

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-12/0258 of 17 June 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer Superbond

Bonded anchor for use in concrete

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

42 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601

ETA-12/0258 issued on 22 July 2019

European Technical Assessment ETA-12/0258

Page 2 of 42 | 17 June 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-12/0258

Page 3 of 42 | 17 June 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The injection system fischer Superbond is a bonded anchor for use in concrete consisting of a cartridge with injection mortar fischer FIS SB or a resin capsule fischer RSB and a steel element according to Annex A 5.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The resin capsule is placed into the hole and the steel element is driven by machine with simultaneous hammering and turning. The anchor rod is anchored via the bond between steel element, chemical mortar and concrete

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 4 to B 8, C 1 to C 10
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 to C 4
Displacements under short-term and long-term loading	See Annex C 11 and C 12
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 13 to C 16

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-12/0258

Page 4 of 42 | 17 June 2020

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

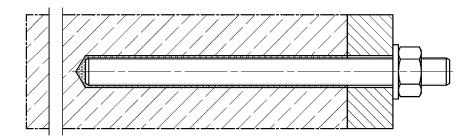
The system to be applied is: 1

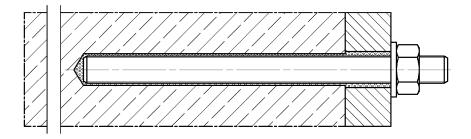
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

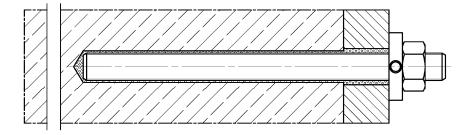
Issued in Berlin on 17 June 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department


beglaubigt: Baderschneider


Installation conditions part 1

anchor rod or fischer anchor rod RG M with fischer injection system FIS SB


Pre-positioned installation

Push through installation (annular gap filled with mortar)

Pre-positioned or push through installation with subsequently injected fischer filling disc (annular gap filled with mortar)

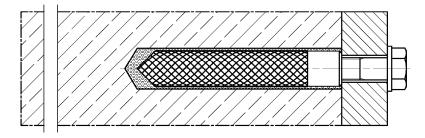
Figures not to scale

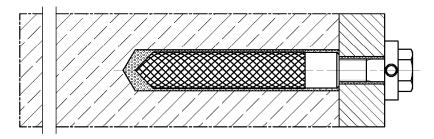
fischer Superbond

Product description

Installation conditions part 1

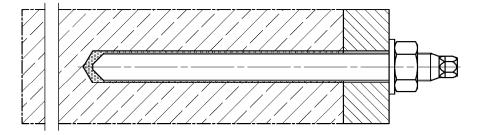
Annex A 1


Installation conditions part 2 Reinforcing bar with fischer injection system FIS SB fischer rebar anchor FRA with fischer injection system FIS SB **Pre-positioned installation** Push through installation (annular gap filled with mortar) Figures not to scale fischer Superbond Annex A 2 **Product description** Installation conditions part 2

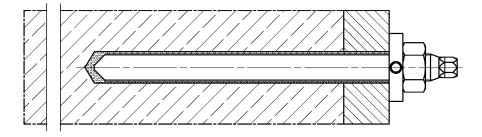

Installation conditions part 3

fischer internal threaded anchor RG MI with fischer resin capsule system RSB or fischer injection system FIS SB

Pre-positioned installation



Pre-positioned installation with subsequently injected fischer filling disc (annular gap filled with mortar)



fischer anchor rod RG M with fischer resin capsule system RSB

Pre-positioned installation

Pre-positioned installation with subsequently injected fischer filling disc (annular gap filled with mortar)

Figures not to scale

fischer Superbond

Product description

Installation conditions part 3

Annex A 3

Z52319.20

Electronic copy of the ETA by DIBt: ETA-12/0258

Overview system components Part 2 anchor rod Sizes: M8, M10, M12, M16, M20, M24, M27, M30 fischer anchor rod RG M Sizes: M8, M10, M12, M16, M20, M24, M30 fischer internal threaded anchor RG MI Size: M8, M10, M12, M16, M20 Screw / threaded rod / washer / hexagon nut fischer filling disc with injection adapter Reinforcing bar Nominal diameters: \$\phi8\$, \$\phi10\$, \$\phi12\$, \$\phi14\$, \$\phi16\$, \$\phi20\$, \$\phi25\$, \$\phi28\$, \$\phi32\$ fischer rebar anchor FRA Sizes: M12, M16, M20, M24 Figures not to scale fischer Superbond Annex A 5 **Product description** Overview system components part 2; steel components

Overview system components Part 3	
Cleaning brush BS / BSB	
Blow-out pump ABG or ABP with cleaning nozzle	
*	
Tischer Land	
	Figures not to sca
fischer Superbond	
Product description Overview system components part 3; cleaning brush / blow-out pump / injection adapter	Annex A 6

Z52319.20

English translation prepared by DIBt

Part	Designation		Material				
1	Injection cartridge		Mortar, hardener, filler				
		Steel	Stainless steel R	High corrosion resistant steel HCR 2)			
	Steel grade	zinc plated	acc. to EN 10088-1:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4:2015	acc. to EN 10088-1:2014 Corrosion resistance class CRC V acc. to EN 1993-1-4:201			
2	Anchor rod	Property class 4.8, 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 μ m, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised \geq 40 μ m EN ISO 10684:2004 fuk \leq 1000 N/mm ² A ₅ > 12% fracture elongation	EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12\%$ fracture elongation	Property class 50 or 80 EN ISO 3506-1:2009 or property class 70 with f_{yk} = 560 N/mm² 1.4565; 1.4529; EN 10088-1:2014 $f_{uk} \le 1000$ N/mm² $A_5 > 12\%$ fracture elongation			
			$A_5 > 8$ %, for applications with seismic performance category				
3	Washer ISO 7089:2000	zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571;	1.4565; 1.4529; EN 10088-1:2014			
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014			
5	fischer internal threaded anchor RG MI	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K)	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014			
6	Commercial standard screw or threaded rod for fischer internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 μ m, ISO 4042:2018/Zn5/An(A2K), A ₅ > 8 % fracture elongation	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014 A ₅ > 8 % fracture elongation				
7	fischer filling disc similar to DIN 6319-G	zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529; EN 10088-1:2014			
8	Reinforcing bar EN 1992-1-1:2004 and AC:2010, Annex C	Bars and de-coiled rods, class f_{yk} and k according to NDP or $f_{uk} = f_{tk} = k \cdot f_{yk}$		I/NA			
9	fischer rebar anchor FRA	Rebar part: Bars and de-coiled rods class B or C with f_{yk} and k according to NDP or NCL of EN 1992-1-1:2004+AC:2010 f _{luk} = f_{lk} = $k \cdot f_{yk}$ Threaded part: Property class 70 or 80 EN ISO 3506-1:2009 1.4401, 1.4404, 1.4571, 1.4578, 1.4439, 1.4362, 1.4062 acc. to EN 10088-1:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4:2015 1.4565; 1.4529 acc. to EN 10088-1:2014 Corrosion resistance class CRC V acc. to EN 1993-1-4:2015					
fisc	her Superbond						
	 duct description			Annex A 7			

English translation prepared by DIBt

Specifications of intended use (part 1)

Table B1.1: Overview use and performance categories, injection mortar system FIS SB

Table B1.1		verview use	and pe	iioiiiiaiii	- Caley	,			уэст Г		
Anchorages s	subject to)			T		SB with .		T		
			ancho	or rod	fischer threaded RG			cing bar	fischer and FF	hor RA	
Hammer drilli standard drill		P4444000000		all sizes							
Hammer drilli with hollow di (fischer "FHD "Duster Expe Bosch "Spee Clean"; Hilti " TE-YD", DreBo "D-Plu DreBo "D-Ma	rill bit ", Heller rt"; d TE-CD,	Ī	Nominal drill bit diameter (d₀) 12 mm to 35 mm								
Diamond drill	ing				-2	not pe	rmitted				
Static and qu static load, in		uncracked concrete cracked concrete	all sizes	Tables: C1.1 C4.1 C5.1 C11.1	all sizes	Tables: C2.1 C4.1 C7.1 C11.2	all sizes	Tables: C3.1 C4.1 C9.1 C12.1	all sizes	Tables: C3.2 C4.1 C10.1 C12.2	
Seismic perfo category (only hammer drilli	y	C1	all sizes	Tables: C13.1 C14.2 C15.1	oles: 3.1 4.2 all sizes Tables: C14.1 C14.2		Tables: C14.1 C14.2				
standard / ho bits)		C2	M12 M16 M20 M24	Tables: C13.1 C14.2 C16.1	-	,	_1)	_1)		,	
Use	I1	dry or wet concrete				all s	sizes				
category	12	water filled hole				not pe	rmitted				
Installation di	rection		D3	(downwar	d and hori	zontal and	d upwards	(overhea	d) installati	on)	
Installation m	ethod			p	re-positio	ned or pus	sh through	installatio	on		
Installation							C to T _{i,max} =				
temperature	_			3 High Sp			C to T _{i,max} =				
_	•	ature range I		C to +40 °			/ T _{It} = +24				
	•	ature range II		C to +80 °			$\frac{1}{1} = +50$				
temperature -				to +120 °			$\frac{C / T_{lt} = +77}{C / T_{lt}}$				
1) No perfo		ture range IV	-40 °C	to +150 °	U Ist	= +150 °(C / T _{It} = +90	U *U			
								Т			
fischer Su Intended us Specificatio	se	d 1), fischer inje	ection mor	tar system	ı FIS SB				Annex	В1	

