

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-12/0093 of 20 October 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

IsoFux Rocket, Rocket EVOLution

Screwed-in plastic anchor for fixing of external thermal insulation composite systems with rendering in concrete and masonry

RANIT-Befestigungssysteme GmbH Lennestraße 3-5 45701 Herten DEUTSCHLAND

RANIT-Befestigungssysteme GmbH Lennestraße 3-5 45701 Herten GERMANY

22 pages including 3 annexes which form an integral part of this assessment

EAD 330196-01-0604

ETA-12/0093 issued on 16 October 2019

European Technical Assessment ETA-12/0093

Page 2 of 22 | 20 October 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z8254.20 8.06.04-30/20

European Technical Assessment ETA-12/0093 English translation prepared by DIBt

Page 3 of 22 | 20 October 2020

Specific Part

1 Technical description of the product

The screwed-in anchor type IsoFux Rocket consists of a plastic sleeve made of polypropylene (virgin material), a plastic shaft with a plate and a cover cap made of polyamide (virgin material) and an accompanying specific screw of galvanised steel. For deep mounting of the anchor in the insulating material the IsoFux Rocket consists in addition of an accompanying insulation cover made of polystyrol or mineral wool. For mounting on the surface the anchor may in addition be combined with the anchor plates T90, T110 and T140.

The screwed-in anchor type Rocket EVOlution consists of a plastic sleeve and a sieve sleeve made of polyamide (virgin material) and an accompanying specific screw of galvanised steel.

An illustration and the description of the product are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verification and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety and accessibility in use (BWR 4)

Essential characteristic	Performance
Characteristic load bearing capacity	
- Characteristic resistance under tension load	See Annex C 1
 Minimum edge distance and spacing 	See Annex B 2
Displacements	See Annex C 2
Plate stiffness	See Annex C 3

3.2 Energy economy and heat retention (BWR 6)

Essential characteristic	Performance		
Point thermal transmittance	See Annex C 3		

Z8254.20 8.06.04-30/20

European Technical Assessment ETA-12/0093

Page 4 of 22 | 20 October 2020

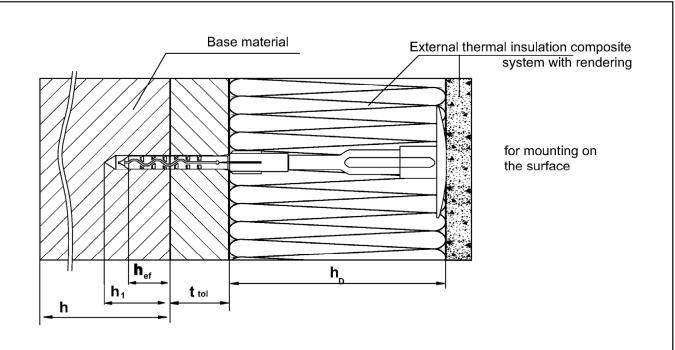
English translation prepared by DIBt

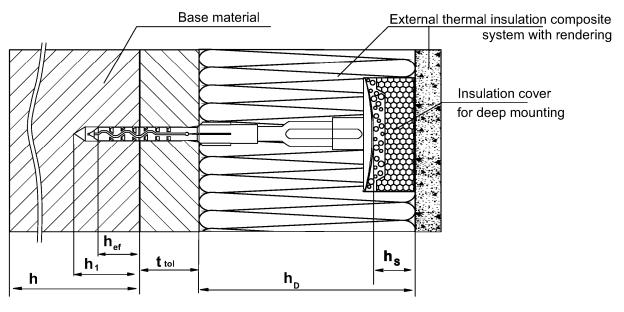
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330196-01-0604, the applicable European legal act is: [97/463/EC].

The system to be applied is: 2+

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 20 October 2020 by Deutsches Institut für Bautechnik

Dr.-Ing. Lars Eckfeldt beglaubigt:
p. p. Head of Department Ziegler

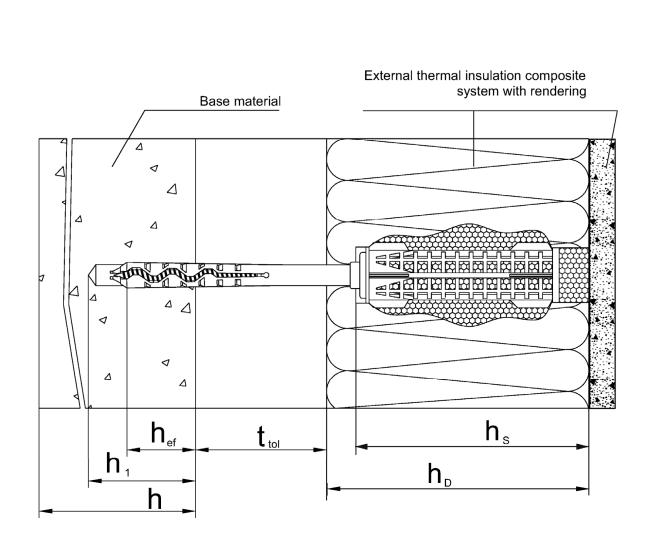
Z8254.20 8.06.04-30/20

Legend:

h = thickness of base material

h₁ = depth of drilled hole to deepest point

h_{ef} = effective anchorage depth


h_D = thickness of insulation material

t tol = thickness of equalizing layer or non-load bearing coating

h_s = Rocket depth of countersink

IsoFux Rocket, IsoFux Rocket EVOLution Product description installed condition - surface mount, deep mounting: IsoFux Rocket Annex A 1

