

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-12/0280 of 9 October 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

EASYfast, EASYtop and BULLET screws

Screws for use in timber constructions

The Berner Group
Berner Trading Holding GmbH
Bernerstraße 6
74653 Künzelsau
DEUTSCHLAND

plant 1, plant 2, plant 3, plant 4, plant 5, plant 6

35 pages including 4 annexes which form an integral part of this assessment

EAD 130118-01-0603, Edition March 2019

ETA-12/0280 issued on 25 June 2018

European Technical Assessment ETA-12/0280

Page 2 of 35 | 9 October 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-12/0280 English translation prepared by DIBt

Page 3 of 35 | 9 October 2020

Specific Part

1 Technical description of the product

Berner EASYfast, EASYtop and BULLET screws are self-tapping screws made from special carbon or martensitic stainless steel. The screws are hardened. Screws made from carbon steel have a corrosion protection according to Annex A.2.6. The outer thread diameter is not less than 3.0 mm and not greater than 10.0 mm. The overall length of the screws is ranging from 17 mm to 600 mm. Further dimensions are shown in Annex 4. The washers are made from carbon steel. The dimensions of the washers are given in Annex A.4.9.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the screws are used in compliance with the specifications and conditions given in Annex 1 and 2.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the screws of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Dimensions	See Annex 4
Characteristic yield moment	See Annex 2
Bending angle	See Annex 2
Characteristic withdrawal parameter	See Annex 2
Characteristic head pull-through parameter	See Annex 2
Characteristic tensile strength	See Annex 2
Characteristic yield strength	No performance assessed
Characteristic torsional strength	See Annex 2
Insertion moment	See Annex 2
Spacing, end and edge distances of the screws and minimum thickness of the wood-based material	See Annex 2
Slip modulus for mainly axially loaded screws	See Annex 2
Durability against corrosion	See Annex 2

European Technical Assessment ETA-12/0280

Page 4 of 35 | 9 October 2020

English translation prepared by DIBt

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Class A1		

3.3 Safety and accessibility in use (BWR 4)

Same as BWR 1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 130118-01-0603 the applicable European legal act is: 97/176/EC. The system to be applied is: 3

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 9 October 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow beglaubigt:
Head of Department Vössing

Annex 1 Specifications of intended use

A.1.1 Use of the Berner EASYfast, EASYtop and BULLET screws only for:

Static and quasi-static loads

A.1.2 Base materials

The screws are used for connections in load bearing timber structures between wood-based members or between those members and steel members:

- Solid timber (softwood) according to EN 14081-1¹,
- Glued laminated timber (softwood) according to EN 14080²,
- Laminated veneer lumber LVL of softwood according to EN 14374³, arrangement of the screws only
 perpendicular to the plane of the veneers,
- Glued solid timber (softwood) according to EN 14080 or national provisions that apply at the installation site,
- Cross-laminated timber (softwood) according to European Technical Approvals/Assessments or national provisions that apply at the installation site.

The screws can be used for connecting the following wood-based panels to the timber members mentioned above:

- Plywood according to EN 6364 and EN 139865,
- Oriented Strand Board, OSB according to EN 3006 and EN 13986,
- Particleboard according to EN 312⁷ and EN 13986,
- Fibreboards according to EN 622-28, EN 622-39 and EN 13986,
- Cement-bonded particle boards according to EN 634-2¹⁰ and EN 13986,
- Solid-wood panels according to EN 13353¹¹ and EN 13986.

Wood-based panels are only arranged on the side of the screw head.

Berner EASYfast, EASYtop and BULLET screws with an outer thread diameter of at least 6 mm can be used for the fixing of thermal insulation material on top of rafters or on wood-based members in vertical façades.

1	EN 14081-1:2005+A1:2011	Timber structures – Strength graded structural timber with rectangular cross section – Part 1: General requirements
2	EN 14080:2013	Timber structures - Glued laminated timber and glued solid timber - Requirements
3	EN 14374:2004	Timber structures - Structural laminated veneer lumber - Requirements
4	EN 636:2012+A1:2015	Plywood - Specifications
5	EN 13986:2004+A1:2015	Wood-based panels for use in construction - Characteristics, evaluation of conformity and marking
6	EN 300:2006	Oriented strand boards (OSB) – Definition, classification and specifications
7	EN 312:2010	Particleboards - Specifications
8	EN 622-2:2004	Fibreboards – Specifications – Part 2: Requirements for hardboards
9	EN 622-3:2004	Fibreboards - Specifications - Part 3: Requirements for medium boards
10	EN 634-2:2007	Cement-bonded particleboards – Specifications – Part 2: Requirements for OPC bonded particleboards for use in dry, humid and external conditions
11	EN 13353:2008+A1:2011	Solid wood panels (SWP) – Requirements

214 10000.2000 7 (1.2011 Colla Wood Parieto (OWT) Traquitationia	
EASYfast, EASYtop and BULLET screws	
Specifications of intended use	Annex 1

English translation prepared by DIBt

A.1.3 Use Conditions (environmental conditions)

The corrosion protection of the Berner EASYfast, EASYtop and BULLET screws is specified in Annex A.2.6.

