manufacturing plant Hilti Werke This European Technical Assessment 18 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is EAD 330232-01-0601 Edition 12/2019 issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces ETA-11/0374 issued on 28 August 2017

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-11/0374 English translation prepared by DIBt

Page 2 of 18 | 22 October 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 18 | 22 October 2020

European Technical Assessment ETA-11/0374 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Hilti metal expansion anchor HSA is a torque-controlled expansion fastener which is placed into a drilled hole and anchored by torque-controlled expansion. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

Essential characteristicPerformanceCharacteristic resistance to tension load (static and
quasi static action) Method ASee Annex B3 and C1Characteristic resistance to shear load (static and
quasi static action)See Annex C2Displacements and DurabilitySee Annex C3 and B1Characteristic resistance and displacements for
seismic performance categories C1 and C2No performance assessed

3.1 Mechanical resistance and stability (BWR 1)

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance				
Reaction to fire	Class A1				
Resistance to fire	No performance assessed				

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-11/0374

Page 4 of 18 | 22 October 2020

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 22 October 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Lange

Table A1: Material code for identification of different materials

	HSA, HSA-BW, HSA-F	HSA-R2	HSA-R
Material code			
	Letter code without mark	Letter code with two marks	Letter code with three marks

Product description

Product marking and material code for identification of metal expansion anchor

Annex A2

Size	M6	M8	M10	M12	M16	M20		
	t _{fix, 1} /t _{fix,2} /t _{fix,3}	$t_{fix, 1}/t_{fix, 2}/t_{fix, 3}$	t _{fix,1} /t _{fix,2} /t _{fix,3}	t _{fix,1} /t _{fix,2} /t _{fix,3}	$t_{fix,1}/t_{fix,2}/t_{fix,3}$	$t_{fix,1}/t_{fix,2}/t_{fix,3}$		
	[mm]/[mm]/[mm]	[mm]/[mm]/[mm]	[mm]/[mm]/[mm]	[mm]/[mm]/[mm]	[mm]/[mm]/[mm]	[mm]/[mm]/[mn		
Z	5/-/-	5/-/-	5/-/-	5/ -/-	5/-/-	5/-/-		
У	10/-/-	10/-/-	10/-/-	10/-/-	10/-/-	10/-/-		
×	15/5/-	15/5/-	15/5/-	15/-/-	15/-/-	15/-/-		
w	20/10/-	20/10/-	20/10/-	20/5/-	20/5/-	20/-/-		
v	25/15/-	25/15/-	25/15	25/10/-	25/10/-	25/-/-		
<u>u</u>	30/20/-	30/20/-	30/20/-	30/15/-	30/15/-	30/5/-		
t	35/25/5	35/25/-	35/25/-	35/20/-	35/20/-	35/10/-		
<u>s</u>	40/30/10	40/30/-	40/30/-	40/25/-	40/25/-	40/15/-		
r	45/35/15	45/35/5	45/35/5	45/30/-	45/30/-	45/20/5		
q	50/40/20	50/40/10	50/40/10	50/35/-	50/35/-	50/25/10		
p	55/45/25	55/45/15	55/45/15	55/40/5	55/40/-	55/30/15		
<u>o</u>	60/50/30	60/50/20	60/50/20	60/45/10	60/45/5	60/35/20		
n	65/55/35	65/55/25	65/55/25	65/50/15	65/50/10	65/40/25		
m	70/60/40	70/60/30	70/60/30	70/55/20	70/55/15	70/45/30		
l	75/65/45	75/65/35	75/65/35	75/60/25	75/60/20	75/50/35		
<u>k</u>	80/70/50	80/70/40	80/70/40	80/65/30	80/65/25	80/55/40		
i	85/75/55	85/75/45	85/75/45	85/70/35	85/70/30	85/60/45		
i	90/80/60	90/80/50	90/80/50	90/75/40	90/75/35	90/65/50		
h	95/85/65	95/85/55	95/85/55	95/80/45	95/80/40	95/70/55		
g	100/90/70	100/90/60	100/90/60	100/85/50	100/85/45	100/75/60		
f	105/95/75	105/95/65	105/95/65	105/90/55	105/90/50	105/80/65		
е	110/100/80	110/100/70	110/100/70	110/95/60	110/95/55	110/85/70		
d	115/105/85	115/105/75	115/105/75	115/100/65	115/100/60	115/90/75		
<u>c</u>	120/110/90	120/110/80	120/110/80	125/110/75	120/105/65	120/95/80		
b	125/115/95	125/115/85	125/115/85	135/120/85	125/110/70	125/100/85		
а	130/120/100	130/120/90	130/120/90	145/130/95	135/120/80	130/105/90		
aa	-	_	-	155/140/105	145/130/90	-		
ab	-	-	-	165/150/115	155/140/100	-		
ac	-	-	-	175/160/125	165/150/110	-		
ad	-	-	-	180/165/130	190/175/135	-		
ae	-	-	-	230/215/180	240/225/185	-		
af	-	-	-	280/265/230	290/275/235	-		
ag	_	_	-	330/315/280	340/325/285	_		