Electronic copy of the ETA by DIBt: ETA-12/0258

English translation prepared by DIBt

Specifications of intended use (part 2) Table B2.1: Overview use and performance categories, resin capsule system RSB RSB with ... Anchorages subject to fischer internal threaded anchor RG MI fischer anchor rod RG M Hammer drilling with standard drill all sizes Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Nominal drill bit diameter (d₀) Expert": Bosch all sizes 12 mm to 35 mm "Speed Clean"; Hilti "TE-CD, TE-YD", DreBo "D-Plus", DreBo "D-Max") all sizes 1) Diamond drilling Tables: Tables: uncracked all sizes all sizes C1.1 C2.1 concrete Static and quasi C4.1 C4.1 static load, in cracked C6.1 C8.1 all sizes 1) all sizes 1) concrete C11.1 C11.2 Tables: Seismic C13.1 C1 all sizes performance C14.2 category (only C15.1 _2) hammer drilling with standard / hollow _2) C2 drill bits) dry or wet 11 all sizes concrete Use category water filled 12 all sizes hole Installation direction D3 (downward and horizontal and upwards (overhead) installation) only pre-positioned installation Installation method $T_{i,min} = -30 \, ^{\circ}C$ to $T_{i,max} = +40 \, ^{\circ}C$ Installation temperature -40 °C to +40 °C $T_{st} = +40 \, {}^{\circ}C \, / \, T_{lt} = +24 \, {}^{\circ}C$ Temperature range I -40 °C to +80 °C $T_{st} = +80 \, ^{\circ}\text{C} \, / \, T_{lt} = +50 \, ^{\circ}\text{C}$ Temperature range II In-service temperature Temperature range III $T_{st} = +120~^{\circ}C$ / $T_{lt} = +72~^{\circ}C$ -40 °C to +120 °C Temperature range IV -40 °C to +150 °C $T_{st} = +150 \, ^{\circ}\text{C} \, / \, T_{lt} = +90 \, ^{\circ}\text{C}$ 1) For diamond drilling in cracked concrete only nominal drill bit diameters (d₀) ≥ 18 mm are permitted 2) No performance assessed fischer Superbond Annex B 2 Intended use Specifications (part 2), fischer resin capsule system RSB

Specifications of intended use (part 3)

Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

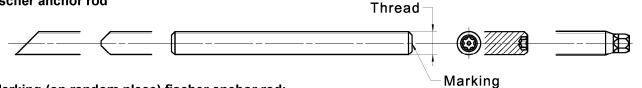
- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- For all other conditions according to EN1993-1-4:2015 corresponding to corrosion resistance classes to Annex A 7 table A7.1.

Design:

- · Anchorages have to be designed by a responsible engineer with experience of concrete anchor design.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with:
 EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.

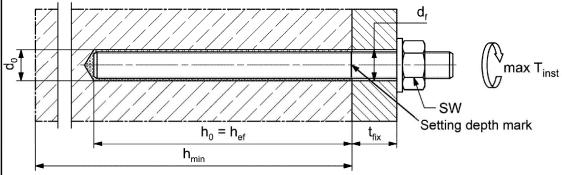
Installation:

- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- In case of aborted hole: The hole shall be filled with mortar
- Anchorage depth should be marked and adhered to on installation
- · Overhead installation is allowed


fischer Superbond	
Intended use Specifications (part 3)	Annex B 3

	nstallation parameters for anchor rods in combination with injection
r	nortar system FIS SB

Anchor rods			Thread	M8	M10	M12	M16	M20	M24	M27	M30
Width across flats	3	SW		13	17	19	24	30	36	41	46
Nominal drill hole	diameter	d ₀		10	12	14	18	24	28	30	35
Drill hole depth		h ₀		$h_0 = h_{\rm ef}$							
Cff a ative a male a de	a a m t al a m th	h _{ef, min}		60	60	70	80	90	96	108	120
Effective embedn	nent depth	h _{ef, max}		160	200	240	320	400	480	540	600
Minimum spacing and minimum edge distance		S _{min} = C _{min}	[mm]	40	45	55	65	85	105	120	140
Diameter of the	pre-positioned installation	d _f		9	12	14	18	22	26	30	33
clearance hole of the fixture	push through installation	d _f		11	14	16	20	26	30	33	40
Min. thickness of concrete member h _{min}		h _{min}		h _{ef} +	30 (≥	100)			h _{ef} + 2d)	
Maximum setting	torque	max T _{inst}	[Nm]	10	20	40	60	120	150	200	300


Marking (on random place) fischer anchor rod:

Steel zinc plated PC ¹⁾ 8.8	• or +	Steel hot-dip PC ¹⁾ 8.8	•
High corrosion resistant steel HCR PC ¹⁾ 50	•	High corrosion resistant steel HCR PC ¹⁾ 70	-
High corrosion resistant steel HCR PC ¹⁾ 80	(Stainless steel R property class 50	~
Stainless steel R property class 80	*		

Alternatively: Colour coding according to DIN 976-1:2016

1) PC = property class

Installation conditions:

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

- · Materials, dimensions and mechanical properties according to Annex A 7, Table A7.1
- Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- Setting depth is marked

Figures not to scale

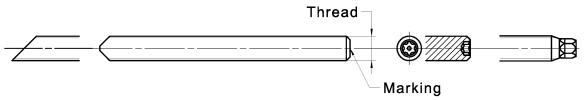
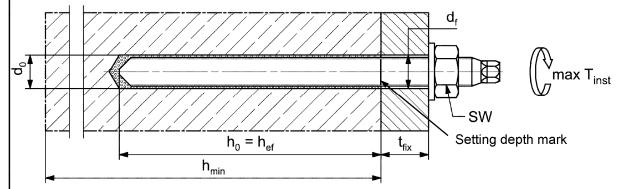

fischer Superbond Intended use Installation parameters for anchor rods in combination with injection mortar system FIS SB Annex B 4

Table B5.1:	Installation parameters for fischer anchor rods RG M in combination with
	resin capsule system RSB

Anchor rod RG M		Thread	M8	M10	M12	M16	M20	M24	M30
Width across flats	SW		13	17	19	24	30	36	46
Nominal drill hole diameter	d₀] [10	12	14	18	25	28	35
Drill hole depth	h ₀] [$h_0 = h_{ef}$			
	h _{ef,1}] [75	75	95			
Effective embedment depth	h _{ef,2}		80	90	110	125	170	210	280
h _{ef,3}] [150	150	190	210		
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	40	45	55	65	85	105	140
Diameter of the pre- clearance hole of positioned the fixture installation	d _f		9	12	14	18	22	26	33
Min. thickness of concrete member	h _{min}		h _{ef} + 30 (≥ 100)			h _{ef} +	- 2d ₀		
Maximum setting torque	max T _{inst}	[Nm]	10	20	40	60	120	150	300

fischer anchor rod RG M


Marking (on random place) fischer anchor rod RG M:

Steel zinc plated PC¹) 8.8	• or +	Steel hot-dip PC ¹⁾ 8.8	•
High corrosion resistant steel HCR PC ¹⁾ 50	•	High corrosion resistant steel HCR PC ¹⁾ 70	-
High corrosion resistant steel HCR PC1) 80	(Stainless steel R property class 50	~
Stainless steel R property class 80	*		

Alternatively: Colour coding according to DIN 976-1:2016

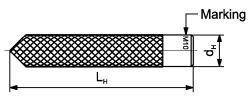
1) PC = property class

Installation conditions:

Figures not to scale

fischer Superbond

Intended use


Installation parameters for fischer anchor rods RG M in combination with resin capsule system RSB

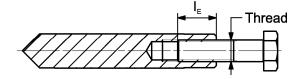
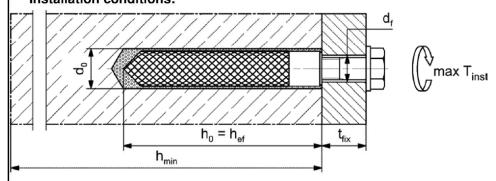

Annex B 5

Table B6.1: Installation	oaramete	rs for f	ischer int	ernal threa	aded anch	ors RG M	I
Internal threaded anchor RG MI		Thread	М8	M10	M12	M16	M20
Sleeve diameter	$d = d_H$		12	16	18	22	28
Nominal drill hole diameter	d₀		14	18	20	24	32
Drill hole depth	h ₀				$h_0 = h_{\text{ef}} = L_{\text{H}}$		
Effective embedment depth $(h_{ef} = L_H)$	h _{ef}		90	90	125	160	200
Minimum spacing and minimum edge distance Smin = Cmin		[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture	df		9	12	14	18	22
Minimum thickness of concrete member	h _{min}		120	125	165	205	260
Maximum screw-in depth	I _{E,max}		18	23	26	35	45
Minimum screw-in depth	I _{E,min}		8	10	12	16	20
Maximum installation torque	max T _{inst}	[Nm]	10	20	40	80	120

fischer internal threaded anchor RG MI


Marking: Anchor size e. g.: M10

Stainless steel → additional R; e.g.: M10 R

High corrosion resistant steel R→ additional C; e.g.: M10 HCR

Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 7, Table A7.1

Installation conditions:

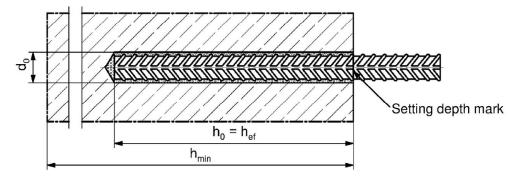
Figures not to scale

fischer Superbond

Intended use
Installation parameters for fischer internal threaded anchors RG MI

Annex B 6

Table B7.1: Installation p	aramete	rs for r	einfo	rcing	bars						
Nominal diameter of the bar		ф	8 ¹⁾	10 ¹⁾	12 ¹⁾	14	16	20	25	28	32
Nominal drill hole diameter	d ₀		10 12	12 14	14 16	18	20	25	30	35	40
Drill hole depth	h ₀						$h_0 = h_{ef}$	f			
Effective embedment depth	$h_{\text{ef,min}}$		60	60	70	75	80	90	100	112	128
Effective embedment depth	h _{ef,max}]	160	200	240	280	320	400	500	560	640
Minimum spacing and minimum edge distance	Smin = Cmin	[mm]	40	45	55	60	65	85	110	130	160
Minimum thickness of concrete member			f + 30 : 100)				h _{ef} + 2	2d ₀			