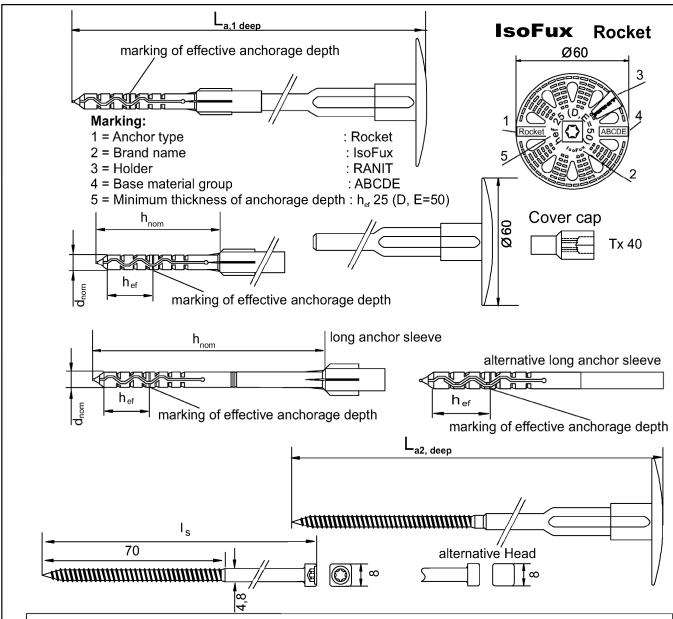
Legend:

h = thickness of base material

h₁ = depth of drilled hole to deepest point

h efeffective anchorage depthh Dthickness of insulation material

t tol = thickness of equalizing layer or non-load bearing coating


h_s = Rocket EVOLution depth of countersink

IsoFux Rocket, IsoFux Rocket EVOLution

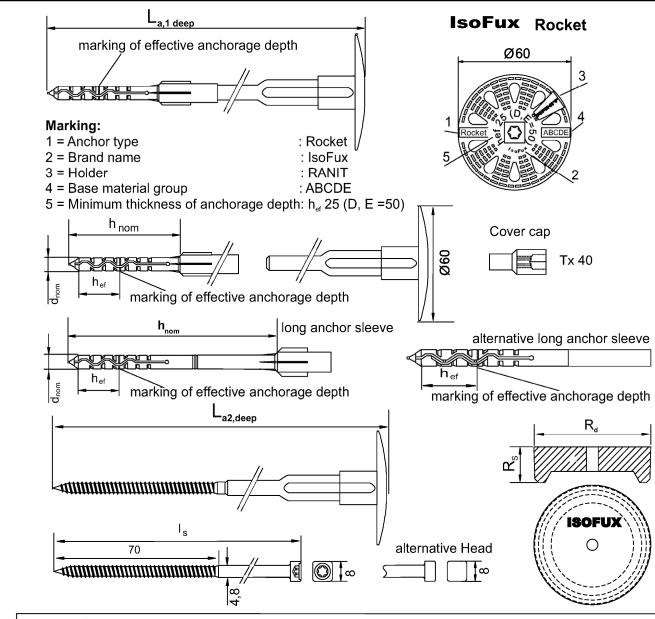
Product description

installed condition - deep mounting: Rocket EVOLution

Table A1: Dimensions Sizes in mm								
Anchor type		Anch	or sleeve		L _a	I	L	12
Rocket	d _{nom}	h _{ef}	h _{nom}	t _{tol max}	min L _{a1,} deep	max L _{a1}	min L _{a2,} deep	max L _{a2}
short anchor sleeve	8	25	65	35	155	480	102	427
long anchor sleeve	8	25	125	95	235	480	182	427

Evaluation of thickness of the insulation h_{Dmax} IsoFux Rocket with short anchor sleeve min $L_{\text{a1, deep}}$ - h_{nom} - h_{Dmax} e.g.: (min $h_{\text{a1, deep}}$ = 155) 155 -65 -30 = 60 (h_{Dmax})

Evaluation of thickness of the insulation $h_{D_{max}}$ IsoFux Rocket with long anchor sleeve min $L_{a1, deep}$ - h_{nom} + 30 = $h_{D_{max}}$; e.g.: (min $L_{a1, deep}$ = 235) 235 -125 +30 = 140 ($h_{D_{max}}$)


