

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-11/0288 vom 30. November 2020

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

PFEIFER-DB-Anker

Einbetonierter Anker mit Innengewindehülse

Pfeifer Seil- und Hebetechnik GmbH Dr.-Karl-Lenz-Str. 66 87700 Memmingen

Pfeifer Seil- und Hebetechnik GmbH Dr.-Karl-Lenz-Str. 66 87700 Memmingen

26 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330012-01-0601, Edition 07/2019

ETA-11/0288 vom 27. Juli 2017

Europäische Technische Bewertung ETA-11/0288

Seite 2 von 26 | 30. November 2020

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-11/0288

Seite 3 von 26 | 30. November 2020

Besonderer Teil

1 Technische Beschreibung des Produkts

Der PFEIFER-DB-Anker in den Größen 12, 16, 20, 24 und 30 ist ein Anker bestehend aus einer Rohrhülse mit Innengewinde, die auf einen gerippten Betonstabstahl aufgepresst ist. Der Betonstabstahl ist gewellt (PFEIFER-DB-Wellenanker) oder gerade mit einem aufgestauchten Kopf (PFEIFER-DB-Fußanker). Der Anker wird bündig oder vertieft einbetoniert. Die Verankerung erfolgt durch Verbund des gewellten Betonstabstahls oder durch mechanischen Formschluss am Kopf.

In Anhang A ist die Produktbeschreibung dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Anker entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Ankers von 50 Jahren. Die Angaben zur Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich ein Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Werte für Zuglasten unter statischen und quasi-statischen Einwirkungen	siehe Anhang B3, B4, C1 und C2
Charakteristische Werte für Querlasten unter statischen und quasi-statischen Einwirkungen	siehe Anhang C3 bis C6
Charakteristische Werte für die seismischen Leistungskategorien C1 und C2	siehe Anhang C7 bis C10

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung		
Brandverhalten	Klasse A1		
Feuerwiderstand	keine Leistung bewertet		

Europäische Technische Bewertung ETA-11/0288

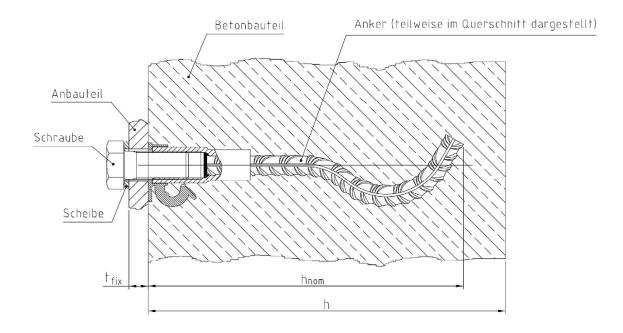
Seite 4 von 26 | 30. November 2020

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

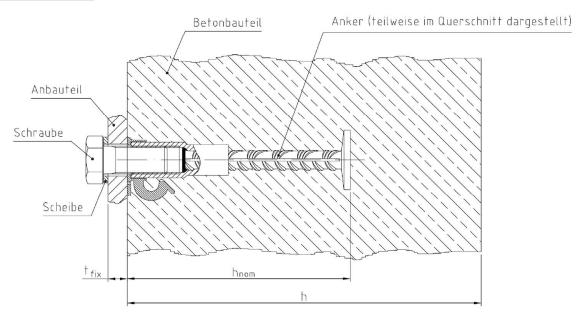
Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330012-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument


Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

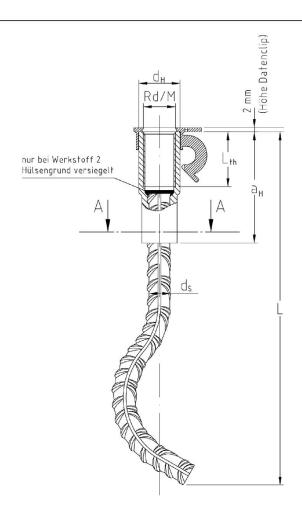
Ausgestellt in Berlin am 30. November 2020 vom Deutschen Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt

PFEIFER-DB-Wellenanker

PFEIFER-DB-Fußanker

h = Dicke des Betonbauteils t_{fix} = Dicke des Anbauteils


 h_{nom} = Einbindetiefe

PFEIFER-DB-Anker

Produktbeschreibung Einbauzustand

Anhang A1

Bei den DB-Wellenankern wird zwischen zwei Werkstoffvarianten unterschieden:

Werkstoff 1: Hülse galvanisch verzinkt (Schichtdicke ≥ 5 µm) oder

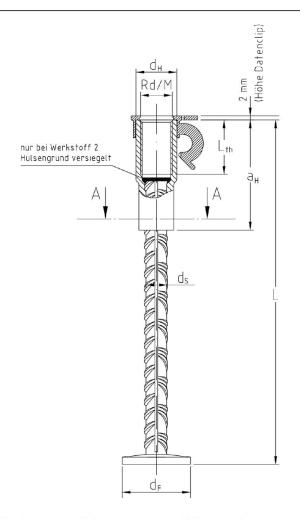

Werkstoff 2: Hülse aus nichtrostendem Stahl (1.4571)

Tabelle A1: Abmessungen PFEIFER-DB-Wellenanker

dн		ан	L _{th}	ds	L			
Wellenanker	nker Werkstoff 1 Werkstoff 2			Werkstoff 1 und Werkstoff 2				
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]		
Rd/M12	15,0 14,8		42,0	22	8	108		
Rd/M16	21,0	21,6	56,5	27	12	172		
Rd/M20	27,2	27,2 27,2	72,0	35	16	192		
Rd/M24	31,0 31,0		82,0	43	16	250		
Rd/M30	39,5	39,5	109,5	56	20	300		

PFEIFER-DB-Anker	
Produktbeschreibung Abmessungen DB-Wellenanker	Anhang A2

Bei den DB-Fußankern wird zwischen zwei Werkstoffvarianten unterschieden:

Werkstoff 1: Hülse galvanisch verzinkt (Schichtdicke ≥ 5 µm) oder

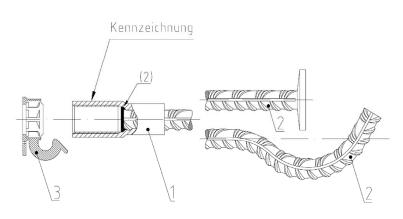

Werkstoff 2: Hülse aus nichtrostendem Stahl (1.4571)

Tabelle A2: Abmessungen PFEIFER-DB-Fußanker

	d	н	ан	L_th	ds	d _F	L
Fußanker	Werkstoff 1	Werkstoff 2		Werksto	off 1 und Wer	kstoff 2	
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
Rd/M12	15,0	14,8	42,0	22	8	22 - 24	78
Rd/M16	21,0	21,6	56,5	27	12	30 - 36	118
Rd/M20	27,2	27,2	72,0	35	16	40 - 48	148
Rd/M24	31,0	31,0	82,0	43	16	40 - 48	178
Rd/M30	39,5	39,5	109,5	56	20	50 - 60	218

PFEIFER-DB-Anker	
Produktbeschreibung Abmessungen DB-Fußanker	Anhang A3

Kennzeichnung

z.B.: PFEIFER Rd12 VA

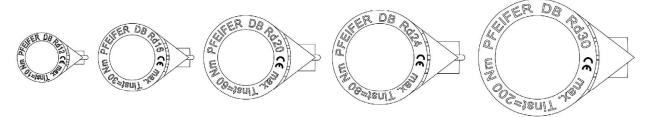
PFEIFER: Herstellerkennzeichen

alternativ: P

Rd12: Größe

VA: Hülse aus nichtrostendem Stahl ohne Kennzeichen: Hülse galvanisch verzinkt

Die Darstellung zeigt einen Anker mit Rd-Gewinde. Anker mit M-Gewinde analog.