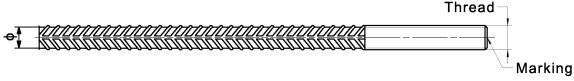

¹⁾ Both drill hole diameters can be used

Reinforcing bar

- The minimum value of related rib area f_{R,min} must fulfil the requirements of EN 1992-1-1:2004+AC:2010
- The rib height must be within the range: 0,05 · φ ≤ h_{rib} ≤ 0,07 · φ
 (φ = Nominal diameter of the bar, h_{rib} = rib height)

Installation conditions:

Figures not to scale


Intended use Installation parameters reinforcing bars

Annex B 7

Table B8.1:	Installation p	aramete	rs for f	ischer	rebar	anchor FRA	1		
Rebar anchor FR	A		Thread	M1:	2 ¹⁾	M16	M20	M24	
Nominal diameter	of the bar	ф		12	2	16	20	25	
Width across flats		SW		19	9	24	30	36	
Nominal drill hole	diameter	d₀		14	16	20	25	30	
Drill hole depth		h ₀				h _{ef}	+ l _e		
Eff a ation a male a alma		h _{ef,min}		70)	80	90	96	
Effective embedme	ent deptn	h _{ef,max}		140		220	300	380	
Distance concrete welded joint	surface to	l _e			100				
Minimum spacing a edge distance	and minimum	Smin = Cmin	[mm]	55	5	65	85	105	
Diameter of	pre-positioned anchorage	≤ d _f		14	4	18	22	26	
clearance hole in the fixture	push through anchorage	≤ d _f		18		22	26	32	
Minimum thickness member	h _{min}		h ₀ + 30		h ₀ + 2d ₀				
Maximum installati	on torque	max T _{inst}	[Nm]	40)	60	120	150	

¹⁾ Both drill hole diameters can be used

fischer rebar anchor FRA

Marking frontal e. g:

Installation conditions:

FRA (for stainless steel);

FRA HCR (for high corrosion resistant steel)

max T_{inst} SW Setting depth mark

Figures not to scale

fischer Superbond

Intended use
Installation parameters rebar anchor FRA

Annex B 8

Electronic copy of the ETA by DIBt: ETA-12/0258

Table B9.	Table B9.1: Dimension of resin capsule RSB												
Resin capsu	ule RSE	3	RSB 8	RSB 10 mini	RSB 10	RSB 12 mini	RSB 12	RSB 16 mini	RSB 16	RSB 16 E	RSB 20	RSB 20 E / 24	RSB 30
Capsule diameter	dР	[mm]	9,0	10,5		12,5			16,5		23	3,0	27,5
Capsule length	L_P	[mm]	85	72	90	72	97	72	95	123	160	190	260

Table B9.2: Assignment of resin capsule RSB to fischer anchor rod RG M

Anchor rod RG M			М8	M10	M12	M16	M20	M24	M30
Effective embedment depth	h _{ef, 1}	[mm]		75	75	95			
Related capsule RSB		[-]		10 mini	12 mini	16 mini			
Effective embedment depth	h _{ef, 2}	[mm]	80	90	110	125	170	210	280
Related capsule RSB		[-]	8	10	12	16	20	20 E/ 24	30
Effective embedment depth	h _{ef, 3}	[mm]		150	150	190	210		
Related capsule RSB		[-]		2 x 10 mini	2 x 12 mini	2 x 16 mini	20 E / 24		

Table B9.3: Assignment of resin capsule RSB to fischer internal threaded anchor RG MI

Internal threaded ancho	r RG I	МІ	М8	M10	M12	M16	M20
Effective embedment depth	h _{ef}	[mm]	90	90	125	160	200
Related capsule RSB		[-]	10	12	16	16 E	20 E / 24

Figures not to scale

fischer Superbond

Intended use
Dimensions of the capsules; Assignment of the capsule to the fischer anchor rod RG M and fischer internal threaded anchor RG MI

Annex B 9

Table B10.1: Parameters of the cleaning brush BS / BSB (steel brush with steel bristles)

The size of the cleaning brush refers to the drill hole diameter

Nominal drill hole diameter	d₀		10	12	14	16	18	20	24	25	28	30	32	35	40
Steel brush diameter BS	dь	[mm]	11	14	16	2	0	25	26	27	30		40		-
Steel brush diameter BSB	dь		-	-	-		-	-	-	-	-		-		42

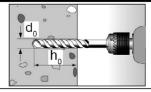
Table B10.2: Maximum processing time of the mortar and minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature. Minimal cartridge temperature +5 °C; minimal resin capsule temperature -15 °C)

Temperature at	Maximum pro	•	Mii	nimum curing ti	me
anchoring base	Ιw	ork		t _{cure}	
[°C]	FIS SB	FIS SB High Speed	FIS SB	FIS SB High Speed	RSB
-30 to -20					120 h
> -20 to -15		60 min		24 h	48 h
> -15 to -10	60 min	30 min	36 h	8 h	30 h
> -10 to -5	30 min	15 min	24 h	3 h	16 h
> -5 to 0	20 min	10 min	8 h	2 h	10 h
> 0 to 5	13 min	5 min	4 h	1 h	45 min
> 5 to 10	9 min	3 min	2 h	45 min	30 min
> 10 to 20	5 min	2 min	1 h	30 min	20 min
> 20 to 30	4 min	1 min	45 min	15 min	5 min
> 30 to 40	2 min		30 min		3 min

Figures not to scale

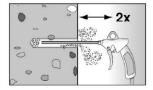
fischer Superbond

Intended use
Cleaning brush (steel brush)
Processing time and curing time

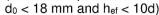

Annex B 10

Installation instructions part 1; Injection mortar system FIS SB

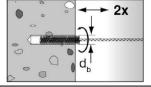
Drilling and cleaning the hole (hammer drilling with standard drill bit)


1

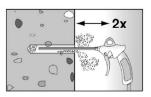
Drill the hole.


Nominal drill hole diameter d_0 and drill hole depth h_0 see tables B4.1, B6.1, B7.1, B8.1

2


Clean the drill hole:

Blow out the drill hole twice, with oil free compressed air (p ≥ 6 bar) In uncracked concrete the use of the manual blow-out pump ABG is possible (Installation parameters:



3

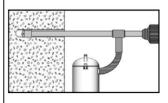
Brush the drill hole twice. For drill hole diameter ≥ 30 mm use a power drill. For deep holes use an extension. Corresponding brushes see **table B10.1**

4

Clean the drill hole:

Blow out the drill hole twice, with oil free compressed air ($p \ge 6$ bar) In uncracked concrete the use of the manual blow-out pump ABG is possible (Installation parameters: $d_0 < 18$ mm and $h_{ef} < 10d$)

Go to step 5 (Annex B 12)


Drilling and cleaning the hole (hammer drilling with hollow drill bit)

1

Check a suitable hollow drill (see **table B1.1**) for correct operation of the dust extraction

2

Use a suitable dust extraction system, e. g. fischer FVC 35 M or a comparable dust extraction system with equivalent performance data.

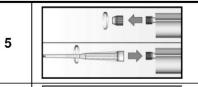
Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Nominal drill hole diameter \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see tables B4.1, B6.1, B7.1, B8.1

Go to step 5 (Annex B 12)

fischer Superbond

Intended use

Installation instructions part 1; injection mortar system FIS SB


Annex B 11

Z52319.20

Installation instructions part 2; injection mortar system FIS SB

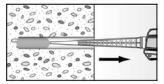
Preparing the cartridge

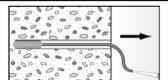
Remove the sealing cap

Screw on the static mixer (the spiral in the static mixer must be clearly visible)

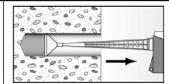
Place the cartridge into the dispenser

7




Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey

Injection of the mortar



Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles

For drill hole depth ≥ 150 mm use an extension tube

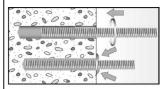
For overhead installation, deep holes ($h_0 > 250$ mm) or drill hole diameter ($d_0 \ge 40$ mm) use an injection-adapter

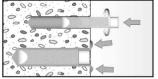
Go to step 9 (Annex B 13)

fischer Superbond

Intended use

Installation instructions part 2; injection mortar system FIS SB

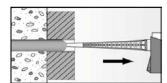

Annex B 12



Installation instructions part 3; injection mortar system FIS SB

Installation of anchor rods or fischer internal threaded anchors RG MI

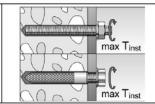
9


Only use clean and oil-free metal part.

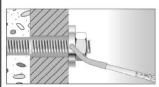
Mark the setting depth of the metal part. Push the anchor rod or fischer internal threaded RG MI anchor down to the bottom of the hole, turning it slightly while doing so.

After inserting the metal part, excess mortar must be emerged around the anchor element. If not, pull out the metal part immediately and reinject mortar.

For overhead installations support the metal part with wedges. (e. g. fischer centering wedges)


For push through installation fill the annular gap with mortar

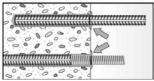
11


Wait for the specified curing time t_{cure} see table B10.2

12

Mounting the fixture max T_{inst} see **tables B4.1** and **B6.1**

Option

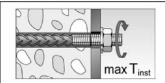

After the minimum curing time is reached, the gap between metal part and fixture (annular clearance) may be filled with mortar via the fischer filling disc. Compressive strength ≥ 50 N/mm² (e.g. fischer injection mortars FIS HB, FIS SB, FIS V, FIS EM Plus)

ATTENTION: Using fischer filling disc reduces $t_{\text{\rm fix}}$ (usable length of the anchor)

Installation reinforcing bars and fischer rebar anchor FRA

Only use clean and oil-free reinforcing bars or fischer FRA. Mark the setting depth. Turn while using force to push the reinforcement bar or the fischer FRA into the filled hole up to the setting depth mark

10


When the setting depth mark is reached, excess mortar must be emerged from the mouth of the drill hole. If not, pull out the anchor element immediately and reinject mortar.