IsoFux Rocket,	IsoFux	Rocket	EVOLution
----------------	--------	--------	------------------

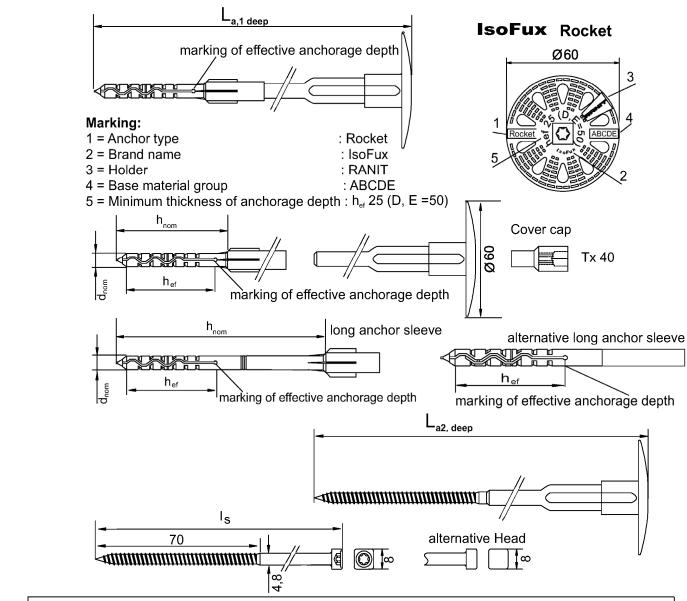
Product description

Base material group A, B, C - IsoFux Rocket

Components of mounting on the surface, dimensions

Table A2: Dimensions Sizes in mm										
Anchor type	Δ	Anchor sleeve				L _{a1} L _{a2}			cover	
Rocket	d _{nom}	h _{ef}	h _{nom}	t _{tol max}	min L _{a1,} deep	max L _{a1}	min L _{a2,} deep	max L _{a2}	R _s	R₀
short anchor sleeve	8	25	65	35	155	480	102	427	20	64
long anchor sleeve	8	25	125	95	235	480	182	427	20	64

Evaluation of thickness of the insulation $h_{\tiny Dmax}$ IsoFux Rocket with short anchor sleeve min $L_{\tiny a1, deep}$ - $h_{\tiny nom}$ - 30 + Rs = $h_{\tiny Dmax}$; e.g.: (min $L_{\tiny a1, deep}$ = 155) 155 -65 -30 +20 = 80 ($h_{\tiny Dmax}$)


Evaluation of thickness of the insulation $h_{\tiny Dmax}$ IsoFux Rocket with long anchor sleeve min $L_{\tiny a1, deep}$ - $h_{\tiny nom}$ + 30 + Rs = $h_{\tiny Dmax}$; e.g.: (min $L_{\tiny a1, deep}$ = 235) 235 -125 +30 +20 = 160 ($h_{\tiny Dmax}$)

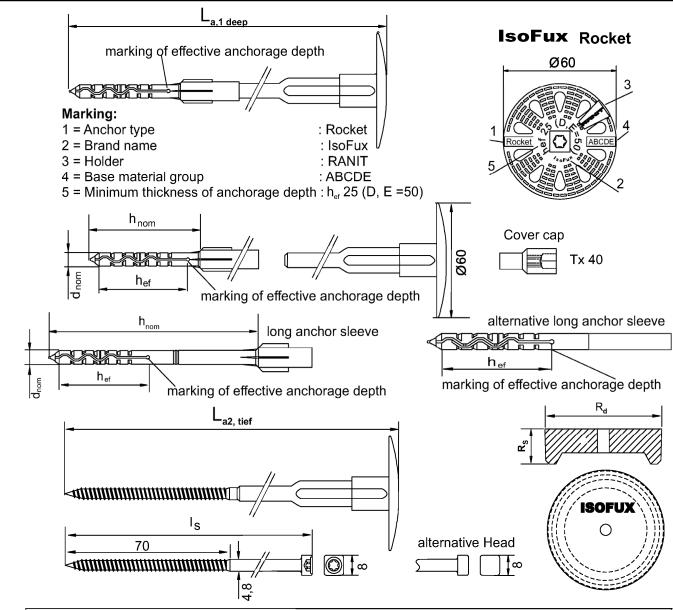
IsoFux Rocket, IsoFux Rocket EVOLution

Product description

Base material group A, B, C - IsoFux Rocket Components for deep mounting, dimensions

Table A3: Dimensions Sizes in mm								
Anchor type	Anchor sleeve L _{a1}			L _{a2}				
Rocket	d _{nom}	h _{ef}	h _{nom}	t tol max	min L _{a1,} deep	max L _{a1}	min L _{a2,} deep	max L _{a2}
short anchor sleeve	8	50	65	10	155	480	102	427
long anchor sleeve	8	50	125	70	235	480	182	427