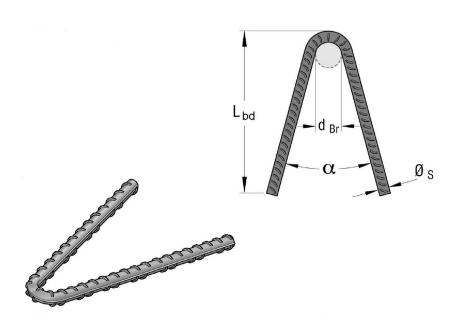

Tabelle A3: Bezeichnungen und Werkstoffe der Anker

Teil	Bezeichnung Werkstoff 1 Hülse galvanisch verzinkt		Werkstoff 2 nichtrostender Stahl			
1	Hülse	Stahl E 355+N (1.0580) gemäß EN 10305-1 verzinkt $^{1)}$	/2 nichtrostender Stahl 1.4571 gemäß EN 10216-5 Versiegelung Hülsengrund: BLAU ²⁾			
2	Bewehrungsstab	B500A oder B500B gemäß EN 1992-1-1:2004+AC:2010, Anhang C				
3	Datenclip		talen PPN 1060 RAL 7001 / GRAU talen PPN 1060 RAL 9010 / WEISS			

Tabelle A4: Bezeichnungen und Werkstoffe des Befestigungszubehörs (nicht beim Anker enthalten)

Passendes Zubehör	Werkstoffe zur Verwendung mit Ankern des Werkstoffes 1	Werkstoffe zur Verwendung mit Ankern des Werkstoffes 2			
Scheibe	Stahl gemäß EN 10025, verzinkt 1)	nichtrostender Stahl 1.4571 gemäß EN 10088			
Scheibe	Abmessungen gemäß EN ISO 7089/7090				
Schraube	Stahl gemäß EN ISO 898-1, verzinkt ¹⁾ Festigkeitsklasse 5.6 oder 8.8	nichtrostender Stahl gemäß EN ISO 3506-1 Festigkeitsklasse A4-50 oder A4-70 CRC III gemäß EN 1993-1-4:2006+A1:2015, Anh. A			
7uaatzhawahrung	B500A oder B500B	nichtrostender Bewehrungsstahl			
Zusatzbewehrung	Abmessungen gemäß Anhang A5 (flächiger Einbau) oder Anhang A6 (stirnseitiger Einbau)				

- 1) Schichtdicke der Verzinkung \geq 5 μ m mit gelblich irisierendem Chromatüberzug gemäß EN ISO 4042
- 2) Schutz der Stirnseite des eingepreßten Bewehrungsstabes gegen Korrosion

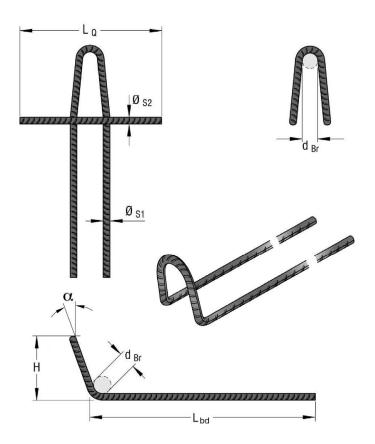

Draufsicht auf den Datenclip für Anker mit Rd-Gewinde. Anker mit M-Gewinde analog. Alternative Herstellerkennzeichnung (P) möglich.

PFEIFER-DB-Anker	
Produktbeschreibung Bezeichnungen und Werkstoffe	Anhang A4

Tabelle A5: Abmessungen der Zusatzbewehrung für den flächigen Einbau

DB-Wellenanker / DB-Fußanker			Rd/M12	Rd/M16	Rd/M20	Rd/M24	Rd/M30
Bewehrungsstab B500A, B500B oder B500NR	Øs	[mm]	6	8	10	12	12
Verankerungslänge	L_{bd}	[mm]	330	440	550	660	660
Biegerollendurchmesser	d_{Br}	[mm]	24	32	40	48	48
Spreizwinkel	α	[°]	30	30	30	30	30

Hinweis


Die Zusatzbewehrung ist mit Hilfe des Datenclips direkt an der Hülse zu fixieren. Werden die Anker <u>nicht</u> in trockenen Innenräumen gemäß Anhang B1 eingesetzt, so ist die zusätzliche Rückhängebewehrung aus nichtrostendem Betonstahl zu verwenden.

PFEIFER-DB-Anker	
Produktbeschreibung Zusatzbewehrung für den flächigen Einbau und Querbeanspruchung	Anhang A5

Tabelle A6: Abmessungen der Zusatzbewehrung für den stirnseitigen Einbau

Db-Wellenanker / DB-Fußanker			Rd/M12	Rd/M16	Rd/M20	Rd/M24	Rd/M30
Bewehrungsstab B500A, B500B oder B500NR	Øs1	[mm]	6	8	10	12	12
Querstab B500A, B500B oder B500NR	ØS2	[mm]	8	12	14	14	16
Verankerungslänge	L _{bd}	[mm]	270	420	490	520	570
Länge des Querstabes	LQ	[mm]	280	400	490	550	580
Gesamthöhe	Н	[mm]	40	55	70	80	105
Biegerollendurchmesser	d _{Br}	[mm]	24	32	40	48	48
Winkel der Aufbiegung	α	[°]	15	15	15	15	15

Hinweis

Die Zusatzbewehrung ist mit Hilfe des Datenclips direkt an der Hülse zu fixieren. Werden die Anker <u>nicht</u> in trockenen Innenräumen gemäß Anhang B1 eingesetzt, so ist die zusätzliche Rückhängebewehrung aus nichtrostendem Betonstahl zu verwenden.