11

Wait for the specified curing time t_{cure} see **table B10.2**

12

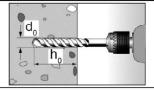
Mounting the fixture max T_{inst} see **table B8.1**

fischer Superbond

Intended use

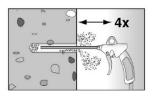
Installation instructions part 3; injection mortar system FIS SB

Annex B 13


Z52320.20

Installation instructions part 4; resin capsule RSB

Drilling and cleaning the hole (hammer drilling with standard drill bit)

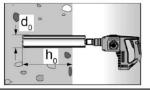

1

Drill the hole.

Nominal drill hole diameter d_0 and drill hole depth h_0 see tables B5.1 and B6.1

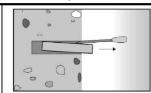
2

Clean the drill hole:

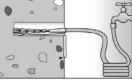

Blow out the drill hole four times, with oil free compressed air ($p \ge 6$ bar) In uncracked concrete the use of the manual blow-out pump ABG is possible (Installation parameters: $d_0 < 18$ mm and $h_{ef} < 10d$)

Go to step 6 (Annex B 15)

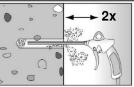
Drilling and cleaning the hole (wet drilling with diamond drill bit)


1

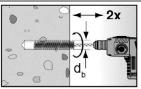
Drill the hole.


Drill hole diameter **d**₀ a

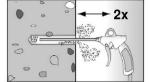
Drill hole diameter **d**₀ and drill hole depth **h**₀ see **tables B5.1** and **B6.1**


Break the drill core and remove it

2


Flush the drill hole with clean water until it flows clear

3


Blow out the drill hole twice, using oil-free compressed air (p > 6 bar)

4

Brush the drill hole twice using a power drill. Corresponding brushes see **table B10.1**

5

Blow out the drill hole twice, using oil-free compressed air (p > 6 bar)

Go to step 6 (Annex B 15)

fischer Superbond

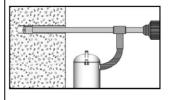
Intended use

Installation instructions part 4; resin capsule RSB

Annex B 14

Z52320.20

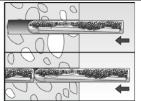
Installation instructions part 5; resin capsule RSB


Drilling and cleaning the hole (hammer drilling with hollow drill bit)

1

Check a suitable hollow drill (see **table B2.1**) for correct operation of the dust extraction

2

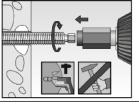

Use a suitable dust extraction system, e. g. fischer FVC 35 M or a comparable dust extraction system with equivalent performance data.

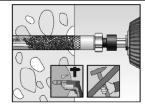
Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Nominal drill hole diameter \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see tables **B5.1** and **B6.1**

Go to step 6 (Annex B 15)

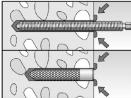
Installation fischer anchor rod RG M or fischer internal threaded anchor RG MI

6


Insert the resin capsule into the drill hole by hand.

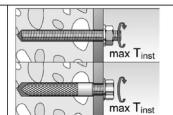

Suitable resin capsule RSB or RSB mini see table B9.2.

Depending on the metal part being installed, use a suitable setting tool


7

Only use clean and grease-free metal parts. Using a suitable adapter, drive the fischer anchor rod RG M or the fischer internal threaded anchor RG MI into the capsule using a hammer drill set on rotary hammer action. Stop when the metal parts reaches the bottom of the hole and is set to the correct embedment depth

8


When reaching the correct embedment depth, excess mortar must emerge from the mouth of the drill hole. If not, the metal parts must be pulled out directly and a second resin capsule must be pushed into the drill hole. Setting process must be repeated (Step 7)

9

Wait for the specified curing time, t_{cure} see **table B10.2**

10

Mounting the fixture max T_{inst} see **tables B5.1** and **B6.1**

fischer Superbond

Intended use

Installation instructions part 5; resin capsule RSB

Annex B 15

Z52320.20

English translation prepared by DIBt

Table C1.1:	Characteristic values for steel failure under tension / shear load of fischer
	anchor rods and standard threaded rods

	anchor	rods a	nd st	land	ard thr	eaded	rods								
Anch	or rod / standard thre	aded rod			М8	M10	M12	M16	M20	M24	M27	M30			
Beari	ng capacity under ter	nsion load	d, ste	el fai	lure ³⁾										
S			4.8		15(13)	23(21)	33	63	98	141	184	224			
istic N _{Rk,s}	Steel zinc plated	 	5.8		19(17)	29(27)	43	79	123	177	230	281			
		ropert	8.8 50	[kN]	29(27)	47(43)	68	126	196	282	368	449			
Characteristic esistance N _{Rk.}	Stainless steel R and	Property	50	ואואן	19	29	43	79	123	177	230	281			
Che	high corrosion	"	_70		26	41	59	110	172	247	322	393			
	resistant steel HCR		80		30	47	68	126	196	282	368	449			
Partia	al factors 1)														
			4.8						50						
턍	Steel zinc plated		5.8						50						
Partial factor		Property	8.8	[-]					50						
artia √	Stainless steer R and	_ R 등	50		2,86										
🖁	high corrosion resistant steel HCR	_	_70						/ 1,87						
			80		1,60										
	ng capacity under sh	ear load,	steel	failu	re ³⁾										
withc	out lever arm			I	T				Γ	I	1				
O X	s k		4.8		9(8)	14(13)	20	38	59	85	110	135			
ristic V ⁰ Rk,s	Steel zinc plated	} , ←	5.8		11(10)	17(16)	25	47	74	106	138	168			
Characteristic esistance V ⁰ RK,		Property	8.8	[kN]	15(13)	23(21)	34	63	98	141	184	225			
nara Ista	Stainless steel R and	Pro lo	50		9	15	21	39	61	89	115	141			
Ses C	high corrosion resistant steel HCR		70		13	20	30	55	86	124	161	197			
Dustil			80	r 1	15	23	34	63	98	141	184	225			
	lity factor lever arm		k ₇	[-]				ı	,0						
	lever arm		4.0		15(10)	20(27)	52	133	259	448	665	899			
	Steel zinc plated		4.8 5.8		15(13) 19(16)	30(27) 37(33)	65	166	324	560	833	1123			
erist M	Steer zinc piated	s srt			30(26)	60(53)	105	266	519	896	1333	1797			
Characteristic resistance M ⁰ Rk,s	Otalialasa ataal D and	Property	8.8 50	[Nm]	19	37	65	166	324	560	833	1123			
har	Stainless steel R and high corrosion	<u> </u>	70		26	52	92	232	454	784	1167	1573			
	resistant steel HCR		80		30	60	105	266	519	896	1333	1797			
Partia	al factors 1)	l				00	100		0.0	000	1000	1707			
			4.8					1	 25						
<u>نو</u> [Steel zinc plated	ج ا	5.8						25 25						
ial fac γ _{Ms,} ∨		oert ass	Property class 8.8 8.8 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	5.8 8.8					1.	25					
Partial factor	Glairiless steer it and	Ç ö		50 [-]	2.38										
P _a	high corrosion resistant steel HCR	"	70		1.25 ²⁾ / 1.56										
	ICOIOIAIII OICEI FIOR		80		1.33										

¹⁾ In absence of other national regulations

fischer Superbond

Performances

Characteristic values for steel failure capacity of fischer anchor rods and standard threaded rods

Annex C 1

²⁾ Only admissible for high corrosion resistant steel C, with f_{yk} / $f_{uk} \ge 0.8$ and $A_5 > 12$ % (e.g. fischer anchor rods)

³⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hotdip galvanized standard threaded rods according to EN ISO 10684:2004+AC:2009

English translation prepared by DIBt

Table C2.1:					steel failu ors RG MI	re under te	nsion / she	ar load of fi	ischer
fischer internal	thread	ed anchors	RG MI		M8	M10	M12	M16	M20
Bearing capacit	y unde	r tension lo	oad, ste	el fai	lure				
		Property	5.8		19	29	43	79	123
Charact. resistance with	NI	class	8.8] [kN]	29	47	68	108	179
screw	$N_{Rk,s}$	Property	R	וואן	26	41	59	110	172
001011		class 70	HCR		26	41	59	110	172
Partial factors ¹⁾									
		Property	5.8				1,50		
Partial factors		class	8.8] , ,			1,50		
ranianacions	γMs,N	Property	R	[-]			1,87		
		class 70	HCR				1,87		
Bearing capacit	y unde	r shear loa	d, steel	failu	re				
Without lever a	rm								
		Property	5.8		9,2	14,5	21,1	39,2	62,0
Charact. resistance with	$V^0_{ m Rk,s}$	class	8.8	[kN]	14,6	23,2	33,7	54,0	90,0
screw	V Rk,s	Property	R	נאואן	12,8	20,3	29,5	54,8	86,0
		class 70	HCR		12,8	20,3	29,5	54,8	86,0
Ductility factor			k ₇	[-]			1,0		
With lever arm									
		Property	5.8		20	39	68	173	337
Charact. resistance with	M ⁰ Rk,s	class	8.8	[Nm]	30	60	105	266	519
screw	IVI HK,S	Property	R	ַנויאוון _	26	52	92	232	454
		class 70	HCR		26	52	92	232	454
Partial factors ¹⁾									
		Property	5.8				1,25		
Partial factors	2/14-1/	class	8.8	[-]			1,25		
n artiar lactors	γMs,V	Property	R	[⁻]			1,56		
		class 70	HCR				1,56		

¹⁾ In absence of other national regulations

fischer Superbond Annex C 2 **Performances** Characteristic values for steel failure under tension / shear load fischer internal threaded anchor RG MI