A.1.4 Installation provisions

EN 1995-1-1¹² in conjunction with the respective national annex applies for the installation.

A minimum of two screws is used for connections in load bearing timber structures.

The screws are driven into the wood-based member made of softwood without pre-drilling or in pre-drilled holes with a diameter not exceeding the inner thread diameter d₁. The screw holes in steel members are pre-drilled with an adequate diameter greater than the outer thread diameter.

If screws with an outer thread diameter $d \ge 8$ mm are driven into the wood-based member without pre-drilling, the structural solid or glued laminated timber, laminated veneer lumber and similar glued members shall be from spruce, pine or fir.

In the case of fastening battens on thermal insulation material on top of rafters the screws are driven in the rafter through the battens and the thermal insulation material without pre-drilling in one sequence.

Countersunk head screws can be used with washers according to Annex A.4.9. After inserting the screw the washers shall touch the surface of the wood-based member completely.

By fastening screws in wood-based members the head of the screws shall be flush with the surface of the wood-based member. For screws with pan head, small countersunk washer head, washer head and hexagonal head with or without washer the head part remains unconsidered.

² EN 1995-1-1: 2004+AC:2006+A1:2008+A2:2014 Eurocode 5: Design of timber structures – Part 1-1: General - Common rules and rules for buildings

EASYfast, EASYtop and BULLET screws	
Installation provisions	Annex 1

ANNEX 2 - Characteristic values of the load-carrying capacities

Table A.2.1 Characteristic load-carrying capacities of Berner EASYfast, EASYtop and BULLET screws

Outer thread diameter [mm]	3.0	3.5	4.0	4.5	5.0	6.0	8.0	10.0
Characteristic yield moment M _{y,k} [Nm]	1.6	2.3	3.3	4.5	5.9	9.5	20.0	36.0
Characteristic tensile strength ftens,k [kN]	2.8	3.8	5.0	6.4	7.9	11.0	20.0	30.0
Characteristic torsional strength ftor,k [Nm]	1.5	2.5	3.2	4.3	6.5	10.0	25.0	40.0

A.2.1 General

All Berner EASYfast, EASYtop and BULLET screws achieve a bending angle α of at least 45/d^{0.7} + 20, where d is the outer thread diameter of the screws.

The minimum penetration length of the threaded part of the screw in the wood-based members lef shall be

$$I_{\text{ef}} = \frac{4 \cdot d}{\sin \alpha} \tag{2.1}$$

where

α angle between screw axis and grain direction

d outer thread diameter of the screw.

The inner thread diameter d_1 of the screws shall be greater than the maximal width of the gaps in the layer of cross laminated timber.

A.2.2 Laterally loaded screws

A.2.2.1 General

The outer thread diameter d shall be used as effective diameter of the screw according to EN 1995-1-1.

The embedding strength for the screws in wood-based members or in wood-based panels shall be taken from EN 1995-1-1 or from national provisions that apply at the installation site unless otherwise specified in the following.

A.2.2.2 Cross laminated timber

The embedding strength for screws arranged in the edge surfaces parallel to the plane of cross laminated timber may be assumed according to equation (2.2) independent of the angle between screw axis and grain direction, $0^{\circ} \le \alpha \le 90^{\circ}$:

$$f_{h,k} = 20 \cdot d^{-0.5} \text{ in N/mm}^2$$
 (2.2)

unless otherwise specified in the technical specification of the cross laminated timber.

Where d is the outer thread diameter of the screws in mm.

Equation (2.2) is only valid for softwood layers. The provisions in the European Technical Approval/ Assessment or in national provisions of the cross laminated timber apply.

The embedding strength for screws in the wide face of cross laminated timber should be assumed as for solid timber based on the characteristic density of the outer layer. Where applicable, the angle between force and grain direction of the outer layer shall be taken into account. The direction of the lateral force shall be perpendicular to the screw axis and parallel to the wide face of the cross laminated timber.