PFEIFER-DB-Anker	
Produktbeschreibung Zusatzbewehrung für den stirnseitigen Einbau und Querbeanspruchung	Anhang A6

Spezifizierung des Verwendungszwecks

Planmäßige Beanspruchung

- Statische und quasi-statische Einwirkung: DB-Fußanker und DB-Wellenanker
- Seismische Einwirkung entsprechend Leistungskategorie C1 bzw. C2: nur DB-Fußanker

Verankerungsgrund

- Bewehrter oder unbewehrter, verdichteter Normalbeton ohne Fasern gemäß EN 206:2013+A1:2016
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206:2013+A1:2016
- Gerissener oder ungerissener Beton

Anwendungsbedingungen (Umweltbedingungen)

- Bauteile unter den Bedingungen trockener Innenräume (Werkstoff 1 gemäß Anhang A4 nur wenn das Innere der Hülse während der Montage gegen das Eindringen von Wasser abgedichtet ist)
- Gemäß EN 1993-1-4:2006+A1:2015, Anhang A entsprechend der Korrosionsbeständigkeitsklasse CRC III (Werkstoff 2 gemäß Anhang A4)

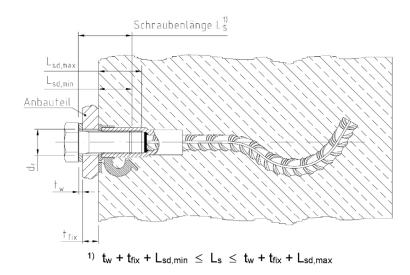
Bemessung

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage der Anker anzugeben (z.B. Lage des Ankers zur Bewehrung oder zu Auflagern, Ausrichtung des Datenclips).
- Die Bemessung der Verankerungen unter statischen und quasi-statischen Einwirkungen erfolgt nach:
 - EN 1992-4:2018
- Die Bemessung der Verankerungen unter seismischer Einwirkung erfolgt nach:
 - EN 1992-4:2018
- Anforderungen an die Befestigungsschraube:
 - Werkstoff entsprechend Anhang A4
 - Festigkeitsklasse entsprechend Anhang C1 und C3
 - Länge entsprechend Anhang B3 unter Berücksichtigung der Dicke des Anbauteils
- Eine Zusatzbewehrung entsprechend Anhang A5 oder A6 ist zu wählen, wenn die Widerstände gemäß Anhang C4 oder C5 angesetzt werden.

PFEIFER-DB-Anker

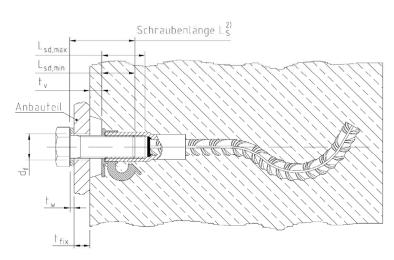
Verwendung
Spezifikationen

Anhang B1


Einbau

- Einbau der Anker durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters
- Verwendung der Anker wie vom Hersteller geliefert, ohne Veränderung oder Austausch einzelner Teile
- Einbau der Anker entsprechend Herstellerangaben, siehe Anhang B5 und Anhang B6
- Befestigung der Anker an der Schalung, so dass sie sich beim Verlegen der Bewehrung sowie beim Einbringen und Verdichten des Betons nicht verschieben oder bewegen
- Einwandfreie Verdichtung des Betons im Bereich der Anker, insbesondere unter dem Kopf des DB-Fußankers
- Das Innere der Hülsen gegen Eindringen von Beton schützen
- Das Innere der galvanisch verzinkten Hülsen gegen Eindringen von Wasser schützen
- Das Innere der Hülsen aus nichtrostendem Stahl gegen Eindringen von Öl schützen
- Die maximalen Montagedrehmomente sowie die minimalen und maximalen Einschraubtiefen gemäß Anhang B3 dürfen nicht überschritten werden
- Bei Verwendung von Zusatzbewehrung darf der Anker ausschließlich gemäß Ausrichtung des Datenclips (Pfeilspitze) beansprucht werden

PFEIFER-DB-Anker	
Verwendung Spezifikationen	Anhang B2


<u>Direkter Kontakt Anbauteil - Datenclip</u>

Das Anbauteil liegt direkt am Datenclip des Ankers gegebenenfalls mit Hilfe einer passenden Unterlegscheibe an.

Allgemeine Anwendung

Das Anbauteil liegt direkt am Betonbauteil an während der Anker selbst oberflächenbündig oder vertieft eingebaut ist.

Die Angaben gelten für den PFEIFER-DB-Fußanker analog

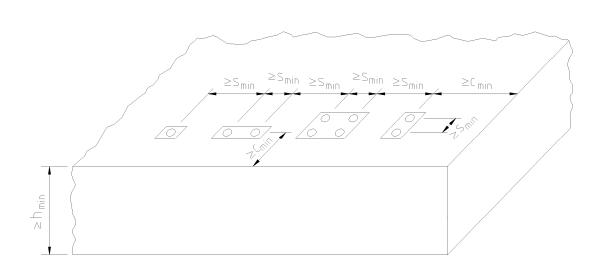

2) $t_w + t_{fix} + t_v + L_{sd,min} \le L_s \le t_w + t_{fix} + t_v + L_{sd,max}$

Tabelle B1: Montagekennwerte

DB-Wellenanker / DB-Fußanker			Rd/M12	Rd/M16	Rd/M20	Rd/M24	Rd/M30
zugehörige Schraubengröße		[mm]	M 12	M 16	M 20	M 24	M 30
maximales Montagedrehmoment	max. T _{inst}	[Nm]	≤ 10	≤ 30	≤ 60	≤ 80	≤ 200
minimale Einschraubtiefe	L _{sd,min}	[mm]	15	20	25	30	35
maximal mögliche Einschraubtiefe	L _{sd,max}	[mm]	24	29	37	45	58
Durchmesser des Durchgangslochs im Anbauteil	d _f	[mm]	14	18	22	26	33

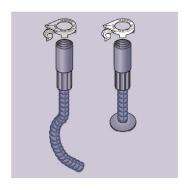
PFEIFER-DB-Anker	
Verwendung Montagekennwerte	Anhang B3

Für den Einbau der Anker in die Stirnseite eines Bauteiles gelten die Achs- und Randabstände sowie die Mindestbauteildicken sinngemäß.