Table A2: Letter code for identification of maximum fixture thickness¹⁾

¹⁾ Anchor length in bold is standard item. For selection of other anchor lengths, check availability of the items.

Hilti metal expansion anchor HSA

Product description

Letter code for identification of metal expansion anchor

Annex A3

Designation	Material					
HSA, HSA-BW						
Expansion sleeve	M6: Stainless steel A2 acc. to EN 10088-1:2014 M8 – M20: Carbon steel, galvanized					
Bolt	Carbon steel, galvanized, rupture elongation ($I_0 = 5d$) > 8 %					
Washer Carbon steel, galvanized						
Hexagon nut	Carbon steel, galvanized					
HSA-F						
Expansion sleeve	Stainless steel A2 acc. to EN 10088-1:2014					
Bolt	Hot-dip galvanized, rupture elongation ($I_0 = 5d$) > 8%					
Washer	Hot-dip galvanized					
Hexagon nut	Hot-dip galvanized					
HSA-R2 (stainless Corrosion resistanc	steel) e class II acc. to EN 1993-1-4:2006+A1:2015					
Expansion sleeve	Stainless steel A2 acc. to EN 10088-1:2014					
Bolt	Stainless steel acc. to EN 10088-1:2014, coated, rupture elongation ($I_0 = 5d$) > 8%					
Washer	Stainless steel A2					
Hexagon nut	Stainless steel A2, coated					
HSA-R (stainless s	steel)					
Corrosion resistanc	e class III acc. to EN 1993-1-4:2006+A1:2015					
Expansion sleeve	Stainless steel A2 acc. to EN 10088-1:2014					
Bolt	Stainless steel acc. to EN 10088-1:2014, coated, rupture elongation ($I_0 = 5d$) > 8%					
Washer	Stainless steel A4					

Hilti metal expansion anchor HSA

Product description Materials Annex A4

Table A4:Dimensions of Hilti metal expansion anchor HSA, HSA-BW, HSA-F, HSA-
R2 and HSA-R

Size			M6	M8	M10	M12	M16	M20
Min. inner diameter of washer	d₁	[mm]	6,4	8,4	10,5	13	17	21
Min. outer diameter of washer	dw	[mm]	12	16	20	24	30	37
Min. thickness of washer	h	[mm]	1,6	1,6	2	2,5	3	3

Figure A1: Hilti metal expansion anchor HSA, HSA-F, HSA-R2, HSA-R

Figure A2: Hilti metal expansion anchor HSA-BW

 Hilti metal expansion anchor HSA

 Product description

 Dimensions

Specifications of intended use

Anchorages subject to:

· Static and quasi static loading.

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016.
- Non-cracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according EN 1993-1-4:2006+A1:2015-06 corresponding to corrosion resistance classes Annex A, Table A3 (stainless steel).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the metal expansion anchor is indicated on the design drawings (e. g. position of the metal expansion anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi static loading are designed in accordance with: EN 1992-4:2018 and EOTA Technical Report TR 055.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The metal expansion anchor may only be set once.