EASYfast, EASYtop and BULLET screws	
Characteristic load-bearing capacity values	Annex 2

For angles $45^{\circ} \le \alpha < 90^{\circ}$ between screw axis and grain direction of the outer layer the characteristic load-carrying capacity may be assumed as 2/3 of the corresponding value for $\alpha = 90^{\circ}$, if only the penetration depth perpendicular to the wide face is taken into account.

A.2.3 Axially loaded screws

A.2.3.1 Axial slip modulus

The axial slip modulus K_{ser} of the threaded part of a screw for the serviceability limit state shall be taken independent of angle α to the grain as:

$$K_{\text{ser}} = 780 \cdot d^{0.2} \cdot l_{\text{ef}}^{0.4} \quad [\text{N/mm}]$$
 (2.3)

Where

d outer thread diameter of the screw [mm]

lef penetration length of the of the threaded part of the screw in the wood-based member [mm].

A.2.3.2 Axial withdrawal capacity

The characteristic withdrawal parameter of the Berner EASYfast, EASYtop and BULLET screws at an angle α = 90° to the grain based on a characteristic density of the wood-based member ρ_a of 350 kg/m³ is

 $f_{ax,k}$ = 12.0 N/mm² for EASYfast and EASYtop screws with 3.0 mm \leq d \leq 8.0 mm

 $f_{ax,k}$ = 10.0 N/mm² for EASYfast screws with d = 10.0 mm

 $f_{ax,k}$ = 12.6 N/mm² for BULLET screws with d = 8.0 mm.

For LVL a maximum characteristic density of 500 kg/m³ shall be used in equation (8.40a) of EN 1995-1-1.

For screws penetrating more than one layer of cross laminated timber the different layers may be taken into account proportionally. In the lateral surfaces of the cross laminated timber the screws shall be fully inserted in one layer of cross-laminated timber.

A.2.3.3 Head pull-through capacity

The characteristic value of the head pull-through parameter for the of the Berner EASYfast, EASYtop and BULLET screws for a characteristic density ρ_a of 350 kg/m³ of the timber and for wood-based panels like

- Plywood according to EN 636 and EN 13986
- Oriented Strand Board, OSB according to EN 300 and EN 13986
- Particleboard according to EN 312 and EN 13986
- Fibreboards according to EN 622-2, EN 622-3 and EN 13986
- Cement-bonded particle boards according to EN 634-2 and EN 13986,
- Solid-wood panels according to EN 13353 and EN 13986

with a thickness of more than 20 mm is

fhead,k = 12.0 N/mm² for EASYfast and EASYtop screws with hexagonal, washer or pan head

fhead,k = 10.0 N/mm² for EASYfast and EASYtop screws for the remaining screws

f_{head,k} = 16.0 N/mm² for BULLET screws with d = 8.0 mm, with washer and countersunk ("COMBI") head.

EASYfast, EASYtop and BULLET screws	
Characteristic load-bearing capacity values	Annex 2

Page 9 of European Technical Assessment ETA-12/0280 of 9 October 2020

English translation prepared by DIBt

For wood-based panels a maximum characteristic density of 380 kg/m³ and for LVL a maximum characteristic density of 500 kg/m³ shall be used in equation (8.40b) of EN 1995-1-1.

The head diameter shall be equal to or greater than $1.8 \cdot d_s$, where d_s is the smooth shank or the inner thread diameter. Otherwise the characteristic head pull-through capacity in equation (8.40b) of EN 1995-1-1 is for all woodbased materials: $F_{ax,\alpha,RK} = 0$.

For wood based panels with a thickness $12 \text{ mm} \le t \le 20 \text{ mm}$ the characteristic value of the head pull-through parameter for the screws is:

 $f_{head,k} = 8 N/mm^2$

For wood based panels with a thickness of less than 12 mm the characteristic head pull-through capacity for screws shall be based on a characteristic value of the head pull-through parameter of 8 N/mm², and limited to 400 N complying with the minimum thickness of the wood based panels of 1.2·d, with d as outer thread diameter and the values in Table A.2.2.

Table A.2.2 Minimum thickness of wood based panels

Wood based panel	Minimum thickness [mm]
Plywood	6
Fibreboards (hardboards and medium boards)	6
Oriented Strand Boards, OSB	8
Particleboards	8
Cement-bonded particle board	8
Solid wood Panels	12

In steel-to-timber connections the head pull-through capacity is not governing.