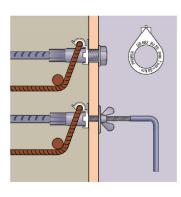
Tabelle B2: Mindestbauteildicken, minimale Achs- und Randabstände

DB-Wellenanker			Rd/M12	Rd/M16	Rd/M20	Rd/M24	Rd/M30
minimaler Achsabstand	S _{min}	[mm]	100	120	140	160	200
minimaler Randabstand	C _{min}	[mm]	50	60	70	80	100
Mindestbauteildicke 1)	h _{min}	[mm]	130	200	220	290	340

DB-Fußanker			Rd/M12	Rd/M16	Rd/M20	Rd/M24	Rd/M30
minimaler Achsabstand	S _{min}	[mm]	120	150	180	200	240
minimaler Randabstand	Cmin	[mm]	60	75	90	100	120
Mindestbauteildicke 1)	h _{min}	[mm]	100	140	170	210	250


1) $h \ge h_{nom} + c_{nom}$ c_{nom} gemäß EN 1992-1

PFEIFER-DB-Anker	
Verwendung Mindestbauteildicken, minimale Achs- und Randabstände	Anhang B4


Montageanleitung

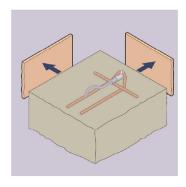
1. Bestandteile

- PFEIFER-DB-Wellenanker oder PFEIFER-DB-Fußanker mit aufgepresster Gewindehülse aus galvanisch verzinktem oder nichtrostendem Stahl
- 2. PFEIFER-Datenclip für DB-Wellenanker, Farbe: grau PFEIFER-Datenclip für DB-Fußanker, Farbe: weiß

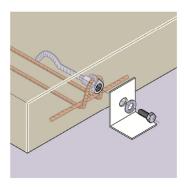
2. Befestigung der Anker an der Schalung

- 1. Datenclip auf Hülse aufstecken.
- 2. Anker mittels PFEIFER-Befestigungszubehör oder alternativ mittels passender Maschinenschraube lagesicher an Schalung befestigen.
 - → Einhalten der korrekten Ausrichtung des Ankers!
 - → Eindringen von Beton in das Hülseninnere verhindern!
 - → Hülse galvanisch verzinkt: Eindringen von Beton in das Hülseninnere verhindern!
- 3. Bei Bedarf Rückhängebewehrung gemäß Anhang A5 oder A6 mittels PFEIFER Datenclip an Anker befestigen und ausrichten.
 - → Auf direkten Kontakt zwischen Bewehrung und Hülse achten!

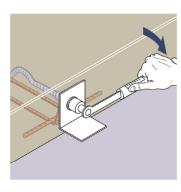
3. Einbringen und Verdichten des Betons


- 1. Beton sorgsam einbringen, auf Einbauteile achten!
- 2. Beton sorgsam verdichten, direkten Kontakt zwischen Rüttelflasche und DB-Anker bzw. Rückhängebewehrung vermeiden.
 - → Anker nicht verschieben oder beschädigen!

PFEIFER-DB-Anker Verwendung Montageanleitung Anhang B5


Montageanleitung

4. Ausschalen


- 1. Befestigungszubehör entfernen.
- 2. Schalung entfernen.
- 3. Innengewinde des DB-Ankers prüfen. Gewinde der Hülse reinigen, wenn Beton eingedrungen ist.

5. Anbauteil montieren

- 1. Sicherstellen, dass der Beton die angestrebte Betonfestigkeit erreicht hat.
- 2. Korrekte Länge der Schraube prüfen.
 - → Maximale bzw. minimale Einschraubtiefe siehe Anhang B3!
- 3. Anbauteil montieren.
 - → Passendes Zubehör gemäß Anhang A4, Table A4 verwenden!
 - → Maximale Montagedrehmomente siehe Tabelle unten einhalten!
 - → Zusätzliche Montagehinweise des jeweiligen Anbauteils beachten!

6. Maximale Drehmomente

Maximale Montagedrehmomente max. T_{inst} für DB-Wellenanker / DB-Fußanker

Rd/M12	Rd/M16	Rd/M16 Rd/M20 Rd/M24				
≤ 10 Nm	≤ 30 Nm	≤ 60 Nm	≤ 80 Nm	≤ 200 Nm		

PFEIFER-DB-Anker Verwendung Montageanleitung Anhang B6

Tabelle C1: Charakteristische Widerstände unter Zuglast für statische und quasi-statische Einwirkung

DB-Wellenanker / DB-Fußar	ker				Rd/M12	Rd/M16	Rd/M20	Rd/M24	Rd/M30
Stahlversagen bei Ausführur	ng Hülse	und Sch	raube (l	Festigke	eitsklasse	5.6) galva	nisch verz	inkt	
charakteristischer Widerstand			N _{Rk,s}	[kN]	31,1	78,5	122,5	110,6	172,8
zugehöriger Teilsicherheitsbeiwe	rt		γMs ¹⁾	[-]	1,66	2	,0	1,	4
Stahlversagen bei Ausführur	ng Hülse	und Sch		Festigke	eitsklasse	8.8) galva	nisch verz	inkt	
charakteristischer Widerstand	-		N _{Rk,s}	[kN]	31,1	71,2	130,8	110,6	172,8
zugehöriger Teilsicherheitsbeiwe	rt		γMs ¹⁾	[-]		1,66	•	1,	4
Stahlversagen bei Ausführur	ng Hülse	und Sch		us nich	trostender	n Stahl (F	estigkeitsk	lasse A4-	50)
charakteristischer Widerstand			N _{Rk,s}	[kN]	29,4	78,5	122,5	151,1	259,2
zugehöriger Teilsicherheitsbeiwe	rt		γMs ¹⁾	[-]			2,93		
Stahlversagen bei Ausführur	ng Hülse	und Sch		us nich	trostender	n Stahl (F	estigkeitsk	dasse A4-	70)
charakteristischer Widerstand			N _{Rk,s}	[kN]	29,4	82,6	133,4	151,1	259,2
zugehöriger Teilsicherheitsbeiwe	rt		γMs ¹⁾	[-]			2,93		
Herausziehen N _{Rk,p} = ψ _c · 1	VRk,p(C20/25	5)	-	-	-				
gerissener Beton C20/25	\A/- II -		$N_{Rk,p}$	[kN]	12	25	50	50	95
ungerissener Beton C20/25	· vveile	nanker	N _{Rk,p}	[kN]	20	40	60	60	95
gerissener Beton C20/25		1	N _{Rk,p}	[kN]	40	75	140	140	200
ungerissener Beton C20/25	- Fuls	anker	N _{Rk,p}	[kN]	50	115	200	200	300
		C30/37 ψ _c [-] 1,22							
Erhöhungsfaktoren für N _{Rk,p} im gerissenen oder ungerissenen Beto	eton -	C40/50	Ψc	[-]	1,41				
genaschen oder angenaschen b	-	C50/60	Ψc	[-]	1,58				
Teilsicherheitsbeiwert			γMp ¹⁾	[-]			1,50		
Betonausbruch									
wirksame Verankerungstiefe	Welle	nanker	h _{ef}	[mm]	54	95	127	140	194
wirksame Verankerungstiefe	Fuß	anker	h _{ef}	[mm]	78	116	145	175	215
Faktor zur Berücksichtigung	\A/alla	nankar	k _{cr,N}	[-]			8,0		
des Verankerungs-	vvene	nanker	k _{ucr,N}	[-]			11,2		
mechanismus in gerissenem		anker	k _{cr,N}	[-]			8,9		
oder ungerissenem Beton	ruis	alikei	k _{ucr,N}	[-]	12,7				
charakteristischer Achsabstand			S _{cr,N}	[mm]			$3,0 \cdot h_{\text{ef}}$		
charakteristischer Randabstand			C _{cr,N}	[mm]			$1,5 \cdot h_{\text{ef}}$		
Teilsicherheitsbeiwert			γMc ¹⁾	[-]			1,50		
Spalten N ⁰ Rk,Sp = mir	1. (N ⁰ Rk,c	²⁾ ; N _{Rk,p})							
wirksame Verankerungstiefe			h _{ef}	[mm]	54	95	127	140	194
charakteristischer Achsabstand	Welle	nanker	S _{cr,sp}	[mm]	232	354	368	556	706
charakteristischer Randabstand			C _{cr,sp}	[mm]	116	177	184	278	353
wirksame Verankerungstiefe			h _{ef}	[mm]	78	116	145	175	215
charakteristischer Achsabstand	Fuß	anker	Scr,sp	[mm]	300	460	480	780	900
charakteristischer Randabstand			C _{cr,sp}	[mm]	150	230	240	390	450
Teilsicherheitsbeiwert			γMsp ¹⁾	[-]			1,50		