Evaluation of thickness of the insulation \mathbf{h}_{Dmax} IsoFux Rocket with short anchor sleeve **min** $\mathbf{L}_{\text{a1, deep}}$ - \mathbf{h}_{nom} - 30 = \mathbf{h}_{Dmax} ; e.g.: (min $\mathbf{L}_{\text{a1, deep}}$ = 155) 155 -65 -30 = 60 (\mathbf{h}_{Dmax}) Evaluation of thickness of the insulation \mathbf{h}_{Dmax} IsoFux Rocket with long anchor sleeve **min** $\mathbf{L}_{\text{a1, deep}}$ - \mathbf{h}_{nom} + 30 = \mathbf{h}_{Dmax} ; e.g.: (min $\mathbf{L}_{\text{a1, deep}}$ = 235) 235 -125 +30 = 140 (\mathbf{h}_{Dmax})

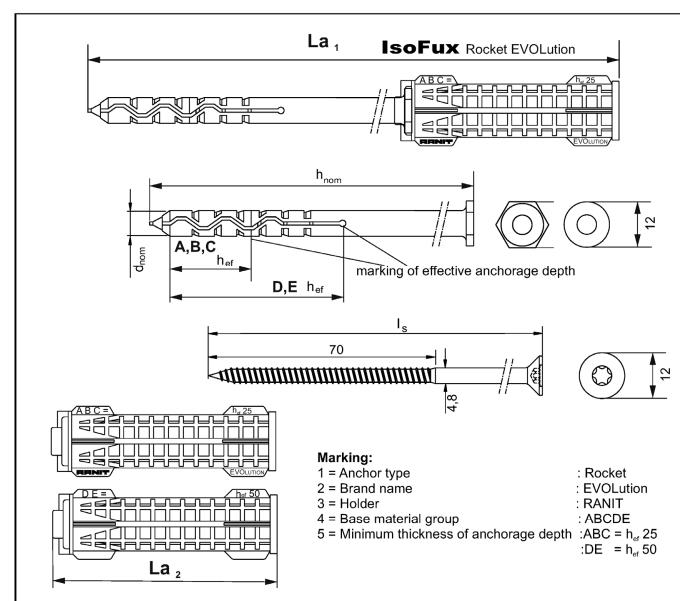

|--|

Product description

Base material group D, E - IsoFux Rocket

Components of mounting on the surface, dimensions

Table A4: Dimensions Sizes in mm								mm		
Anchor type	Anchor sleeve			L _{a1}		L _{a2}		cov	⁄er	
Rocket	d _{nom}	h _{ef}	h _{nom}	t _{tol max}	min L _{a1,} deep	max L _{a1}	min L _{a2,} deep	max L _{a2}	R _s	R₀
short anchor sleeve	8	50	65	10	155	480	102	427	20	64
long anchor sleeve	8	50	125	70	235	480	182	427	20	64


Evaluation of thickness of the insulation \mathbf{h}_{Dmax} IsoFux Rocket with short anchor sleeve **min** $\mathbf{L}_{\text{a1, deep}}$ - \mathbf{h}_{nom} - 30 + Rs = \mathbf{h}_{Dmax} ; e.g.: (min $\mathbf{L}_{\text{a1, deep}}$ = 155) 155 -65 -30 +20 = 80 (\mathbf{h}_{Dmax}) Evaluation of thickness of the insulation \mathbf{h}_{Dmax} IsoFux Rocket with long anchor sleeve **min** $\mathbf{L}_{\text{a1, deep}}$ - \mathbf{h}_{nom} + 30 + Rs = \mathbf{h}_{Dmax} ; e.g.: (min $\mathbf{L}_{\text{a1, deep}}$ = 235) 235 -125 +30 +20 = 160 (\mathbf{h}_{Dmax})

IsoFux Rocket, IsoFux Rocket EVOLution

Product description

Base material group D, E - IsoFux Rocket Components for deep mounting, dimensions