A.2.4 Spacing, end and edge distances of the screws and minimum thickness of the wood based material

A.2.4.1 Laterally and/or axially loaded screws

Screws in pre-drilled holes

For Berner EASYfast, EASYtop and BULLET screws in pre-drilled holes the minimum spacings, end and edge distances are given in EN 1995-1-1, clause 8.3.1.2 and Table 8.2 as for nails in pre-drilled holes. Here, the outer thread diameter d shall be considered.

Minimum thickness for structural members made from solid timber, glued laminated timber, glued solid timber, laminated veneer lumber and cross laminated timber is t = 24 mm for screws with $d \le 6$ mm, t = 30 mm for screws with d = 8 mm and t = 40 mm for screws with d = 10 mm.

Screws in non pre-drilled holes

For Berner EASYfast, EASYtop and BULLET screws minimum spacing and distances are given in EN 1995-1-1, clause 8.3.1.2 and Table 8.2 as for nails in non-predrilled holes. Here, the outer thread diameter d shall be considered.

For Douglas fir members minimum spacing and distances parallel to the grain shall be increased by 50%.

Minimum distances from loaded or unloaded ends shall be at least $15 \cdot d$ for screws with outer thread diameter $d \ge 8$ mm and timber thickness $t < 5 \cdot d$.

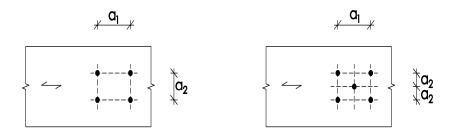
Minimum distances from the unloaded edge perpendicular to the grain may be reduced to $3 \cdot d$ also for timber thickness $t < 5 \cdot d$, if the spacing parallel to the grain and the end distance is at least $25 \cdot d$.

EASYfast, EASYtop and BULLET screws	
Spacing, end and edge distances and minimum thickness of structural members	Annex 2

A.2.4.2 Only axially loaded screws

For Berner EASYfast, EASYtop and BULLET screws the minimum spacings, end and edge distances are given in EN 1995-1-1, clause 8.3.1.2 and Table 8.2 as for nails in non-predrilled holes and clause 8.7.2, Table 8.6.

A.2.4.3 Cross laminated timber


The minimum requirements for spacing, end and edge distances of screws in the plane or edge surfaces of cross laminated timber are summarised in Table A.2.3. The definition of spacing, end and edge distance is shown in Figure A.2.1 and Figure A.2.2. The minimum spacing, end and edge distances in the edge surfaces are independent of the angle between screw axis and grain direction. They may be used based on the following conditions:

- Minimum thickness of cross laminated timber: 10 · d
- Minimum penetration depth in the edge surface: 10 · d

For load components perpendicular to the plane surface (see Figure A.2.2 right), the tensile stresses perpendicular to the grain should be transferred by reinforcing screws.

Table A.2.3: Minimum spacing, end and edge distances of screws in the plane or edge surfaces of cross laminated timber

	a ₁	a 3,t	a 3,c	a ₂	a 4,t	a 4,c
Plane surface (see Figure A.2.1)	4 · d	6 · d	6 · d	2.5 · d	6 · d	2.5 · d
Edge surface (see Figure A.2.2)	10 ⋅ d	12 ⋅ d	7 · d	4 · d	6 · d	3 · d

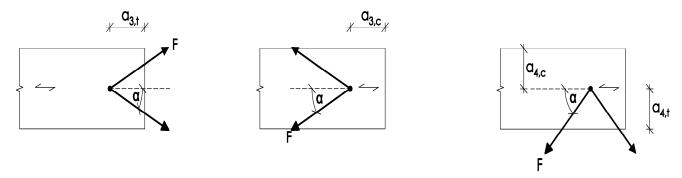


Figure A.2.1: Definition of spacing, end and edge distances in the plane surface

EASYfast, EASYtop and BULLET screws	
Spacing, end and edge distances and minimum thickness of structural members	Annex 2

English translation prepared by DIBt

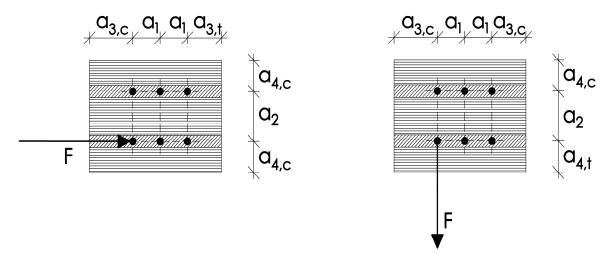


Figure A.2.2: Definition of spacing, end and edge distances in the edge surface

A.2.5 Insertion moment

The ratio between the characteristic torsional strength $f_{tor,k}$ and the mean value of insertion moment $R_{tor,mean}$ fulfills the requirement for all screws.