¹⁾ Sofern andere nationale Regelungen fehlen

PFEIFER-DB-Anker

Leistung

Charakteristische Widerstände unter Zuglast für statische und quasi-statische Einwirkung

Anhang C1

²⁾ mit $N^0_{Rk,c}$ gemäß EN 1992-4:2018

Tabelle C2: Verschiebung unter Zuglast für statische und quasi-statische Einwirkung

DB-Wellenanker			Rd/M12	Rd/M16	Rd/M20	Rd/M24	Rd/M30
Verschiebung unter Zuglast (Werkstoff 1 oder Werkstoff 2)							
Zuglast im gerissenen Beton	N	[kN]	5,7	11,9	23,8	23,8	45,2
Verschiebungen unter kurzzeitiger Beanspruchung	δ_{N0}	[mm]	0,6	1,6	1,4	1,3	1,2
Verschiebungen unter dauerhafter Beanspruchung	δ _{N∞}	[mm]	1,0	1,9	1,5	1,2	0,9
Zuglast im ungerissenen Beton	N	[kN]	9,5	19,1	28,6	28,6	45,2
Verschiebungen unter kurzzeitiger Beanspruchung	δηο	[mm]	0,8	1,7	1,5	1,4	1,2
Verschiebungen unter dauerhafter Beanspruchung	δ _{N∞}	[mm]	1,0	1,9	1,5	1,2	0,9

DB-Fußanker			Rd/M12	Rd/M16	Rd/M20	Rd/M24	Rd/M30
Verschiebung unter Zuglast (Werkstoff 1 oder Werkstoff 2)							
Zuglast im gerissenen Beton	N	[kN]	5,7	11,9	23,8	23,8	45,2
Verschiebungen unter kurzzeitiger Beanspruchung	δ_{N0}	[mm]	0,1	0,1	0,2	0,2	0,2
Verschiebungen unter dauerhafter Beanspruchung	$\delta_{N\infty}$	[mm]	0,2	0,2	0,4	0,4	0,4
Zuglast im ungerissenen Beton	N	[kN]	9,5	19,1	28,6	28,6	45,2
Verschiebungen unter kurzzeitiger Beanspruchung	δ_{N0}	[mm]	0,1	0,2	0,1	0,2	0,2
Verschiebungen unter dauerhafter Beanspruchung	δ _{N∞}	[mm]	0,2	0,4	0,2	0,4	0,4

PFEIFER-DB-Anker	
Leistung Verschiebung unter Zuglast für statische und quasi-statische Einwirkung	Anhang C2

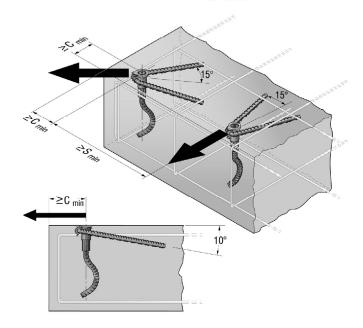
Tabelle C3: Charakteristische Widerstände unter Querlast für statische und quasi-statische Einwirkung

DB-Wellenanker / DB-Fußanker			Rd/M12	Rd/M16	Rd/M20	Rd/M24	Rd/M30
Querlasten ohne Hebelarm			<u>-</u>		<u>-</u>	<u> </u>	-
Gruppenfaktor (EN 1992-4, 7.2.2.3.1)	k 7	[-]			1,0		
Stahlversagen bei Ausführung Hülse und	Schraube	(Festig	keitsklasse	e 5.6) galv	anisch ver	zinkt	
charakteristischer Widerstand	$V_{Rk,s}$	[kN]	15,5	39,2	61,3	88,3	140,3
zugehöriger Teilsicherheitsbeiwert	γMs ¹⁾	[-]	1,38		1,	67	
Stahlversagen bei Ausführung Hülse und	Schraube	(Festig	keitsklasse	e 8.8) galv	anisch ver	zinkt	
charakteristischer Widerstand	$V_{Rk,s}$	[kN]	15,5	35,6	65,3	74,1	127,0
zugehöriger Teilsicherheitsbeiwert	γ Ms $^{1)}$	[-]			1,38		
Stahlversagen bei Ausführung Hülse und	Schraube	aus nic	htrostende	em Stahl (F	estigkeits	klasse A4-	·50)
charakteristischer Widerstand	$V_{Rk,s}$	[kN]	14,7	39,2	61,3	75,5	129,6
zugehöriger Teilsicherheitsbeiwert	γ Ms $^{1)}$	[-]			2,44		
Stahlversagen bei Ausführung Hülse und Schraube aus nichtrostendem Stahl (Festigkeitsklasse A4-70)							
charakteristischer Widerstand	$V_{Rk,s}$	[kN]	14,7	41,3	66,7	75,5	129,6
zugehöriger Teilsicherheitsbeiwert	γ Ms $^{1)}$	[-]			2,44		
Querlasten mit Hebelarm	-		-				
Stahlversagen bei Ausführung Hülse und	Schraube	(Festig	keitsklasse	∋ 5.6) galv	anisch ver	zinkt	
charakteristischer Widerstand	M^0 Rk,s	[Nm]	65	166	324	560	1123
zugehöriger Teilsicherheitsbeiwert	γ Ms $^{1)}$	[-]			1,67		
Stahlversagen bei Ausführung Hülse und	Schraube	(Festig	keitsklasse	e 8.8) galv	anisch ver	zinkt	
charakteristischer Widerstand	M^0 Rk,s	[Nm]	115	266	519	896	1797
zugehöriger Teilsicherheitsbeiwert	γMs ¹⁾	[-]	1,38		1,	25	
Stahlversagen bei Ausführung Hülse und	Schraube	aus nic	htrostende	em Stahl (l	estigkeits	klasse A4-	50)
charakteristischer Widerstand	M^0 Rk,s	[Nm]	65	166	324	560	1123
zugehöriger Teilsicherheitsbeiwert	γMs ¹⁾	[-]			2,44		
Stahlversagen bei Ausführung Hülse und	Schraube	aus nic	htrostende	em Stahl (I	estigkeits	klasse A4-	70)
charakteristischer Widerstand	M^0 Rk,s	[Nm]	108	232	454	1123	2422
zugehöriger Teilsicherheitsbeiwert	γMs ¹⁾	[-]	2,44	1,	56	2,	44
Betonausbruch auf der lastabgewandten S	Seite						
Faktor	k ₈	[-]	1,0		2	,0	
Teilsicherheitsbeiwert	γMcp ¹⁾	[-]			1,50		
Betonkantenbruch (ohne Rückhängebewe	ehrung)						
wirksame Ankerlänge bei Querlast	lf	[mm]	42,0	56,5	72,0	82,0	109,5
wirksamer Außendurchmesser	d_{nom}	[mm]	15,0	21,0	25,0	25,0	25,0