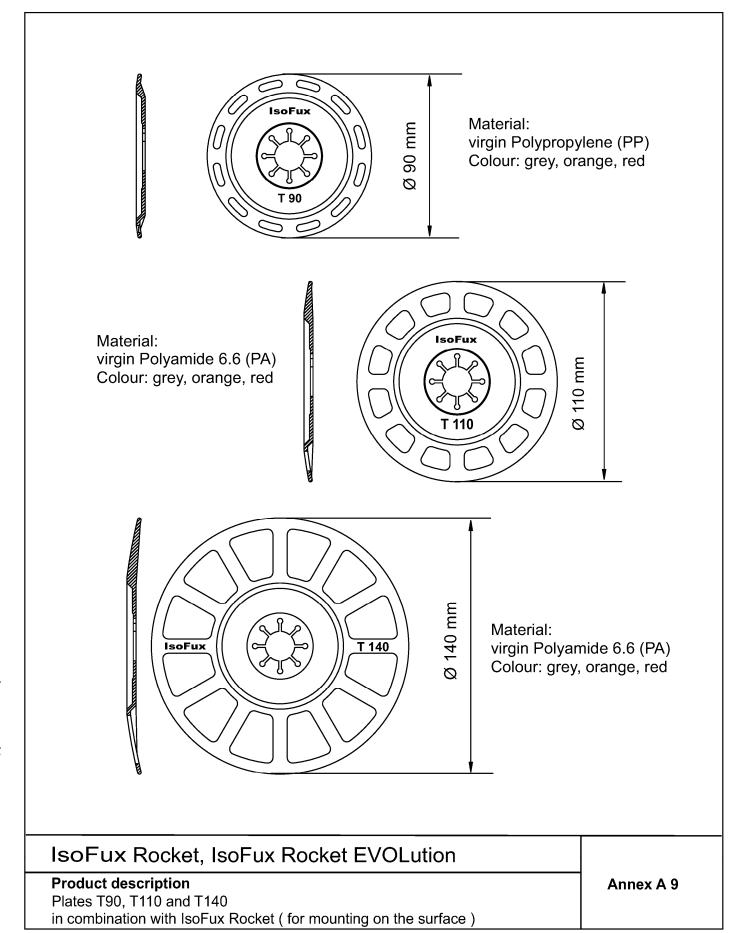
Table A5: Dimensions Sizes in mr								Sizes in mm
Anchor type	Anchor sleeve			Rocket EVOLution L _{a1}		Rocket EVOLution L _{a2}		
Rocket	d _{nom}	h _{ef}	min h _{nom}	max h _{nom}	min L _{a1,}	max L _{a1}	min L _{a2,}	max L _{a2}
anchor sleeve	8	25	100	160	170	299	79	139
anchor sleeve	8	50	100	160	170	299	79	139

IsoFux Rocket, IsoFux Rocket EVOLution	
Product description	Annex A 7
Base material group A, B, C, D, E Rocket EVOLution	
Components for deep mounting, dimensions	

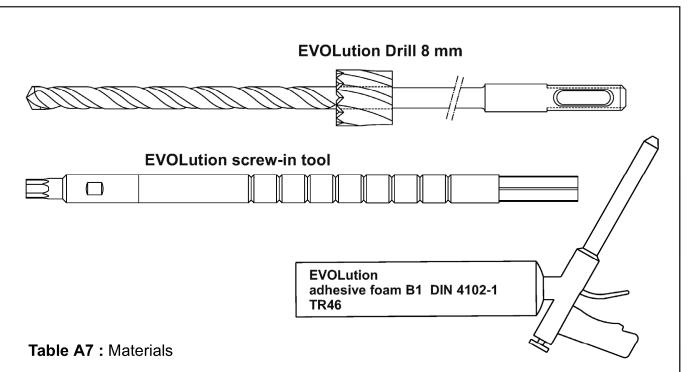
Table A6: Maximum insulation thickness for mounting on the surface and deep mounting, classification of the lengths L_{a1}, colour coding of the cover caps

mounting on the surface	deep mounting	min L _{a1,}	max L _{a1}	Cover cap
h₀ max	h₀ max	deep		Colour
60	80	155	180	beige
80	100	175	200	yellow
100	120	195	220	green
120	140	215	240	white
140	160	235	260	orange
160	180	255	280	brown
180	200	200 275 300 blue		blue
200	220	295 320 red		red
220	240	315	340	light grey
240	260	335	360	black
260	280	355	380	violet
280	300	375 400 dark grey		dark grey
320	340	415	440	dark green
360	380	455	480	natural

Screw-in tool for IsoFux Rocket


for deep mounting screw bit long TX 40 stop plate for mounting on the surface screw bit short TX 40 stop plate

IsoFux Rocket, IsoFux Rocket EVOLution


Product description

Classification of the anchor length L_{a1} for the insulation thickness h_D and colour coding of the cover caps, Screw- in tool for IsoFux Rocket

Designation	Material
Anchor sleeve Colour: grey	virgin Polypropylene (PP)
Shaft with plate Colour: grey or red	virgin Polyamid (PA)
Cover cap	virgin Polyamid 6.0 GF
Additional plate T110, T140 Additional plate T 90 Colour: grey, orange or red	virgin Polyamid 6.6 virgin Polypropylene (PP)
Special screw	Steel, electro galvanized 5 µm
Insulation cover	Polystyrol PS20 Mineral wool Type HD
EVOLution - Stick	virgin Polyamid (PA)

IsoFux Rocket, IsoFux Rocket EVOLution	
Product description	Annex A 10
Materials, EVOLution screw-in tool, EVOLution Drill 8 mm	

Specifications of intended use

Anchorages subject to:

. The anchor shall only be used for the transmission of wind suction loads and shall not be used for the transmission of dead loads of thermal insulation composite system.