A.2.6 Durability against corrosion

Berner EASYfast, EASYtop and BULLET screws made from carbon steel may have the coatings according to Table A.2.4

Table A.2.4 Coatings of the Berner EASYfast, EASYtop and BULLET screws

Coating EASYfast, EASY	Thickness of the coating [μm]	
electrogalvanised blue chromated yellow chromated		3 - 5
Aluminium-zinc-flake coati	5 - 8	
Coating BULLET screw		
electrogalvanised blue passivated		5 - 8

Steel no. 1.4006 is used for screws made from martensitic stainless steel. For the BULLET Screws steel no. 1.5506 is used.

Contact corrosion shall be avoided.

EASYfast, EASYtop and BULLET screws	
Insertion moment and durability against corrosion	Annex 2

ANNEX 3 - Fastening of thermal insulation material on top of rafters

A.3.1 General

Berner EASYfast, EASYtop and BULLET screws with an outer thread diameter of at least 6 mm may be used for the fixing of thermal insulation material on top of rafters or on wood-based members in vertical façades. In the following, the meaning of the word rafter includes wood-based members with inclinations between 0° and 90°.

The thickness of the thermal insulation material may be up to 300 mm. The thermal insulation material shall be applicable as insulation on top of rafters or for façades according to national provisions that apply at the installation site.

The battens have to be from solid timber according to EN 338/ EN 14081-1. The minimum thickness t and the minimum width b of the battens are given in table A.3.1:

Table A.3.1 Minimum thickness and minimum width of the battens

Outer thread diameter [mm]	Minimum thickness t [mm]	Minimum width b [mm]		
6 and 8	30	50		
10	40	60		

Instead of battens the wood-based panels specified in chapter A.3.2.1 may be used. Only screws with countersunk head shall be used for fixing wood-based panels on rafters with thermal insulation material as interlayer.

The minimum width of the rafters shall be 60 mm.

The spacing between screws shall be not more than 1.75 m.

Friction forces shall not be considered for the design of the characteristic axial load of the screws.

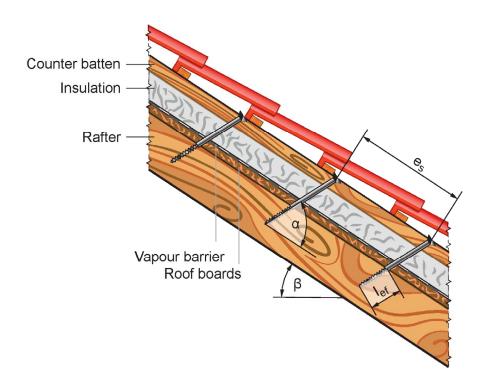
The anchorage of wind suction forces as well as the bending stresses of the battens shall be considered for design. Screws perpendicular to the grain of the rafter (angle α = 90 °) may be arranged where required considering the design of the battens.

A.3.2 Parallel inclined screws and thermal insulation material in compression

A.3.2.1 Mechanical model

The system of rafter, thermal insulation material on top of rafter and counter battens parallel to the rafter may be considered as a beam on elastic foundation. The counter batten represents the beam, and the thermal insulation material on top of the rafter the elastic foundation. The minimum compressive stress of the thermal insulation material at 10 % deformation, measured according to EN 826¹³, shall be $\sigma_{(10~\%)} = 0.05~\text{N/mm}^2$. The counter batten is loaded perpendicular to the axis by point loads F_b transferred by regularly spaced battens. Further point loads F_s are caused by the shear load of the roof due to dead and snow load, which are transferred from the screw heads into the counter battens.

Instead of battens the following wood-based panels may be used to cover the thermal insulation material if they are suitable for that use:


- Plywood according to EN 636 and EN 13986,
- Oriented Strand Board, OSB according to EN 300 and EN 13986,
- Particleboard according to EN 312 and EN 13986
- Fibreboards according to EN 622-2, EN 622-3 and EN 13986.

The minimum thickness of the wood-based panels shall be 22 mm.

The word batten includes the meaning of wood-based panels in the following.