¹⁾ Sofern andere nationale Regelungen fehlen

PFEIFER-DB-Anker	
Leistung Charakteristische Widerstände unter Querlast für statische und quasi-statische Einwirkung	Anhang C3

Tabelle C4: Charakteristische Widerstände unter Querlast für statische und quasi-statische Einwirkung gegen Versagen der Zusatzbewehrung bei flächigem Einbau


DB-Wellenanker / DB-Fußanker			Rd/M12	Rd/M16	Rd/M20	Rd/M24	Rd/M30
charakteristischer Widerstand des gesamten Rückhängebügels	$V_{Rk,c,re}$	[kN]	13,5	23,9	37,4	53,8	53,8
zugehöriger Teilsicherheitsbeiwert	γMs,re ¹⁾	[-]			1,15		

DB-Wellenanker			Rd/M12	Rd/M16	Rd/M20	Rd/M24	Rd/M30
minimaler Achsabstand	S _{min}	[mm]	100	120	140	160	200
minimaler Randabstand ²⁾	Cmin	[mm]	50	60	70	80	100

DB-Fußanker			Rd/M12	Rd/M16	Rd/M20	Rd/M24	Rd/M30
minimaler Achsabstand	Smin	[mm]	120	150	180	200	240
minimaler Randabstand ²⁾	C _{min}	[mm]	60	75	90	100	120

1) Sofern andere nationale Regelungen fehlen

2) Bei der Festlegung des Randabstandes ist auch die Mindestbetondeckung c_{nom} gemäß EN 1992-1 zu berücksichtigen.

<u>Hinweis</u>

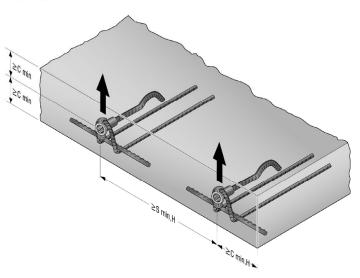
Bei rechnerischem Ansatz einer Zusatzbewehrung dürfen nur Lasten in Richtung der Pfeile übertragen werden. Die Rückhängebewehrung ist entsprechend der oberen Skizze symmetrisch zur Lastrichtung anzuordnen.

Die Zusatzbewehrung ist mit Hilfe des Datenclips direkt an der Hülse zu fixieren. Werden die Anker <u>nicht</u> in trockenen Innenräumen gemäß Anhang B1 eingesetzt, so ist die zusätzliche Rückhängebewehrung aus nichtrostendem Betonstahl zu verwenden.

Die Angaben gelten auch für den DB-Fußanker.

PFEIFER-DB-Anker	
Leistung	Anhang C4
Charakteristische Widerstände unter Querlast für statische und quasi-statische Einwirkung mit Zusatzbewehrung bei flächigem Einbau	

Tabelle C5: Charakteristische Widerstände unter Querlast für statische und quasi-statische Einwirkung gegen Versagen der Zusatzbewehrung bei stirnseitigem Einbau


DB-Wellenanker / DB-Fußanker			Rd/M12	Rd/M16	Rd/M20	Rd/M24	Rd/M30
charakteristischer Widerstand des gesamten Rückhängebügels	V _{Rk,c,re}	[kN]	5,7	17,6	27,5	39,6	43,0
zugehöriger Teilsicherheitsbeiwert	γMs,re ¹⁾	[-]			1,8		

minimaler Achsabstand	S _{min,H}	[mm]	280	400	490	550	580
min. Randabstand parallel zur Plattenebene	C _{min,H}	[mm]		=	L _Q / 2 + c _{nor}	n ²⁾	

DB-Wellenanker			Rd/M12	Rd/M16	Rd/M20	Rd/M24	Rd/M30
min. Randabstand senkrecht zur Plattenebene	C _{min}	[mm]	50	60	70	80	100

DB-Fußanker			Rd/M12	Rd/M16	Rd/M20	Rd/M24	Rd/M30
min. Randabstand senkrecht zur Plattenebene	Cmin	[mm]	60	75	90	100	120

- 1) Sofern andere nationale Regelungen fehlen

Hinweis

Bei rechnerischem Ansatz einer Zusatzbewehrung dürfen nur Lasten in Richtung der Pfeile übertragen werden. Die Rückhängebewehrung ist entsprechend der oberen Skizze symmetrisch zur Lastrichtung anzuordnen.

Die Zusatzbewehrung ist mit Hilfe des Datenclips direkt an der Hülse zu fixieren. Werden die Anker <u>nicht</u> in trockenen Innenräumen gemäß Anhang B1 eingesetzt, so ist die zusätzliche Rückhängebewehrung aus nichtrostendem Betonstahl zu verwenden.

Die Angaben gelten auch für den DB-Fußanker.