Base materials:

- Normal weight concrete (base material group A) according to Annex C 1
- . Solid masonry (base material group B) according Annex C 1
- . Hollow or perforated masonry (base material group C) according to Annex C 1
- Lightweight aggregate concrete (base material group D) according to Annex C1
- . Autoclaved aerated concrete (base material group E) according to Annex C 1
- . For other base materials of the base material group A, B, C, D and E, the characteristic resistance of the anchor may be determined by job site tests according to EOTA Technical Report Tr051, Edition December 2016.

Application temperature range:

. 0°C to +40°C (maximmum short term temperature +40°C and maximum long term temperature +24°C)

Design:

- . The anchors are designed under the responsibility of an engineer experienced in anchorages and masonry work with the partial safety factors $\gamma_{\rm M}$ = 2,0 and $\gamma_{\rm F}$ = 1,5, if there are no other national regulations.
- . Verifiable calculation notes and drawings shall be prepared taking account of the loads to be anchored. The position of the anchor shall be indicated on the design drawings.
- . Fasteners are only to be used for multiple fixing of thermal insulation composite system.

Installation:

- . Drilling method shall comply to Annex C 1
- . Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on the site.
- . Ambient temperature during the installation of the anchor 0°C to +40°C
- . Exposure to UV due to solar radiation of the anchor not protected by rendering < 6 weeks.

IsoFux Rocket, IsoFux Rocket EVOLution]
Intended use	Annex B 1
Specification	

789816 20 8 06 04-30/20

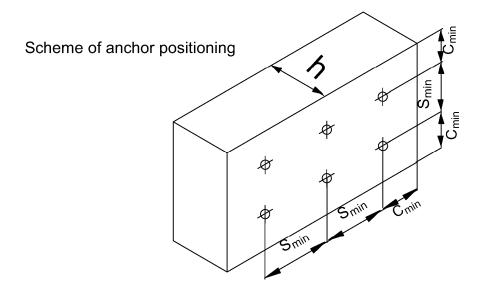


Table B1: Installation parameters

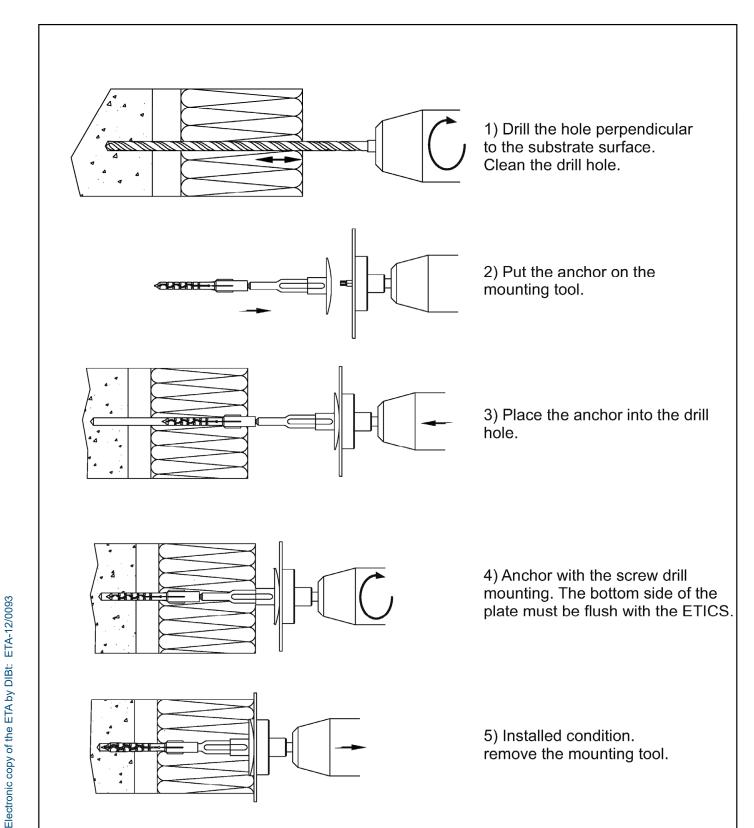
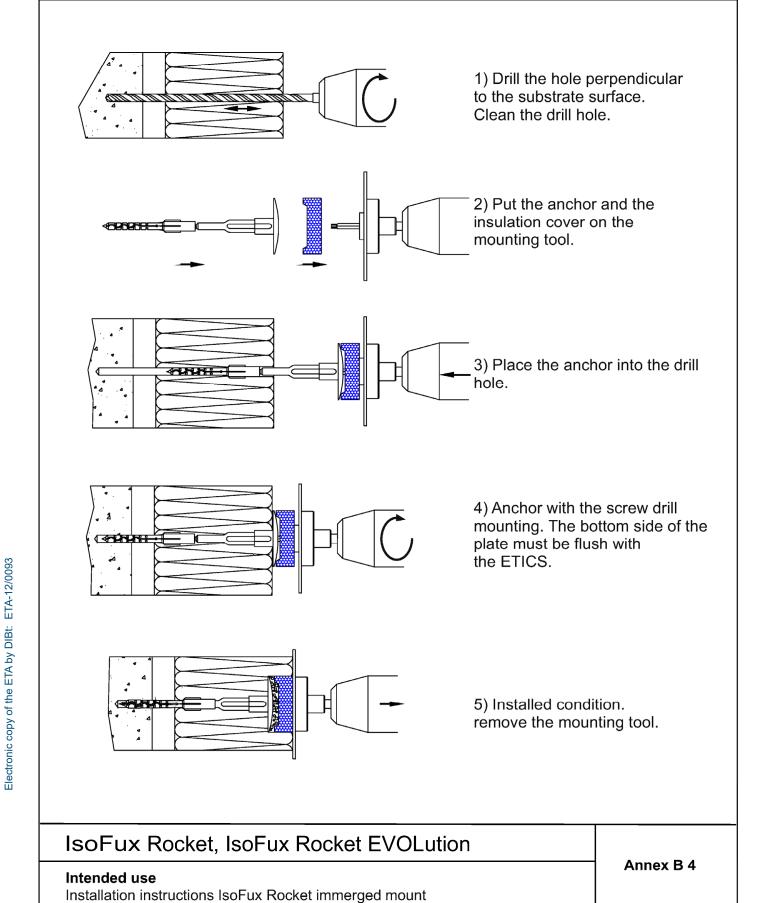