Hilti metal expansion anchor HSA

Intended use Specifications

Size	M6	M8	M10	M12	M16	M20	
Hammer drilling (HD)			v	(
Hammer drilling with Hilti hollow drill bit TE-CD/YD … drilling system (HDB)		-	-	-		\checkmark	
Diamond coring (DD) with DD 30-W coring tool and C+ … SPX-T (abrasive) core bits	-	-			/		
Manual cleaning (MC): Hilti hand pump for blowing out drill holes	i.				-		

Machine setting (impact screwdriver with setting	\checkmark	-

Table B4: Methods for application of torque moment

Size			M6	M8	M10	M12	M16	M20		
Torque wrench			v	(
Setting tool S-TB HSAw	ith		-		v	(-		
impact screwdriver Hilti SIW 1)				14-A /	14-A / 22-A / 6AT-A22 22T-A					
Sotting around	HSA, HSA-BW, HS	-		I	Ш	_2)				
Setting speed	HSA-R2, HSA-R		-		-					
Setting time	t _{set}	[sec.]	-	4				-		
Hilti SIW 6AT-A22 impact screwdriver with SI-AT-A22 module	HSA, HSA-BW 💻 HSA-R2, HSA-R		-		v	(-		

¹⁾ see Table B5 for battery state of charge depending on the ambient temperature.
 ²⁾ Impact screwdriver operates with fixed speed.

Table B5: Battery state of charge of impact screwdriver

Ambient temperature		≤ +5 °C	+5 to +10 °C	≥ +10 °C
	low	-	-	-
Battery state of charge	middle	-	-	\checkmark
	high	-	\checkmark	\checkmark

Hilti metal expansion anchor HSA

Intended use Installation methods

English translation	prepared by DIBt
---------------------	------------------

Deutsches Institut für Bautechnik

Size				M6			M 8			M10		M12				M16			M20	I.											
Nominal diameter of drill bit	d₀	[mm]		6			8		10		12			16			20														
Max. cutting diameter of drill bit	d _{cut}	[mm]		6,4			8,45		8,45		10,45		5	12,5		16,5			20,55												
Diameter of clearance hole in the fixture	d _f	[mm]		7			9			12			14			18		22													
Width across flats	SW	[mm]		10			13			17			19			24			30												
Setting position			€	2	6	Э	2	6	€	2	6	€	2	3	€	2	6	(\mathbf{f})	୭	3											
Min. thickness of concrete member	h _{min}	[mm]	10	00	120	1(00	120	100	120	160	100	140	180	140	160	180	160	22	20											
Nominal anchorage depth	h _{nom}	[mm]	37	47	67	39	49	79	50	60	90	64	79	114	77	92	132	90	115	13(
Effective anchorage depth	h _{ef}	[mm]	30	40	60	30	40	70	40	50	80	50	65	100	65	80	120	75	100	11:											
Min. drill hole depth (HD, HDB)	h₁	[mm]	42	52	72	44	54	84	55	65	95	72	87	122	85	100	140	98	123	138											
Min. drill hole depth (DD)	h₁	[mm]		-		-			58	68	98	72	87	122	85	100	140	98	123	138											
Standard installation	torq	ue mo	mei	nt																											
Installation torque moment	Tinst	[Nm]		5			15 ¹⁾²	!)		25 ¹⁾²)	Ę	50 ¹⁾²)	8	30 ¹⁾²)		200												
Min. spacing	Smin	[mm]		35			35		50				70			90		195	17	75											
Min. edge distance	Cmin	[mm]		35		40	3	5	50	4	0	70	65	55	80	75	70	130	12	20											
Max. installation torq	lue m	omen	t																												
Max. installation torque moment	T _{max}	[Nm]		-			20		20		20		20		20		20		20		20		35			80		150		250	
Min. spacing	Smin	[mm]		-			35			40			50		80			120													
Min. edge distance	Cmin	[mm]		-			100			150			190		200				225												

¹⁾ Alternatively, the metal expansion anchor can be tightened with an impact screwdriver in combination with a setting tool with the required setting time (see Annex B2).

²⁾ Alternatively, the metal expansion anchor can be tightened with an impact screwdriver in combination with module (see Annex B2).