Kombinierte Zugbeanspruchung und Querzug Faktor k₁₁ für kombinierte Zug- und Querlast gemäß EN 1992-4-2:2018, Abschnitt 7.2.3.2: k₁₁ = 2/3

PFEIFER-DB-Anker	
Leistung	Anhang C5
Charakteristische Widerstände unter Querlast für statische und quasi-statische Einwirkung mit Zusatzbewehrung bei stirnseitigem Einbau	

Tabelle C6: Verschiebung unter Querlast für statische und quasi-statische Einwirkung

DB-Wellenanker / DB-Fußanker			Rd/M12	Rd/M16	Rd/M20	Rd/M24	Rd/M30
Verschiebungen unter Querlast <u>ohne</u> Zusat bei Hülsen und Schrauben (Festigkeitsklasse 5		_	verzinkten	n Stahl			
Querlast im gerissenen und ungerissenen Beton	V	[kN]	8,1	16,8	26,2	37,7	60,0
Verschiebungen unter kurzzeitiger Beanspruchung	δνο	[mm]	2,0	2,0	3,0	3,0	4,0
Verschiebungen unter dauerhafter Beanspruchung	δ∨∞	[mm]	3,0	3,0	4,5	4,5	6,0
Verschiebungen unter Querlast <u>ohne</u> Zusat bei Hülsen und Schrauben (Festigkeitsklasse 8			verzinkten	n Stahl			
Querlast im gerissenen und ungerissenen Beton	٧	[kN]	8,1	18,4	33,8	38,3	65,8
Verschiebungen unter kurzzeitiger Beanspruchung	δνο	[mm]	2,0	2,0	3,0	3,0	4,0
Verschiebungen unter dauerhafter Beanspruchung	δ∨∞	[mm]	3,0	3,0	4,5	4,5	6,0
Verschiebungen unter Querlast ohne Zusatz bei Hülse und Schraube aus nichtrostendem S		_	itsklasse <i>l</i>	\4-50)			
Querlast im gerissenen und ungerissenen Beton	V	[kN]	4,3	11,4	17,9	22,1	38,0
Verschiebungen unter kurzzeitiger Beanspruchung	δν0	[mm]	2,0	2,0	3,0	3,0	4,0
Verschiebungen unter dauerhafter Beanspruchung	δ∨∞	[mm]	3,0	3,0	4,5	4,5	6,0
Verschiebungen unter Querlast <u>ohne</u> Zusat: bei Hülse und Schraube aus nichtrostendem S		_	itsklasse <i>l</i>	\ 4-70)			
Querlast im gerissenen und ungerissenen Beton	V	[kN]	4,3	12,1	19,5	22,1	38,0
Verschiebungen unter kurzzeitiger Beanspruchung	δνο	[mm]	2,0	2,0	3,0	3,0	4,0
Verschiebungen unter dauerhafter Beanspruchung	δν∞	[mm]	3,0	3,0	4,5	4,5	6,0
Verschiebungen unter Querlast <u>mit</u> Zusatzb (flächiger Einbau)	eweh	rung g	emäß Anh	ang A5			
Querlast im gerissenen und ungerissenen Beton	Vs	[kN]	8,4	14,8	23,2	33,4	33,4
Verschiebungen unter kurzzeitiger Beanspruchung	δνο	[mm]	1,5	1,5	2,0	2,0	2,0
Verschiebungen unter dauerhafter Beanspruchung	δν∞	[mm]	2,0	2,3	2,6	2,7	2,7
Verschiebungen unter Querlast <u>mit</u> Zusatzb (stirnseitiger Einbau)	eweh	rung g	emäß Anh	ang A6			
Querlast im gerissenen und ungerissenen Beton	VQ	[kN]	2,3	7,0	10,9	15,7	17,1
Verschiebungen unter kurzzeitiger Beanspruchung	δνο	[mm]	1,0	1,4	1,6	1,8	2,0
Verschiebungen unter dauerhafter Beanspruchung	δ∨∞	[mm]	1,5	2,1	2,4	2,7	3,0

PFEIFER-DB-Anker	
Leistung Verschiebung unter Querlast für statische und quasi-statische Einwirkung	Anhang C6

Tabelle C7: Charakteristische Widerstände von DB-Fußankern unter Zuglast für seismische Einwirkung entsprechend Leistungskategorie C1

DB-Fußanker			Rd/M12	Rd/M16	Rd/M20	Rd/M24	Rd/M30
Stahlversagen bei Ausführung Hülse und	Schraube (F	estigke	eitsklasse	5.6) galva	nisch verz	inkt	-
charakteristischer Widerstand	$N_{Rk,s,eq,C1}$	[kN]	31,1	78,5	122,5	110,6	172,8
zugehöriger Teilsicherheitsbeiwert	γMs,eq	[-]	1,66	2	,0	1,	4
Stahlversagen bei Ausführung Hülse und Schraube (Festigkeitsklasse 8.8) galvanisch verzinkt							
charakteristischer Widerstand	$N_{Rk,s,eq,C1}$	[kN]	31,1	71,2	130,8	110,6	172,8
zugehöriger Teilsicherheitsbeiwert	γMs,eq	[-]	1,66 1,4			4	
Stahlversagen bei Ausführung Hülse und	Schraube a	us nich	trostender	n Stahl (F	estigkeitsk	lasse A4-	50)
charakteristischer Widerstand	$N_{\text{Rk,s,eq,C1}}$	[kN]	29,4	78,5	122,5	151,1	259,2
zugehöriger Teilsicherheitsbeiwert	γMs,eq	[-]			2,93		
Stahlversagen bei Ausführung Hülse und	Schraube a	us nich	trostender	n Stahl (F	estigkeitsk	lasse A4-	70)
charakteristischer Widerstand	N _{Rk,s,eq,C1}	[kN]	29,4	82,6	133,4	151,1	259,2
zugehöriger Teilsicherheitsbeiwert	γMs,eq	[-]			2,93		
Herausziehen	-	-					
charakteristischer Widerstand	$N_{\text{Rk,p,eq,C1}}$	[kN]	N _{Rk,c} nach Anhang C1				
zugehöriger Teilsicherheitsbeiwert	γMp,eq	[-]			1,5		

PFEIFER-DB-Anker	
Leistung	Anhang C7
Charakteristische Widerstände von DB-Fußankern unter Zuglast für seismische	
Einwirkung entsprechend Leistungskategorie C1	

Tabelle C8: Charakteristische Widerstände von DB-Fußankern unter Querlast für seismische Einwirkung entsprechend Leistungskategorie C1

DB-Fußanker			Rd/M12	Rd/M16	Rd/M20	Rd/M24	Rd/M30
Stahlversagen bei Ausführung Hülse und Schraube (Fes			keitsklasse	5.6) galv	anisch ver	zinkt	
charakteristischer Widerstand	V _{Rk,s,eq,C1}	[kN]	15,5	39,2	61,3	88,3	140,3
zugehöriger Teilsicherheitsbeiwert	γMs,eq	[-]	1,38	1,38 1,67			
Stahlversagen bei Ausführung Hülse und	d Schraube	(Festig	igkeitsklasse 8.8) galvanisch verzinkt				
charakteristischer Widerstand	$V_{Rk,s,eq,C1}$	[kN]	15,5	35,6	65,3	74,1	127,0
zugehöriger Teilsicherheitsbeiwert	γMs,eq	[-]	1,38				
Stahlversagen bei Ausführung Hülse und	d Schraube	aus nic	htrostende	em Stahl (F	estigkeits	klasse A4-	-50)
charakteristischer Widerstand	$V_{Rk,s,eq,C1}$	[kN]	14,7	39,2	61,3	75,5	129,6
zugehöriger Teilsicherheitsbeiwert	γMs,eq	[-]	2,44				
Stahlversagen bei Ausführung Hülse und	Stahlversagen bei Ausführung Hülse und Schraube aus nichtrostendem Stahl (Festigkeitsklasse A4-70)						70)
charakteristischer Widerstand	V _{Rk,s,eq,C1}	[kN]	14,7	41,3	66,7	75,5	129,6
zugehöriger Teilsicherheitsbeiwert	γ̃Ms,eq	[-]			2,44		