Anchor type	IsoFux			Rocket
Drill hole diameter		d _o	(mm) =	8
Cutting diameter of drill bit		d _{cut}	(mm) <u><</u>	8,45
Depth of drill hole to deepest poi	int			
Base material group : A B C		h ₁	(mm) ≥	35
Base material group : D E		h ₁	(mm) ≥	60
Effective anchorage depth				
Base material group : A B C		h ef	(mm) ≥	25
Base material group : D E		h _{ef}	(mm) ≥	50

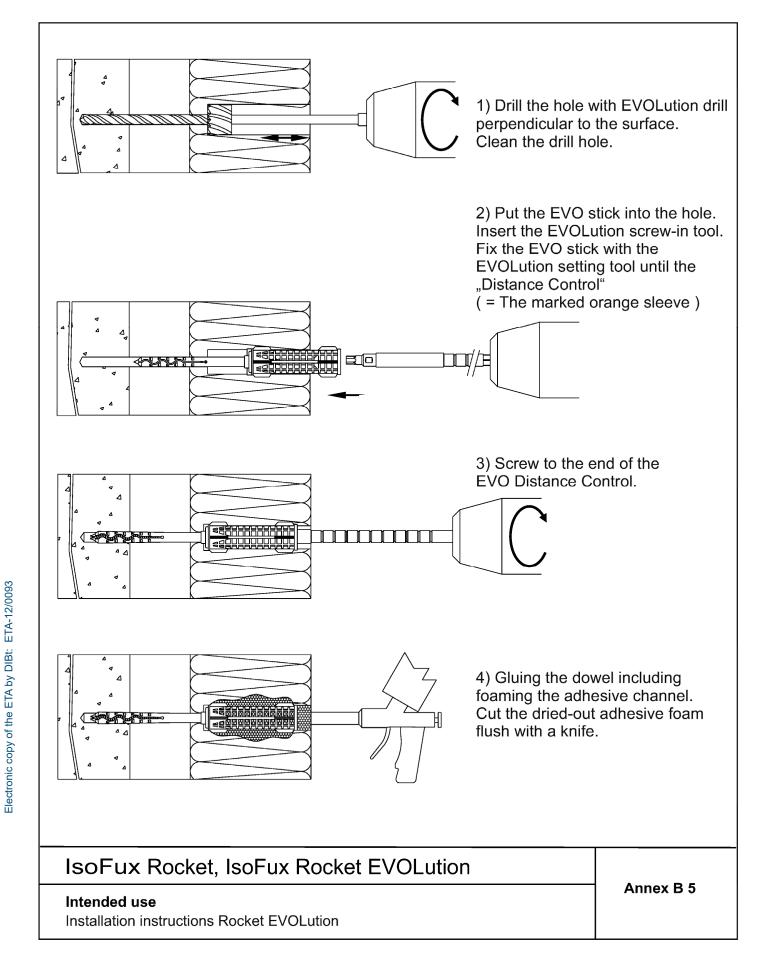
Table B2: Anchor distances and dimensions of members

Anchor type		Rocket
Minimum spacing	S _{min} = [mm]	100
Minimum edge distance	C _{min} = [mm]	100
Minimum thickness of concrete member	h = [mm]	100

IsoFux Rocket, IsoFux Rocket EVOLution	
Intended use Installation parameters, minimum thickness, edge distance and spacing	Annex B 2