Hilti metal expansion anchor HSA

Intended use Installation parameters

Hilti metal expansion anchor HSA

Intended use Installation parameters

Deutsches Institut für Bautechnik

English translation prepared by DIBt

Table B7: Checking setting position

Setting position	Pre-setting	Through setting			
1	h _{nom,1} is reached when the non-threaded part of the bolt is completely below the concrete surface. For metal expansion anchor HSA with letter code "aa" to "ag" (see Table A2)	$h_{nom,1}$, $h_{nom,2}$ or $h_{nom,3}$ is reached when the present thickness of the fixture t_{fix} and the maximum thickness of the fixture $t_{fix,1}/t_{fix,2}/t_{fix,3}$ given by the metal expansion anchor HSA (see Table A2) is identical.			
	h _{nom,1} has to be measured and marked by the installer.	If the present thickness of the fixture t _{fix} is smaller than the maximum thickness of the			
2	h _{nom,2} is reached when the blue ring is completely below the concrete surface.	fixture t _{fix,1} /t _{fix,2} /t _{fix,3} given by the metal expansion anchor HSA			
3	h _{nom,3} has to be measured and marked by the installer.	 position of washer and hexagon nut has to be adjusted or drill hole depth h₁ has to be increased. 			

Hilti metal expansion anchor HSA

Intended use Installation parameters

Hole drilling and cleaning (s	see Table B1 and Table B2)		
a) Hammer drilling (HD) with manual cleaning (MC)	 b) Hammer drilling with Hilti hollow drill bit (HDB) with automatic cleaning (AC) 		nd coring (DD) with I cleaning (MC)
h, (Tab. B6)		h, (Tab. B6) d ₀ C+ SPX-T (abrasive)	90° DD 30-W
Anchor setting (see Table B	3)		
a) Hammer setting	b) Machine setting (impact screwdriver with s	etting tool)	
Check setting (see also Tabl	e B7)		
Anchor torqueing (see Table			
a) Torque wrench	b) Impact screwdriver with setting tool	c) Impact	screwdriver with modu
			SIW 6AT-A22+ SI-AT-A22
Check installation			
Iti metal expansion anch	or HSA		
tended use stallation instructions			Annex B6

Size				M6			M8			M10			M12			M16			M20		
Setting position			1	2	3	1	2	6	1	2	3	1	2	3	1	2	3	Э	2	3	
Effective anchorage depth	h _{ef}	[mm]		40	60	30 ¹⁾		70	40	50	80	50	65	100	65	80	120	75	100		
Steel failure						•		1				•									
Partial safety factor	γms ²⁾	[-]		1,4																	
HSA, HSA-BW	I																				
Characteristic resistance	N _{Rk,s}	[kN]		9,0			16,5			28,0			41,4			82,6			124		
HSA-F																					
Characteristic resistance	N _{Rk,s}	[kN]		9,5			15,9			27,0			40,4			80,1			3)		
HSA-R2, HSA-	R								-												
Characteristic resistance	N _{Rk,s}	[kN]	12,2			18,3			35,6			44,6		90,5		97,6					
Pullout failure																					
Installation safety factor	γinst	[-]		1,0																	
Characteristic resistance	N _{Rk,p}	[kN]	6	7,5	9	8,1	12,4	16	12,4	17,4	25	17,4	25,8	35	25,8	35,2	50	32	49,2	60,	
	C20/25	[-]									1,	00									
Increasing	C30/37	[-]									1,	22									
factor ψ_c	C40/50	[-]									1,	41									
	C50/60	[-]	1,55																		
Concrete cone	e and spli	itting f	ailur	е																	
Installation safety factor	γinst	[-]									1	,0									
Factor for non-cracked concrete	k _{ucr,N}	[-]									11	١,0									
Factor for cracked concrete	k _{cr,N}	[-]									3	3)									
Creating	Scr,N	[mm]									3.	h _{ef}									
Spacing	Scr,sp	[mm]	100	120	130	130	180	200	190	210	290	200	250	310	230	280	380	260	370	40	
	C _{cr,N}	[mm]									1,5	∙ h _{ef}									
Edge distance	C _{cr,sp}	[mm]	50	60	65	65	90	100	95	105	145	100	125	155	115	140	190	130	185	20	
Characteristic	N ⁰ Rk,sp	[kN]	6	7,5	9	81	12,4	16	12.4	17,4	25	17 4	25.8	35	25,8	35.2	50	32	49,2	60	

¹⁾ Use is restricted to anchoring of statically indeterminate structural components and dry internal conditions.