Reduktionsfaktor zur Berücksichtigung von Trägheitseffekten infolge eines Lochspiels zwischen Befestigungselement und Anbauteil:

Verbindungen mit Lochspiel gemäß EN 1992-4:2018, Tabelle 6.1: $\alpha_{gap} = 0.5$ [-]

Verbindungen ohne Lochspiel: α_{gap} = 1,0 [-]

PFEIFER-DB-Anker	
Leistung	Anhang C8
Charakteristische Widerstände von DB-Fußankern unter Querlast für seismische	
Einwirkung entsprechend Leistungskategorie C1	

Tabelle C9: Charakteristische Widerstände von DB-Fußankern unter Zuglast für seismische Einwirkung entsprechend Leistungskategorie C2

DB-Fußanker			Rd/M12	Rd/M16	Rd/M20	Rd/M24	Rd/M30
Stahlversagen bei Ausführung Hülse und	Schraube (F	estigke	eitsklasse	5.6) galva	nisch verz	inkt	
charakteristischer Widerstand	$N_{\text{Rk,s,eq,C2}}$	[kN]	31,1	78,5	122,5	110,6	172,8
zugehöriger Teilsicherheitsbeiwert	γMs,eq	[-]	1,66	2	0	1,	4
Stahlversagen bei Ausführung Hülse und Schraube (Festigkeitsklasse 8.8) galvanisch verzinkt							
charakteristischer Widerstand	$N_{Rk,s,eq,C2}$	[kN]	31,1	71,2	130,8	110,6	172,8
zugehöriger Teilsicherheitsbeiwert	γMs,eq	[-]	1,66 1,4			4	
Stahlversagen bei Ausführung Hülse und	Schraube a	us nich	trostender	n Stahl (F	estigkeitsk	lasse A4-	50)
charakteristischer Widerstand	$N_{\text{Rk,s,eq,C2}}$	[kN]	29,4	78,5	122,5	151,1	259,2
zugehöriger Teilsicherheitsbeiwert	γMs,eq	[-]			2,93		
Stahlversagen bei Ausführung Hülse und	Schraube a	us nich	trostender	n Stahl (F	estigkeitsk	lasse A4-	70)
charakteristischer Widerstand	N _{Rk,s,eq,C2}	[kN]	29,4	82,6	133,4	151,1	259,2
zugehöriger Teilsicherheitsbeiwert	γMs,eq	[-]			2,93		
Herausziehen							
charakteristischer Widerstand	N _{Rk,p,eq,C2}	[-]	N _{Rk,c} nach Anhang C1				
zugehöriger Teilsicherheitsbeiwert	γMp,eq	[-]			1,5		

Tabelle C10: Verschiebung von DB-Fußankern unter Zuglast für seismische Einwirkung entsprechend Leistungskategorie C2

DB-Fußanker			Rd/M12	Rd/M16	Rd/M20	Rd/M24	Rd/M30
Verschiebung				-			
Verschiebung in den Grenzzuständen der Gebrauchtstauglichkeit (GZG)	$\delta_{\text{N,eq,C2}}$	[mm]	1,00	1,34	0,88	1,52	1,22
Verschiebung in den Grenzzuständen der Tragfähigkeit (GZT)	$\delta_{\text{N,eq,C2}}$	[mm]	2,79	3,73	2,36	4,14	3,20

PFEIFER-DB-Anker	
Leistung	Anhang C9
Charakteristische Widerstände und Verschiebung von DB-Fußankern unter Zuglast für	
seismische Einwirkung entsprechend Leistungskategorie C2	

Tabelle C11: Charakteristische Widerstände von DB-Fußankern unter Querlast für seismische Einwirkung entsprechend Leistungskategorie C2

DB-Fußanker			Rd/M12	Rd/M16	Rd/M20	Rd/M24	Rd/M30
Stahlversagen bei Ausführung Hülse un	d Schraube	(Festig	keitsklasse	= 5.6) galv	anisch ver	zinkt	
charakteristischer Widerstand	V _{Rk,s,eq,C2}	[kN]	15,5	39,2	61,3	88,3	140,3
zugehöriger Teilsicherheitsbeiwert	γMs,eq	[-]	1,38		1,	67	
Stahlversagen bei Ausführung Hülse un	d Schraube	(Festig	keitsklasse	e 8.8) galv	anisch ver	zinkt	
charakteristischer Widerstand	$V_{Rk,s,eq,C2}$	[kN]	15,5	35,6	65,3	74,1	127,0
zugehöriger Teilsicherheitsbeiwert	γMs,eq	[-]	1,38				
Stahlversagen bei Ausführung Hülse un	d Schraube	aus nic	htrostende	em Stahl (F	estigkeits	klasse A4-	50)
charakteristischer Widerstand	V _{Rk,s,eq,C2}	[kN]	14,7	39,2	61,3	75,5	129,6
zugehöriger Teilsicherheitsbeiwert	γMs,eq	[-]	2,44				
Stahlversagen bei Ausführung Hülse un	d Schraube	aus nic	htrostende	em Stahl (F	estigkeits	klasse A4-	70)
charakteristischer Widerstand	V _{Rk,s,eq,C2}	[kN]	14,7	41,3	66,7	75,5	129,6
zugehöriger Teilsicherheitsbeiwert	γ̃Ms,eq	[-]			2,44		

Tabelle C12: Verschiebung von DB-Fußankern unter Querlast für seismische Einwirkung entsprechend Leistungskategorie C2

DB-Fußanker			Rd/M12	Rd/M16	Rd/M20	Rd/M24	Rd/M30
Displacements							
Verschiebung in den Grenzzuständen der Gebrauchtstauglichkeit (GZG)	$\delta_{\text{V,eq,C2}}$	[mm]	3,78	4,46	5,33	4,88	5,65
Verschiebung in den Grenzzuständen der Tragfähigkeit (GZT)	$\delta_{V,eq,C2}$	[mm]	5,54	6,88	5,58	8,04	9,68

PFEIFER-DB-Anker	
Leistung	Anhang C10
Charakteristische Widerstände und Verschiebung von DB-Fußankern unter Querlast für seismische Einwirkung entsprechend Leistungskategorie C2	