¹³ EN 826:2013 Thermal insulating products for building applications - Determination of compression behaviour

EASYfast, EASYtop and BULLET screws	
Fastening of thermal insulation material on top of rafters	Annex 3

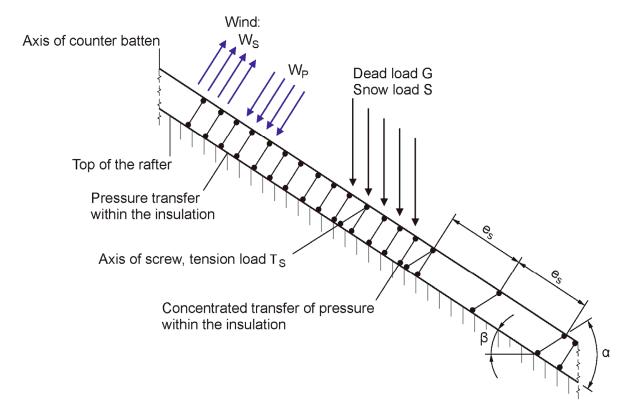


Figure A.3.1 Fastening of the thermal insulation material on top of rafters - structural system

EASYfast, EASYtop and BULLET screws	
Fastening of thermal insulation material on top of rafters	Annex 3

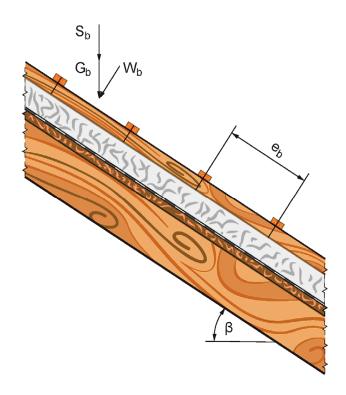


Figure A.3.2 Point loads F_b perpendicular to the battens

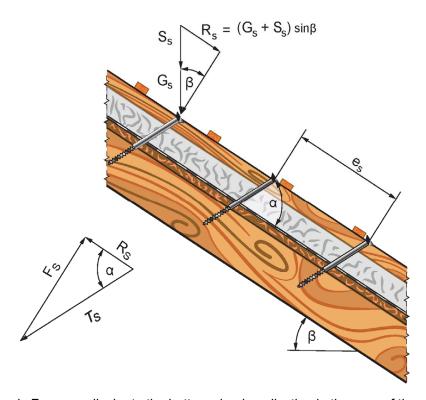


Figure A.3.3 Point loads F_s perpendicular to the battens, load application in the area of the screw heads

EASYfast, EASYtop and BULLET screws	
Fastening of thermal insulation material on top of rafters	Annex 3

A.3.2.2 Design of the battens

It's assumed that the spacing between the counter battens exceeds the characteristic length Ichar.

The characteristic values of the bending stresses are calculated as:

$$M_{k} = \frac{(F_{b,k} + F_{s,k}) \cdot I_{char}}{4}$$
 (3.1)

where

 I_{char} = characteristic length $I_{char} = \sqrt[4]{\frac{4 \cdot EI}{w_{ef} \cdot K}}$ (3.2)

El = bending stiffness of the batten

K = coefficient of subgrade

w_{ef} = effective width of the thermal insulation material

 $F_{b,k}$ = point loads perpendicular to the battens

F_{s,k} = point loads perpendicular to the battens, load application in the area of the screw heads

The coefficient of subgrade K may be calculated from the modulus of elasticity E_{HI} and the thickness t_{HI} of the thermal insulation material if the effective width w_{ef} of the thermal insulation material under compression is known. Due to the load extension in the thermal insulation material the effective width w_{ef} is greater than the width of the batten or rafter, respectively. For further calculations, the effective width w_{ef} of the thermal insulation material may be determined according to:

$$W_{ef} = W + t_{HI}/2$$
 (3.3)

where

w = minimum from width of the batten or rafter, respectively

t_{HI} = thickness of the thermal insulation material

$$K = \frac{E_{HI}}{t_{HI}} \tag{3.4}$$

The following condition shall be satisfied:

$$\frac{\sigma_{m,d}}{f_{m,d}} = \frac{M_d}{W \cdot f_{m,d}} \le 1 \tag{3.5}$$

For the calculation of the section modulus W the net cross section shall be considered.

The characteristic values of the shear stresses shall be calculated according to:

$$V_{k} = \frac{\left(F_{b,k} + F_{S,k}\right)}{2} \tag{3.6}$$

The following condition need to be satisfied:

$$\frac{\tau_d}{f_{Vd}} = \frac{1.5 \cdot V_d}{A \cdot f_{Vd}} \le 1 \tag{3.7}$$

For the calculation of the cross section area the net cross section shall be considered.