Table C3.1: Characteristic values for steel failure under tension / shear load of reinforcing bars											
Nominal diameter of the bar		ф	8	10	12	14	16	20	25	28	32
Bearing capacity under tension	n load, ste	el fail	ure								
Characteristic resistance	N _{Rk,s}	[kN]					As · fuk1)				
Bearing capacity under shear	load, steel	failu	'e								
Without lever arm											
Characteristic resistance	$V_{Rk,s}$	[kN]				0,5	5 · A₅ · f	uk ¹⁾			
Ductility factor	k ₇	[-]					1,0				
With lever arm											
Characteristic resistance	M^0 Rk,s	[Nm]				1,2	· W _{el} · 1	fuk ¹⁾			

¹⁾ fuk or fyk respectively must be taken from the specifications of the reinforcing bar

Table C3.2: Characteristic values for **steel failure** under tension / shear load of **fischer rebar anchors FRA**

fischer rebar anchor FRA			M12	M16	M20	M24			
Bearing capacity under tens	ion load, ste	eel failu	re						
Characteristic resistance	N _{Rk,s}	[kN]	N] 63 111 173 270						
Partial factor ¹⁾				•	•	•			
Partial factor	γMs,N	[-]	1,4						
Bearing capacity under shea	ar load, stee	l failure							
Without lever arm									
Characteristic resistance	$V_{Rk,s}$	[kN]	30	55	86	124			
Ductility factor	k ₇	[-]		1	,0	•			
With lever arm									
Characteristic resistance	M ⁰ Rk,s	[Nm]	92	233	454	785			
Partial factor ¹⁾		1		1	•	1			
Partial factor	γMs.V	[-]		1	,56				

¹⁾ In absence of other national regulations

fischer Superbond

Performances
Characteristic values for steel failure under tension / shear load of reinforcing bars and fischer rebar anchors FRA

Annex C 3

Table C4.1:	Characteristic	vaia								iioai io			
Size							A	II siz	es				
Tension load			I										
Installation facto		γinst	[-]			e anne	x C 5 to	C 10	and (C 15 to	C16		
Factors for the	compressive strer	igth of	concr	ete > C	20/25								
_	C25/30							1,02					
_	C30/37		-					1,04					
Increasing _	C35/45	Ψ_{c}	[-]					1,07					
factor for τ _{Rk}	C40/50	- 0						1,08					
_	C45/55							1,09					
	C50/60							1,10					
Splitting failure													
	$\frac{h / h_{ef} \ge 2.0}{2.0 + 1.0}$							1,0 h _€					
Edge distance _	$2.0 > h / h_{ef} > 1.3$	C _{cr,sp}	[mm]					h _{ef} - 1					
	h / h _{ef} ≤ 1,3		-					2,26 h					
Spacing	• "	S _{cr,sp}						2 C _{cr,s}	р				
Concrete cone								44.0					
Uncracked cond		k _{ucr,N}	[-]					11,0					
Cracked concre	te	K _{cr,N}		7,7									
Edge distance			[mm]	1,5 h _{ef}									
Spacing		S _{cr,N}			2 C _{cr,N}								
	stained tension load	d		04.00		T = 0.04	2 / 22 2		2.00 /	400.00	00.00.	150.00	
Temperature range			[-]		/ 40 °C	+	C / 80 °	C 7		120 °C			
Factor Ψ ⁰ s		$\Psi^0_{ m sus}$	[-]	0,	84		0,86	\perp	0,8	84	0,	91	
Shear load													
Installation facto		γinst	[-]					1,0					
Concrete pry-o													
Factor for pry-ou		k ₈	[-]					2,0					
Concrete edge	failure												
Effective length shear loading	of fastener in	If	[mm]	for $d_{nom} \le 24$ mm: min (h_{ef} ; 12 d_{nom}) for $d_{nom} > 24$ mm: min (h_{ef} ; 8 d_{nom} ; 300 mm)									
Calculation dia	meters												
Size				M8	M10	M12	M1	6 1	M20	M24	M27	M30	
fischer anchor ro standard thread		d _{nom}		8	10	12	16		20	24	27	30	
fischer internal threade	d anchors RG MI	d _{nom}	[mm]	12	16	18	22		28	_1)	_1)	_1)	
fischer rebar an	chor FRA	d_{nom}		_1)	_1)	12	16		20	25	_1)	_1)	
Size (nominal di	ameter of the bar)		ф	8	10	12	14	16	20	25	28	32	
Reinforcing bar		d _{nom}	[mm]	8	10	12	14	16	20	25	28	32	
1) Anchor type	e not part of the ETA	١											
fischer Supe	erbond												
	Performances Characteristic values for concrete failure under tension / shear load Annex C 4												

Table C5.1:	Characteristic values for combined pull-out and concrete failure for fischer
	anchor rods and standard threaded rods in hammer drilled holes in
	combination with injection mortar FIS SB; uncracked or cracked concrete

	anchor re combinat										rete
Anchor ı	rod / standard thread	led rod		М8	M10	M12	M16	M20	M24	M27	M30
Combine	ed pullout and concr	ete con	e failure								
Thread d	iameter	d	[mm]	8	10	12	16	20	24	27	30
Uncrack	ed concrete										
Characte	eristic bond resistan	ce in un	cracked (concret	e C20/25	5					
<u>Hammer</u>	drilling with standard	<u>drill bit o</u>	r hollow d	rill bit (d	ry or wet	concret	<u>e)</u>				
	I: 24 °C / 40 °C			12	13	13	13	13	12	10	10
Tem- perature range	II: 50 °C / 80 °C		[N/mm²] -	12	12	12	13	13	12	10	10
	III: 72 °C / 120 °C	₹Rk,ucr		10	11	11	11	11	11	9,0	9,0
	IV: 90 °C / 150 °C			10	10	10	11	10	10	8,0	8,0
Installati	on factors				•						
Dry or we	et concrete	γinst	[-]	1,0							
Cracked	concrete										
Characte	eristic bond resistan	ce in cra	acked cor	ncrete C	20/25						
Hammer-	drilling with standard	drill bit o	r hollow d	rill bit (d	ry or wet	concret	<u>e)</u>				
	I: 24 °C / 40 °C			6,5	7,0	7,5	7,5	7,5	7,5	7,5	7,5
Tem- perature	II: 50 °C / 80 °C	-	[N/mm²]	6,0	6,5	7,5	7,5	7,5	7,5	7,0	7,0
range	III: 72 °C / 120 °C	ͳRk,cr	[14/111111-]	5,5	6,0	6,5	6,5	6,5	6,5	6,0	6,0
	IV: 90 °C / 150 °C			5,0	5,5	6,0	6,0	6,0	6,0	5,5	5,5
Installati	on factors										
Dry or we	et concrete	γinst	[-]				1	,0			

fischer Superbond

Performances

Characteristic values for combined pull-out and concrete failure for fischer anchor rod andstandard threaded rods with injection mortar FIS SB

Annex C 5

Table C6	6.1: Characte anchor re resin cap	ods RC	G M in ha	ammer d	or diamo	nd drille	d holes			
Anchor ro	d RG M			M8	M10	M12	M16	M20	M24	M30
Combined	pullout and concr	ete con	e failure							
Thread dia	-	d	[mm]	8	10	12	16	20	24	30
Uncracked	d concrete									
Character	istic bond resistan	ce in un	cracked	concrete	C20/25					
<u>Hammer-d</u>	rilling with standard	drill bit c	r hollow d	rill bit (dry	or wet c	oncrete as	s well as v	water filled	d hole)	
	I: 24 °C / 40 °C			12	13	13	13	13	12	10
	II: 50 °C / 80 °C			12	12	12	13	13	12	10
perature — range	III: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm²]	10	11	11	11	11	11	9,0
Tarige _	V: 90 °C / 150 °C			10	10	10	11	10	10	8,0
	Irilling (dry or wet co	ncrete a	s well as \							
	I: 24 °C / 40 °C			13	13	14	14	14	13	11
Tem-	II: 50 °C / 80 °C			12	13	13	14	13	13	10
perature –	III: 72 °C / 120 °C	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	11	12	12	12	12	11	9,5
Tange _	V: 90 °C / 150 °C			10	11	11	11	11	10	8,5
Installatio								- 1 1	10	0,0
Dry or wet							1,0			
Water filled		γinst	[-]	1	,2		- , -	1,0		
Cracked c										
Character	istic bond resistan	ce in cr	acked cor	ncrete C2	20/25					
Hammer-d	rilling with standard	drill bit c	r hollow d	rill bit (dry	or wet c	oncrete as	s well as v	water fille	d hole)	
	I: 24 °C / 40 °C			6,5	7,0	7,5	7,5	7,5	7,5	7,5
Tem-	II: 50 °C / 80 °C		[N 1/ 2]	6,0	6,5	7,5	7,5	7,5	7,5	7,0
perature — range	III: 72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]	5,5	6,0	6,5	6,5	6,5	6,5	6,0
_	V: 90 °C / 150 °C			5,0	5,5	6,0	6,0	6,0	6,0	5,5
Diamond-c	Irilling (dry or wet co	ncr <u>ete a</u>	s w <u>ell as v</u>	•					<u> </u>	
	I: 24 °C / 40 °C			_1)	_1)	_1)	7,5	7,5	7,5	7,5
Tem-	II: 50 °C / 80 °C			_1)	_1)	_1)	7,5	7,5	7,5	7,0
perature — range	III: 72 °C / 120 °C	$\tau_{\text{Rk,cr}}$	[N/mm ²]	_1)	_1)	_1)	6,5	6,5	6,5	6,5
Tarige _	V: 90 °C / 150 °C			_1)	_1)	_1)	6,0	6,0	6,0	6,0
Installatio							0,0	0,0	0,0	-,-
Dry or wet							1,0			
		γinst	[-]	1	,2		,	1,0		

PerformancesCharacteristic values for combined pull-out and concrete failure for fischer anchor rod RG M with resin capsule RSB