²⁾ In absence of other national regulations.

³⁾ No performance assessed.

Hilti metal expansion anchor HSA

Performance

Characteristic resistance under tension load in non-cracked concrete

Annex C1

Size				M6			M8			M10		M12			M16			M20		
Setting position			1	2	3	1	2	3	1	2	3	Э	2	3	1	2	3	1	2	3
Effective anchorage depth	h _{ef}	[mm]	30 ¹⁾		60	30 ¹⁾		70	40	50	80	50	65	100	65	80	120	75	100	115
Steel failure wi	ithout le	ver ar	m																	
Partial safety factor	$\gamma Ms^{2)}$	[-]		1,25																
Ductility factor	k 7	[-]		1,0																
HSA, HSA-BW																				
Characteristic resistance	$V^0_{Rk,s}$	[kN]	6,5			10,6			18,9		29,5			51,0			85,8			
HSA-F																				
Characteristic resistance	V ⁰ Rk,s	[kN]	6,5			10,6			18,9		29,5			51,0			3)			
HSA-R2, HSA-I	R																			
Characteristic resistance	V ⁰ Rk,s	[kN]	7,2			12,3			22,6		29,3		56,5			91,9				
Steel failure wi	ith lever	arm																		
Partial safety factor	γms ²⁾	[-]	1,25																	
Ductility factor	k 7	[-]									1	,0								
HSA, HSA-BW																				
Characteristic resistance	M ⁰ Rk,s	[Nm]	9,9			21,7			48,6			91,7			216			454		
HSA-F																				
Characteristic resistance	M ⁰ Rk,s	[Nm]		9,9		21,7			48,6			91,7			216			3)		
HSA-R2, HSA-I	R																			
Characteristic resistance	M ⁰ Rk,s	[Nm]		9,9		21,0			48,6		76,0		200			406				
Concrete pry-c	out failu	re																		
Installation safety factor	γinst	[-]	1,0																	
Pry-out factor	k ₈	[-]		1	2	1	1,5	2		2,4			2			2,9		2	3	,5
Concrete edge	failure																			
Installation safety factor	γinst	[-]								1		,0								
Effective length of anchor	l _f	[mm]	30	40	60	30	40	70	40	50	80	50	65	100	65	80	120	75	100	11
Effective outside diameter of anchor	e d _{nom}	[mm]		6			8			10			12			16		20		

¹⁾ Use is restricted to anchoring of statically indeterminate structural components and dry internal conditions.

²⁾ In absence of other national regulations.

³⁾ No performance assessed.

Hilti metal expansion anchor HSA

Performance

Characteristic resistance under shear load in non-cracked concrete

Annex C2

Size		M6			M8			M10			M12			M16			M20			
Setting position			1	2	3	€	2	3	(\mathbf{f})	2	3	Э	2	3	€	2	3	Э	2	3
Effective anchorage depth	h _{ef}	[mm]	30	40	60	30	40	70	40	50	80	50	65	100	65	80	120	75	100	115
Displacements	s under	tensior	loa	ds																
Tension force	N	[kN]	2,9	3,6	4,3	4,0	6,1	7,6	6,1	8,5	11,9	8,5	12,6	16,7	12,6	17,2	23,8	16,6	25,1	30,8
Corresponding	δνο	[mm]	0,2	0,6	1,0	0,2	1,2	1,8	0,4	1,1	2,0	0,3	1,4	2,3	0,4	1,3	2,1	0,1	0,8	1,9
displacement	δn∞	[mm]	0,6	1,0	1,4	0,6	1,6	2,2	0,8	1,5	2,4	0,7	1,8	2,7	0,8	1,7	2,5	0,5	1,2	2,3
Displacements	s under	shear l	oads																	
Shear force	V	[kN]		3,7		6,1			10,8		16,7		29,1			49,0				
Corresponding displacement	δvo	[mm]		1,6		1,9			2,0		2,1			2,2			2,3			
	δv∞	[mm]		2,4		2,9		3,0		3,2			3,3			3,5				

Hilti metal expansion anchor HSA

Performance Displacement under tension and shear loads in non-cracked concrete

Annex C3