IsoFux	Rocket	IsoFux	Rocket	EVOLution	n
1301 UX	MOCKEL,	ISOI UX	LOCKEL		


Intended use

Installation instructions IsoFux Rocket surface mount

Annex B 3

Z89816.20

Table C1: Characteristic resistance N_{Rk} in [kN] to tension loads in concrete and masonry for a single anchor and minimum distances and dimensions

Anchor type	type Rocket EVOLution +IsoFux Rocket				
Base material	Bulk density	Minimum compressive strength	Remarks	Drill method	N _{Rk}
	ρ [kg/dm³]	f₅ [N/mm²]			[kN]
Concrete C12/15 - C20/25 EN 206-1:2000				Hammer	1,5
Concrete C50/60 EN 206-1:2000				Hammer	1,5
Clay bricks Mz EN 771-1 : 2011	<u>≥</u> 1,8	20	Cross-section reduced by vertical perforation up to 15%	Hammer	1,5
Sand-lime solid bricks KS EN 771-2 : 2011	≥ 1,8	12	Cross-section reduced by vertical perforation up to 15%	Hammer	1,5
Sand-lime perforated bricks KSL EN 771-2 : 2011	≥ 1,4	12	Cross-section reduced by vertical perforation more than 15%	Rotary drilling	1) 1,2
Vertically perforated clay bricks HLZ EN 771-1 : 2011	≥ 1,0	12	Cross-section reduced by vertical perforation for more than 15% and less than 50%	Rotary drilling	2) 0,75
Lightweight concrete solid bricks EN 771-3 : 2011	≥ 1,2	6	Proportion of hole up to 10% maximum extension of hole: length= 110mm; wide= 45 mm	Rotary drilling	0,4
Lightweight concrete hollow blocks Hbl EN 771-3 : 2011	≥ 1,2	6		Rotary drilling	0,6
Autoclaved aerated concrete EN 771-4 : 2011	≥ 0,65	4	PP/PPE	Rotary drilling	1,2
Lightweight aggregate concrete LAC 6 acc. DIN EN 1520:2011/ EN 771-3:2011	≥ 0,90	6		Hammer	0,9

- 1) The value applies only for outer web thicknesses ≥ 20 mm; otherwise the characteristic resistance shall be determined by job-site pull-out tests.
- 2) The value applies only for outer web thickness ≥ 14 mm; otherwise the characteristic resistance shall be determined by job-site pull-out tests.

IsoFux Rocket, IsoFux Rocket EVOLution	
Performance Characteristic registance	Annex C 1
Characteristic resistance	

Table C2: Displacements

Base material	Bulk density [kg/dm³]	Minimum compressive strength [N/mm²]	Tension load N [kN]	Displacements $\delta_{_{m}}(N)$ [mm]
Concrete C12/15 - C50/60 (EN 206- 1:2000)	≥ 1,8	20	0,50	0,3
Clay brick, Mz (EN 771-1:2011)	≥ 1,8	20	0,50	0,3
Sand-lime solid brick, KS (EN 771-2:2011)	≥ 1,8	12	0,50	0,3
Vertically perforated sand-lime brick , KSL (EN 771-2:2011)	≥ 1,4	12	0,40	0,3
Vertically perforated clay brick, HLZ (EN 771-1:2011)	≥ 1,0	12	0,25	0,3
Lightweight concrete solid bricks, V (EN 771-3:2011)	≥ 1,2	6	0,15	0,3
Lightweight concrete hollow blocks, Hbl (EN 771-3:2011)	≥ 1,2	6	0,20	0,3
Autoclaved aerated concrete, AAC (EN 771-4:2011)	≥ 0,65	4	0,40	0,3
Lightweight aggregate concrete LAC 6 (DIN EN 1520 / EN 771-3:2011)	<u>></u> 0,90	6	0,30	0,4

IsoFux Rocket, IsoFux Rocket EVOLution	
Performance	Annex C 2
Displacements	

Table C3: Plate stiffness according EOTA Technical Report TR 026: May 2016

Anchor type	Diameter of the anchor plate [mm]	Load resistance of the anchor plate [kN]	Plate stiffness [kN/mm]
RANIT IsoFux Rocket 1)	60	2,5	1,1

¹⁾ Rocket EVOLution without plate stiffness, load resistance of the anchor plate

Table C4: Point thermal transmittance according EOTA Technical Report TR 025: May 2016

Anchor type	Insulation thickness $\mathbf{h}_{_{\mathrm{D}}}$ [mm]	point thermal transmittance ^χ [W/K]
RANIT IsoFux Rocket deep mounted	80 - 380	0,001
RANIT IsoFux Rocket flush mounted	60 - 360	0,002
RANIT EVOLution 80 mm	100 - 400	0
RANIT EVOLution 120 mm	140 - 400	0

IsoFux Rocket, IsoFux Rocket EVOLution	
Performance	Annex C 3
Plate stiffness and point thermal transmittance	