Annex C 6

fischer Superbond

Table C7.1: Characteristic values for combined pull-out and concrete failure for fischer internal threaded anchors RG MI in hammer drilled holes in combination with injection mortar FIS SB: uncracked or cracked concrete

							ked concre	ete	iation with			
Internal	threa	ded anchor RG	MI		M8	M10	M12	M16	M20			
Combine	ed pu	ıllout and concr	ete con	e failure								
Sleeve di	ame	ter	d	[mm]	12	16	18	22	28			
Uncrack	ed co	oncrete										
Characte	eristi	c bond resistan	ce in un	cracked o	concrete C20)/25						
<u>Hammer-</u>	<u>drillir</u>	ng with standard	<u>drill bit o</u>	r hollow d	rill bit (dry or	wet concrete)	1				
	l:	24 °C / 40 °C		[N/mm²] -	12	12	11	11	9,5			
Tem- perature	II:	50 °C / 80 °C	_		12	11	11	10	9,0			
range	III:	72 °C / 120 °C	₹Rk,ucr		11	10	10	9,0	8,0			
	IV:	90 °C / 150 °C			10	9,5	9,0	8,5	7,5			
Installati	on fa	actors					•	•	,			
Dry or we	et cor	ncrete	γinst	[-]			1,0					
Cracked	con	crete										
Characte	eristi	c bond resistan	ce in cr	acked cor	ncrete C20/2	5						
Hammer-	<u>drillir</u>	ng with standard	drill bit o	r hollow d	rill bit (dry or	wet concrete)					
	l:	24 °C / 40 °C					5,0					
Tem-		50 °C / 80 °C	_	[N1/mm2]			5,0					
perature range	111:	72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm²]	4,5							
	IV:	90 °C / 150 °C		-			4,0					
Installati	on fa	actors										
Dry or we	et cor	ncrete	γinst	[-]			1,0					

fischer Superbond

Performances

Characteristic values for combined pull-out and concrete failure for fischer internal threaded anchor RG MI with injection mortar FIS SB

Annex C 7

English translation prepared by DIBt

Table C8.1:	Characteristic values for combined pull-out and concrete failure for fischer
	internal threaded anchors RG MI in hammer or diamond drilled holes in
	combination with resin capsule RSB; uncracked or cracked concrete

		combinat	ion with	n resin d	capsule RS	B; uncrac	ked or crac	cked concr	ete			
Internal t	threa	ded anchor RG	MI		М8	M10	M12	M16	M20			
Combine	ed pu	Illout and concr	ete con	e failure								
Sleeve di	ame	ter	d	[mm]	12	16	18	22	28			
Uncrack	ed c	oncrete										
Characte	eristi	c bond resistan	ce in un	cracked	concrete C20	0/25						
<u>Hammer-</u>	drilli	ng with standard	<u>drill bit c</u>	r hollow d	rill bit (dry or	wet concrete	as well as wa	ater filled hole)			
	l:	24 °C / 40 °C			12	12	11	11	9,5			
Tem- perature	II:	50 °C / 80 °C	~	[N/mm ²]	12	11	11	10	9,0			
range	III:	72 °C / 120 °C	₹Rk,ucr	[[14/11111]	11	10	10	9,0	8,0			
_	IV: 90 °C / 150 °C		10	9,5	9,0	8,5	7,5					
Diamond	-drilli	ng (dry or wet co	ncrete a	s well as v	water filled ho	ole)						
	l:	24 °C / 40 °C			13	12	12	11	10			
Tem-	II:	50 °C / 80 °C		[N/mm ²]	13	12	12	11	9,5			
perature range	III:	72 °C / 120 °C	$ au_{Rk,ucr}$		11	11	10	9,5	8,5			
J	IV:	90 °C / 150 °C			10	10	9,5	9,0	8,0			
Installati	on fa	actors					1	•				
Dry or wet concrete		Vinet	[-]	1,0								
Water fille	ed ho	ole	γinst	[-]	1,2		1	,0				
Cracked												
		c bond resistan							.			
<u>Hammer-</u>		ng with standard	<u>arıll bit c</u>	r hollow d	<u>Irill bit (dry or</u> I	wet concrete		ater filled hole	1			
Tem-		24 °C / 40 °C			5,0							
perature		50 °C / 80 °C	$ au_{Rk,cr}$	[N/mm²]	5,0							
range		72 °C / 120 °C	- 1 111,01	-	4,5							
	IV:	90 °C / 150 °C				4,0						
<u>Diamond</u>		ng (dry or wet co	ncrete a	s well as v	water filled ho	<u>ole)</u>						
	<u> </u>	24 °C / 40 °C			_1)		5	,0				
Tem- perature	II:	50 °C / 80 °C	π-	[N/mm ²]	_1)		5	,0				
range	III:	72 °C / 120 °C	$ au_{Rk,cr}$	[[[]]	_1)		4	,5				
	IV:	90 °C / 150 °C			_1)		4	,0				
Installati				1								
Dry or we			γinst	[-]			1,0					
Water fille	ed ho	ole	,		1,2		1	,0				

¹⁾ No performance assessed

fischer Superbond

Performances
Characteristic values for combined pull-out and concrete failure for fischer internal threaded anchor RG MI with resin capsule RSB

Annex C 8

English translation prepared by DIBt

Table C	29.1:	Characte reinforci mortar F	ng bar	s in ham	ımer d	rilled h	oles i	n coml	oinatio				
Nominal	diam	eter of the bar		ф	8	10	12	14	16	20	25	28	32
Combine	d pu	llout and concr	ete cone	failure									
Bar diam	eter		d	[mm]	8	10	12	14	16	20	25	28	32
Uncrack	ed co	ncrete											
Characte	ristic	bond resistan	ce in un	cracked (concre	te C20/	25						
<u>Hammer-</u>	drillin	g with standard	<u>drill bit o</u>	r hollow d	rill bit (d	dry or w	et conc	rete)		I	Г	т	
_	l:	24 °C / 40 °C		[N/mm²]	8,0	8,5	9,0	9,5	9,5	10	9,5	9,0	7,5
Tem- perature	II:	50 °C / 80 °C	$ au_{Rk,ucr}$		8,0	8,5	9,0	9,0	9,5	9,5	9,0	8,5	7,5
range	111:	72 °C / 120 °C			7,0	7,5	8,0	8,0	8,5	8,5	8,0	7,5	6,5
	IV:	90 °C / 150 °C			6,5	7,0	7,0	7,5	7,5	8,0	7,5	7,0	6,0
Installati	on fa	ctors		1		1				1			
Dry or we	et con	crete	γinst	[-]	1,0								
Cracked	cond	rete											
Characte	ristic	bond resistan	ce in cra	acked cor	ncrete	C20/25							
<u>Hammer-</u>	drillin	g with standard	<u>drill bit o</u>	<u>r hollow d</u>	rill bit (d	dry or w	et conc	<u>rete)</u>					
	l:	24 °C / 40 °C			4,5	6,0	6,0	6,0	7,0	6,0	6,0	6,0	6,0
Tem-	II:	50 °C / 80 °C	_	 [N/mm²]	4,5	5,5	5,5	5,5	6,5	6,0	6,0	6,0	6,0
perature range	111:	72 °C / 120 °C	$ au_{Rk,cr}$	[[14/111111-]	4,0	5,0	5,0	5,0	6,0	5,5	5,5	5,5	5,5
i ango	IV:	90 °C / 150 °C			3,5	4,5	4,5	4,5	5,5	5,0	5,0	5,0	5,0
Installati	on fa	ctors									•		
Dry or we	et con	crete	γinst	[-]	1,0								

fischer Superbond	
Performances Characteristic values for combined pull-out and concrete failure for reinforcing bars with injection mortar FIS SB	Annex C 9

Table C10.1:	Characteristic values for combined pull-out and concrete failure for fischer
	rebar anchors FRA in hammer drilled holes in combination with injection
	mortar FIS SB; uncracked or cracked concrete

		mortar F	IS SB;	uncrack	ed or cracke	d concrete		
fischer r	ebar	anchor FRA			M12	M16	M20	M24
Combine	ed pu	illout and concr	ete cone	failure				
Bar diam	eter		d	[mm]	12	16	20	25
Uncrack	ed co	oncrete						
Characte	eristi	c bond resistan	ce in un	cracked c	concrete C20/25	5		
<u>Hammer</u>	<u>-drillir</u>	ng with standard	<u>drill bit o</u>	<u>r hollow dı</u>	<u>rill bit (dry or wet</u>	concrete)		1
	l:	24 °C / 40 °C			9,0	9,5	10	9,5
Tem- perature		50 °C / 80 °C	_	 [N/mm²]-	9,0	9,5	9,5	9,0
range	III:	72 °C / 120 °C	τ Rk,ucr	[[14/11111-]	8,0	8,5	8,5	8,0
_	IV:	90 °C / 150 °C			7,0	7,5	8,0	7,5
Installati	on fa	actors						
Dry or we	et cor	ncrete	γinst	[-]		1	,0	
Cracked	con	crete						
Characte	eristi	c bond resistan	ce in cra	cked con	crete C20/25			
Hammer-	-drillir	ng with standard	<u>drill bit o</u>	r hollow di	rill bit (dry or wet	concrete)		
	l:	24 °C / 40 °C			6,0	7,0	6,0	6,0
Tem-		50 °C / 80 °C	_	 [N/mm²]-	5,5	6,5	6,0	6,0
perature range	III:	72 °C / 120 °C	て Rk,cr	[[]]	5,0	6,0	5,5	5,5
_	IV:	90 °C / 150 °C			4,5	5,5	5,0	5,0
Installati	on fa	actors						
Dry or we	et cor	ncrete	γinst	[-]		1	,0	

Performances

Characteristic values for combined pull-out and concrete failure for fischer rebar anchors FRA with injection mortar FIS SB