EASYfast, EASYtop and BULLET screws	
Fastening of thermal insulation material on top of rafters	Annex 3

Z5174.20

Electronic copy of the ETA by DIBt: ETA-12/0280

English translation prepared by DIBt

A.3.2.3 Design of the thermal insulation material

The characteristic value of the compressive stresses in the thermal insulation material shall be calculated according to:

$$\sigma_{\mathbf{k}} = \frac{1.5 \cdot \mathsf{F}_{\mathbf{b},\mathbf{k}} + \mathsf{F}_{\mathbf{s},\mathbf{k}}}{2 \cdot \mathsf{I}_{\mathbf{char}} \cdot \mathsf{W}} \tag{3.8}$$

The design value of the compressive stress shall not be greater than 110 % of the compressive strength at 10 % deformation calculated according to EN 826.

A.3.2.4 Design of the screws

The screws are loaded predominantly axial. The characteristic value of the axial tension force in the screw may be calculated from the shear loads of the roof R_s:

$$T_{S,k} = \frac{R_{S,k}}{\cos \alpha} \tag{3.9}$$

The load-carrying capacity of axially loaded screws is the minimum design value of the axial withdrawal capacity of the threaded part of the screw, the head pull-through capacity of the screw and the tensile capacity of the screw according to Annex 2.

In order to limit the deformation of the screw head for thermal insulation material with thickness over 220 mm or with compressive strength below 0.12 N/mm^2 , respectively, the axial withdrawal capacity of the screws shall be reduced by the factors k_1 and k_2 :

$$F_{ax,\alpha,Rd} = min \left\{ \frac{f_{ax,d} \cdot d \cdot I_{ef} \cdot k_1 \cdot k_2}{1.2 \cdot \cos^2 \alpha + \sin^2 \alpha} \cdot \left(\frac{\rho_k}{350}\right)^{0.8}; f_{head,d} \cdot d_h^2 \cdot \left(\frac{\rho_k}{350}\right)^{0.8}; \frac{f_{tens,k}}{\gamma_{M2}} \right\}$$
(3.10)

where:

Electronic copy of the ETA by DIBt: ETA-12/0280

 $f_{ax,d}$ design value of the axial withdrawal parameter of the threaded part of the screw in the rafter

[N/mm²]

d outer thread diameter of the screw [mm]

 l_{ef} penetration length of the threaded part of the screw in the rafter [mm], $l_{ef} \ge 40$ mm characteristic density of the wood-based member [kg/m³], for LVL $ρ_k \le 500$ kg/m³

 α angle α between screw axis and grain direction, $30^{\circ} \le \alpha \le 90^{\circ}$

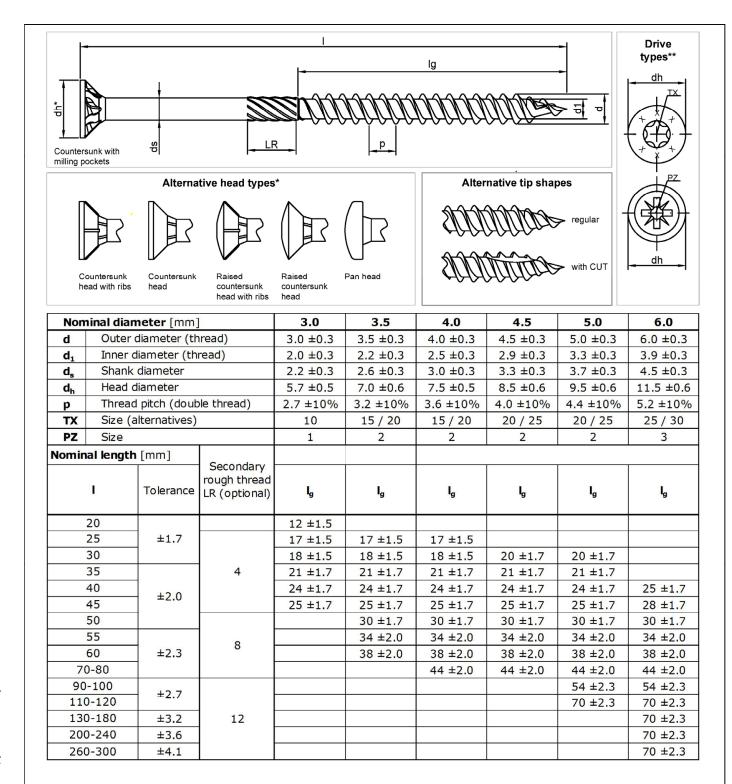
f_{head,d} design value of the head pull-through parameter of the screw [N/mm²]

d_h head diameter of the screw [mm]

f_{tens,k} characteristic tensile capacity of the screw according to Annex 2 [N]