Annex C 10

Table (Table C11.1: Displacements for anchor rods													
Anchor	rod	М8	M10	M12	M16	M20	M24	M27	M30					
Displace	hisplacement-Factors for tension load ¹⁾													
Uncrack	Incracked or cracked concrete; Temperature range I, II, III, IV													
δ _{N0-Factor}	[mm/(N/mm²)]	0,07	0,08	0,09	0,10	0,11	0,12	0,12	0,13					
δ _{N∞-Factor}	[[[]]]]	0,13	0,14	0,15	0,17	0,17	0,18	0,19	0,19					
Displace	ement-Factors	for shear I	oad ²⁾											
Uncrack	ed or cracked	concrete;	Temperatu	re range I,	II, III, IV									
δvo-Factor	[mm/kNI]	0,18	0,15	0,12	0,09	0,07	0,06	0,05	0,05					
δv∞-Factor	[mm/kN]	0,27	0,22	0,18	0,14	0,11	0,09	0,08	0,07					

1) Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{Ed}$: Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

Table C11.2: Displacements for fischer internal threaded anchors RG MI

Internal anchor F	threaded RG MI	M8	M10	M12	M16	M20
Displace	ment-Factors	for tension load ¹)			
Uncrack	ed or cracked	concrete; Tempe	rature range I, II,	III, IV		
δ _{N0-Factor}	[mm/(N/mm²)]	0,09	0,10	0,10	0,11	0,19
δ _{N∞-Factor}	[[mm/(N/mm-)] 	0,13	0,15	0,15	0,17	0,19
Displace	ment-Factors	for shear load ²⁾				
Uncrack	ed or cracked	concrete; Tempe	rature range I, II,	III, IV		
δvo-Factor	[mm/kN]]	0,12	0,09	0,08	0,07	0,05
δ∨∞-Factor	[mm/kN]	0,18	0,14	0,12	0,10	0,08

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta v_0 = \delta v_{0\text{-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

(V_{Ed}: Design value of the applied shear force)

fischer Superbond

Performances

Displacements for anchor rods and fischer internal threaded anchors RG MI

Annex C 11

Table (Γable C12.1: Displacements for reinforcing bars													
Nominal of the ba	diameter φ	8	10	12	14	16	20	25	28	32				
Displace	ment-Factors	for tension	n load ¹⁾											
Uncrack	Uncracked or cracked concrete; Temperature range I, II, III, IV													
δ _{N0-Factor}	[mm/(N/mm²)]	0,07	0,08	0,09	0,09	0,10	0,11	0,12	0,13	0,13				
δ _{N∞-Factor}	[[[]]]]	0,11	0,13	0,13	0,15	0,16	0,16	0,18	0,20	0,20				
Displace	ment-Factors	for shear	load ²⁾											
Uncrack	ed or cracked	concrete	; Tempera	ture rang	e I, II, III, I	V								
δνο-Factor	[mm/kN]]	0,18	0,15	0,12	0,10	0,09	0,07	0,06	0,05	0,05				
δv∞-Factor	[mm/kN]	0,27	0,22	0,18	0,16	0,14	0,11	0,09	0,08	0,06				

1) Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$ $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

(V_{Ed}: Design value of the applied shear force)

Table C12.2: Displacements for fischer rebar anchors FRA

fischer r FRA	ebar anchor	M12	M16	M20	M24
Displace	ement-Factors	for tension load ¹⁾			
Uncrack	ed or cracked	concrete; Temperatu	re range I, II, III, IV		
δ _{N0-Factor}	[mm/(N1/mm2)]	0,09	0,10	0,11	0,12
δ _{N∞-Factor}	[mm/(N/mm²)]	0,13	0,15	0,16	0,18
Displace	ement-Factors	for shear load ²⁾			
Uncrack	ed or cracked	concrete; Temperatu	re range I, II, III, IV		
δv0-Factor	[mamma /LcN 1]	0,12	0,09	0,07	0,06
SV- Footor	[mm/kN]	0.18	0.14	0.11	0.09

1) Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{Ed}$: Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-Factor}} \cdot V_{Ed}$

(V_{Ed}: Design value of the applied shear force)

fischer Superbond

Performances

Displacements for reinforcing bars and fischer rebar anchors FRA

Annex C 12

Table C13.1: Characteristic values for steel failure under tension / shear load of fischer anchor rods and standard threaded rods under seismic action performance category C1 or C2

Math		periorinari	ice ca	iege	ny C	1 01 02							
Steel zinc plated Stee	Anchor	rod / standard thread	ed rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel zinc plated Stainless steel R and high corrosion resistant steel HCR Stainless steel R	Bearing	capacity under tension	on load	l, ste	el fai	lure ¹⁾							
Steel zinc plated Stainless steel R and high corrosion resistant steel HCR Stainless steel R	fischer a	anchor rods and stand	dard th	read	led ro	ds, perl	ormanc	e catego	ory C1 ²⁾				
Steel zinc plated Stainless steel R and high corrosion resistant steel HCR Stainless steel R	ပ	Ctool =inc ploted		5.8		19(17)	29(27)	43	79	123	177	230	281
Steel zinc plated Stainless steel R and high corrosion resistant steel HCR Stainless steel R	rristi nce	Steel zinc plated	ي تٍ	8.8		29(27)	47(43)	68	126	196	282	368	449
Steel zinc plated Stainless steel R and high corrosion resistant steel HCR Stainless steel R	acte star	Stainless steel R and	ope das	50	[kN]	19	29	43	79	123	177	230	281
Steel zinc plated Stainless steel R and high corrosion resistant steel HCR Stainless steel R	hara resi		ا ج	70		26		59	110	172	247	322	393
Steel zinc plated Stainless steel R and high corrosion resistant steel HCR Stainless steel R											282	368	449
Steel zinc plated Stainless steel R and high corrosion resistant steel HCR Stainless steel R	fischer a	anchor rods and stand	dard th	read	led ro					.		ı	
Steel zinc plated Stainless steel R and high corrosion resistant steel HCR Stainless steel R	<u>:</u>	Steel zinc plated			1			39					
Steel zinc plated Stainless steel R and high corrosion resistant steel HCR Stainless steel R	eris Ince	——————————————————————————————————————	erty is										
Steel zinc plated Stainless steel R and high corrosion resistant steel HCR Stainless steel R	ract ista IRK,s		ope clas		[-]								
Steel zinc plated Stainless steel R and high corrosion resistant steel HCR Stainless steel R	har res		~~ ~										
Steel zinc plated Stainless steel R and high corrosion resistant steel HCR Stainless steel R		_							116	173	282	_4)	_4)
Steel zinc plated Family Steel zinc plated Family Stainless steel R and high corrosion resistant steel HCR Family Steel zinc plated Steel zinc plated Family Steel zinc pl							ut lever	arm ¹⁾					
Stainless steel R and high corrosion resistant steel HCR Stainless steel R and high corrosion r	fischer a	anchor rods, performa	nce ca										
Standard threaded rods, performance category C1 21 22 23 34 63 98 141 164 225	ig _m	Steel zinc plated			1								
Standard threaded rods, performance category C1 21 22 23 34 63 98 141 164 225	eris ance		erty		1								
Standard threaded rods, performance category C1 21 22 23 34 63 98 141 164 225	ract sista /Rk,s		l op class		[kN]								
Standard threaded rods, performance category C1 21 22 23 34 63 98 141 164 225	_ res				-								
$ \underbrace{\frac{5.8}{8.8}}_{\text{by be resistant steel HCR}} \underbrace{\frac{5.8}{50}}_{\text{by be resistant steel HCR}} \underbrace{\frac{5.8}{5$							23	34	63	98	141	184	225
Steel zinc plated Stainless steel R and high corrosion resistant steel HCR Stainless steel R a	Standar	d threaded rods, perfo	ormano										
Fischer anchor rods and standard threaded rods, performance category C2 Steel zinc plated Stainless steel R and high corrosion resistant steel HCR $\frac{80}{80}$ $\frac{11}{11}$ $\frac{16}{16}$ $\frac{24}{24}$ $\frac{44}{44}$ $\frac{69}{69}$ $\frac{99}{99}$ $\frac{129}{129}$ $\frac{158}{158}$ $\frac{1}{11}$ $\frac{16}{16}$ $\frac{24}{14}$ $\frac{44}{14}$ $\frac{69}{14}$ $\frac{99}{14}$ $\frac{129}{14}$ $\frac{158}{14}$ $\frac{1}{14}$ $\frac{1}$; <u>;</u>	Steel zinc plated				· , ,	· ,						
Fischer anchor rods and standard threaded rods, performance category C2 Steel zinc plated Stainless steel R and high corrosion resistant steel HCR $\frac{80}{80}$ $\frac{11}{11}$ $\frac{16}{16}$ $\frac{24}{24}$ $\frac{44}{44}$ $\frac{69}{69}$ $\frac{99}{99}$ $\frac{129}{129}$ $\frac{158}{158}$ $\frac{1}{11}$ $\frac{16}{16}$ $\frac{24}{14}$ $\frac{44}{14}$ $\frac{69}{14}$ $\frac{99}{14}$ $\frac{129}{14}$ $\frac{158}{14}$ $\frac{1}{14}$ $\frac{1}$	eris Ince		erty is		1		· ` '						
Fischer anchor rods and standard threaded rods, performance category C2 Steel zinc plated Stainless steel R and high corrosion resistant steel HCR $\frac{80}{80}$ $\frac{11}{11}$ $\frac{16}{16}$ $\frac{24}{24}$ $\frac{44}{44}$ $\frac{69}{69}$ $\frac{99}{99}$ $\frac{129}{129}$ $\frac{158}{158}$ $\frac{1}{11}$ $\frac{16}{16}$ $\frac{24}{14}$ $\frac{44}{14}$ $\frac{69}{14}$ $\frac{99}{14}$ $\frac{129}{14}$ $\frac{158}{14}$ $\frac{1}{14}$ $\frac{1}$	act ista 'Rk,s,	Stainless steel R and	ope		[kN]		11	15	27	43	62	81	99
Fischer anchor rods and standard threaded rods, performance category C2 Steel zinc plated Stainless steel R and high corrosion resistant steel HCR $\frac{80}{80}$ $\frac{11}{11}$ $\frac{16}{16}$ $\frac{24}{24}$ $\frac{44}{44}$ $\frac{69}{69}$ $\frac{99}{99}$ $\frac{129}{129}$ $\frac{158}{158}$ $\frac{1}{11}$ $\frac{16}{16}$ $\frac{24}{14}$ $\frac{44}{14}$ $\frac{69}{14}$ $\frac{99}{14}$ $\frac{129}{14}$ $\frac{158}{14}$ $\frac{1}{14}$ $\frac{1}$	har res		<u>ا</u> ج ر	70		9	14	21	39	60	87	113	138
$ \underbrace{\frac{5.8}{8.8}}_{\text{UD}} \underbrace{\frac{5.8}{8.8}}_{\text{High corrosion resistant steel HCR}} \underbrace{\frac{5.8}{8.8}}_{High corrosion resista$		resistant steel HCR		80		11	16	24	44	69	99	129	158
Steel zinc plated 1	fischer a	anchor rods and stand	dard th	read	led ro	ds, perf	ormanc	e catego	ory C2				
-9 -9 22 44 69 99 -9 -9	- E	Steel zinc plated		5.8				14	27	43	62	_4)	_4)
-9 -9 22 44 69 99 -9 -9	erist nce	Steel zinc plated	s it	8.8				22	44	69	99		_4)
-9 -9 22 44 69 99 -9 -9	acte ista Rk,s,	Stainless steel R and	ope das		[-]			14	27	43	62	_4)	
-9 -9 22 44 69 99 -9 -9	har res		ا ج	70				20	39	60	87		
Factor for the annular gap α_{gap} [-] 0,5 (1,0)3)		resistant steel HCR		80		_4)	_4)	22			99	_4)	_4)
	Factor	r for the annular gap	αgap		[-]				0,5 (1,0) ³⁾			

¹⁾ Partial factors for performance category C1 or C2 see table C14.2; for fischer anchor rods FIS A / RG M the factor for steel ductility is 1,0

fischer Superbond

Performances

Characteristic values for steel failure under tension / shear load for fischer anchor rods and standard threaded rods under seismic action (performance category C1 / C2)

Annex C 13

²⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot dip galvanised standard threaded rods according to EN ISO 10684:2004+AC:2009.

³⁾ Values in brackets are valid for filled annular gaps between the anchor rod and the through-hole in the attachment. It is necessary to use the fischer filling disc according to Annex A 1 and A 3

⁴⁾ No performance assessed

English translation prepared by DIBt

Table C14.1: Characteristic values for **steel failure** under tension / shear load for of **reinforcing bars (B500B)** under seismic action performance category **C1**

Nominal diameter of the bar	ф	8	10	12	14	16	20	25	28	32
Bearing capacity under tension load	Bearing capacity under tension load, steel failure ¹⁾									
Reinforcing bar B500B acc. to DIN 4	488-2:2009-	08, perf	orman	ce cate	gory C	:1				
Characteristic resistance N	I _{Rk,s,C1} [kN] 28	44	63	85	111	173	270	339	443
Bearing capacity under shear load,	steel failure	e witho	ut leve	r arm¹)						
Reinforcing bar B500B acc. to DIN 488-2:2009-08, performance category C1										
Characteristic resistance V	/ _{Rk,s,C1} [kN] 10	15	22	30	39	61	95	119	155

¹⁾ Partial factors for performance category C1 see table C14.2

Table C14.2: Partial factors for fischer anchor rods, standard threaded rods and reinforcing bars (B500B) under seismic action performance category C1 or C2

Anch	or rod / standard threa	ded rod			М8	M10	M12	M1	6	M20	M24	M27	M30
Nom	inal diameter of the bar			ф	8	10	12	14	16	20	25	28	32
Tens	ion load, steel failure1)												
z	Steel zinc plated		5.8						1,50	0			
Partial factor γ _{Ms,N}		8.8		1,50									
ctor	Stainless steel R and	50	r 1					2,86	6				
al fa	high corrosion	[-]				1,5	0 ²⁾ /	1,87					
arti	resistant steel HCR			1,60									
	Reinforcing bar	B	500B						1,40	0			
Shea	r load, steel failure ¹⁾												
>	Steel zinc plated		5.8			1,25							
γMs,	Sieer zinc plated	Property class	8.8						1,2	5			
ctor	Stainless steel R and	r 1					2,38	8					
al fa	high corrosion	[-]	1,252) / 1,56										
Steel zinc plated Stainless steel R and high corrosion resistant steel HCR					1,33								
	Reinforcing bar		1,50										

¹⁾ In absence of other national regulations

fischer Superbond

Performances

Characteristic values for steel failure under tension / shear load for reinforcing bars under seismic action (performance category C1); partial factors (performance category C1 / C2)

Annex C 14

²⁾ Only admissible for high corrosion resistant steel HCR, with f_{yk} / $f_{uk} \ge 0.8$ and $A_5 > 12$ % (e.g. fischer anchor rods)

Table C15.1: Characteristic values for combined pull-out and concrete failure for fischer anchor rods and standard threaded rods in hammer drilled holes with injection mortar FIS SB or resin capsule RSB under seismic action performance category C1

Anchor r	od /	standard thread	led rod		M8	M10	M12	M16	M20	M24	M27 ¹⁾	M30
Characte	risti	c bond resistan	ce, com	bined pul	lout and	d concre	ete cone	failure				
		ing with standar oncrete; resin ca					lled hole	es)				
	l:	24 °C / 40 °C			4,6	5,0	5,6	5,6	5,6	5,6	5,6	6,4
Tem-	II:	50 °C / 80 °C	_	[N/mm²]	4,3	4,6	5,6	5,6	5,6	5,6	5,3	6,0
perature range	III:	72 °C / 120 °C	T Rk,C1	[14/111111-]	3,9	4,3	4,9	4,9	4,9	4,9	4,5	5,1
	IV:	90 °C / 150 °C			3,6	3,9	4,5	4,5	4,5	4,5	4,1	4,7
Installati	on fa	actors										
Dry or we	Ory or wet concrete 1,0											
Water fille	ed ho	ole	γinst	[-]	1,2	2 ²⁾			1,0) ²⁾		

¹⁾ Only use with injection mortar FIS SB

Table C15.2: Characteristic values for combined pull-out and concrete failure for reinforcing bars in hammer drilled holes with injection mortar FIS SB under seismic action performance category C1

Nominal	dian	neter of the bar		ф	8	10	12	14	16	20	25	28	32
Characte	Characteristic bond resistance, combined pullout and concrete cone failure												
Hammer	-drill	ing with standa	rd drill l	oit or holl	ow dril	bit (dr	y or we	t conc	rete)				
	1: 24 °C / 40 °C 3,2 4,3 4,5 4,5 5,3 4,5 4,5 5,1												
Tem-	II:	50 °C / 80 °C	_	[N]/mayna21	3,2	3,9	4,1	4,1	4,9	4,5	4,5	4,5	5,1
perature range	III:	72 °C / 120 °C	$ au_{ m Rk,C1}$	[N/mm ²]	2,8	3,6	3,8	3,8	4,5	4,1	4,1	4,1	4,7
	IV:	90 °C / 150 °C	'		2,5	3,2	3,4	3,4	4,1	3,8	3,8	3,8	4,3
Installati	stallation factors												
Dry or we	Ory or wet concrete γ_{inst} [-] 1,0												

fischer Superbond

Performances

Characteristic values for combined pull-out and concrete failure under seismic action (performance category C1) for fischer anchor rods, standard threaded rods and reinf. bars

Annex C 15

Electronic copy of the ETA by DIBt: ETA-12/0258

²⁾ Only use with resin capsule RSB in water filled hole

Table C16.1: Characteristic values for combined pull-out and concrete failure for for fischer anchor rods and standard threaded rods in hammer drilled holes with injection mortar FIS SB under seismic action performance category C2

Anchor r	od /	standard threa	ded rod		M12	M16	M20	M24
Characte	risti	c bond resistan	ice, com	bined pu	llout and concre	ete cone failure		
Hammer-	-drill	ing with standa	rd drill k	it or holl	ow drill bit (dry	or wet concrete	e)	
	l:	24 °C / 40 °C	_		4,5	3,2	2,6	3,0
Tem-	II:	50 °C / 80 °C	_	[N]/mmm21	4,5	3,2	2,6	3,0
perature · range	III:	72 °C / 120 °C	TRk,C2	[N/mm ²]	3,9	2,7	2,3	2,6
	IV:	90 °C / 150 °C	-		3,6	2,5	2,1	2,4
Installati	on fa	actors	_	-				
Dry or we	t cor	ncrete	γinst	[-]		1	,0	
Displace	men	t-Factors for te	nsion lo	ad¹)				
δn,c2 (DLS)-	Factor		[100 to 2 // N	1/22/22/21	0,09	0,10	0,11	0,12
δ N,C2 (ULS)-	Factor		[mm/(r	N/mm²)]	0,15	0,17	0,17	0,18
Displace	men	t-Factors for sh	ear load	2)				
δ V,C2 (DLS)-	Factor		[_{100.00}	s/lcN11	0,18	0,10	0,07	0,06
δ v,c2 (ULS)-	Factor		lmu	n/kN]	0,25	0,14	0,11	0,09

1) Calculation of effective displacement:

 $\delta_{\text{N,C2 (DLS)}} = \delta_{\text{N,C2 (DLS)-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{N,C2\,(ULS)} = \delta_{N,C2\,(ULS)\text{-Factor}} \cdot \tau_{Ed}$

(τ_{Ed} : Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{\text{V,C2 (DLS)}} = \delta_{\text{V,C2 (DLS)-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{\text{V,C2 (ULS)}} = \delta_{\text{V,C2 (ULS)-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

fischer Superbond

Performances

Characteristic values for combined pull-out and concrete failure under seismic action (performance category C2) for fischer anchor rods and standard threaded rods

Annex C 16