 γ_{M2} partial factor according to EN 1993-1-1 in conjunction with the particular national annex

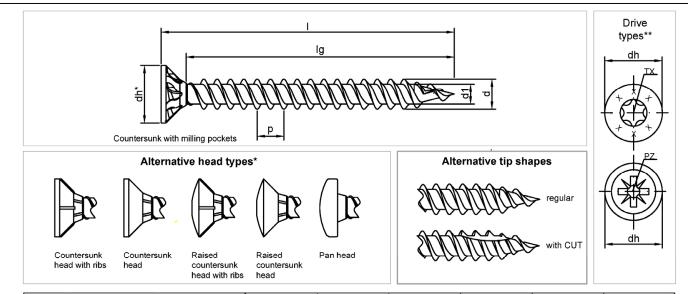
k₁ min {1; 220/t_{HI}} k₂ min {1; $\sigma_{10\%}/0.12$ }


thickness of the thermal insulation material [mm]

compressive stress of the thermal insulation material under 10 % deformation [N/mm²]

If equation (3.10) is fulfilled, the deflection of the battens does not need to be considered when designing the load-carrying capacity of the screws.

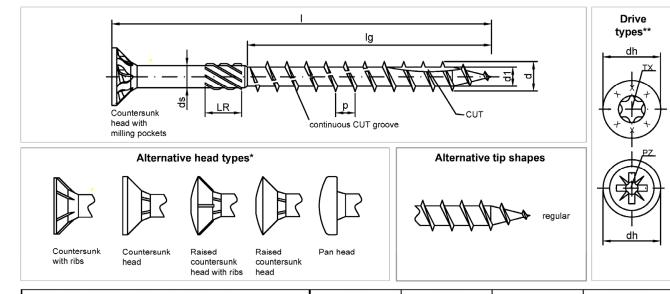
EASYfast, EASYtop and BULLET screws	
Fastening of thermal insulation material on top of rafters	Annex 3



^{*} For all head shapes, the same head diameter apply.

^{**} Alternative head markings with clear reference to the respective manufacturing plant are possible.

EASYfast, EASYtop and BULLET screws	
EASYfast WAVE, EASYfast CW with partial and double thread and different head and tip shapes	Annex 4.1


Nom	inal diameter	[mm]	3.0	3.5	4.0	4.5	5.0	6.0
d	Outer diameter (thread)		3.0 ±0.3	3.5 ±0.3	4.0 ±0.3	4.5 ±0.3	5.0 ±0.3	6.0 ±0.3
d ₁	Inner diamet	ter (thread)	2.0 ±0.3	2.2 ±0.3	2.5 ±0.3	2.9 ±0.3	3.3 ±0.3	3.9 ±0.3
d _h	Head diamet	ter	5.7 ±0.5	7.0 ±0.6	7.5 ±0.5	8.5 ±0.6	9.5 ±0.6	11.5 ±0.6
р	Thread pitch	(double thread)	2.7 ±10%	3.2 ±10%	3.6 ±10%	4.0 ±10%	4.4 ±10%	5.2 ±10%
TX	Size (alterna	itives)	10	15 / 20	15 / 20	20 / 25	20 / 25	25 / 30
PZ	Size		1	2	2	2	2	3
Nomina	al length [mm]						
	1	Tolerance	l g					
	17	±1.5	13 ±1.5					
	20		16 ±1.5	16 ±1.5	16 ±1.5			
	25	±1.7	21 ±1.7	20 ±1.7	20 ±1.7	19 ±1.7		
	30		26 ±1.7	25 ±1.7	25 ±1.7	24 ±1.7	24 ±1.7	
	35		30 ±2.0	30 ±1.7	30 ±2.0	29 ±1.7	29 ±1.7	
	40	±2.0	35 ±2.0	35 ±2.0	35 ±2.0	34 ±2.0	34 ±2.0	32 ±2.0
	45	12.0	40 ±2.0	40 ±2.0	40 ±2.0	39 ±2.0	39 ±2.0	37 ±2.0
	50		45 ±2.0	45 ±2.0	45 ±2.0	44 ±2.0	44 ±2.0	42 ±2.0
	55				50 ±2.0	49 ±2.0	49 ±2.0	47 ±2.0
	60	±2.3			55 ±2.3	54 ±2.3	54 ±2.3	52 ±2.3
	70						64 ±2.3	62 ±2.3
	80						72 ±2.3	72 ±2,3
	90						84 ±2.7	82 ±2.7
100 120		±2.7						92 ±2.7
								112 ±2.7

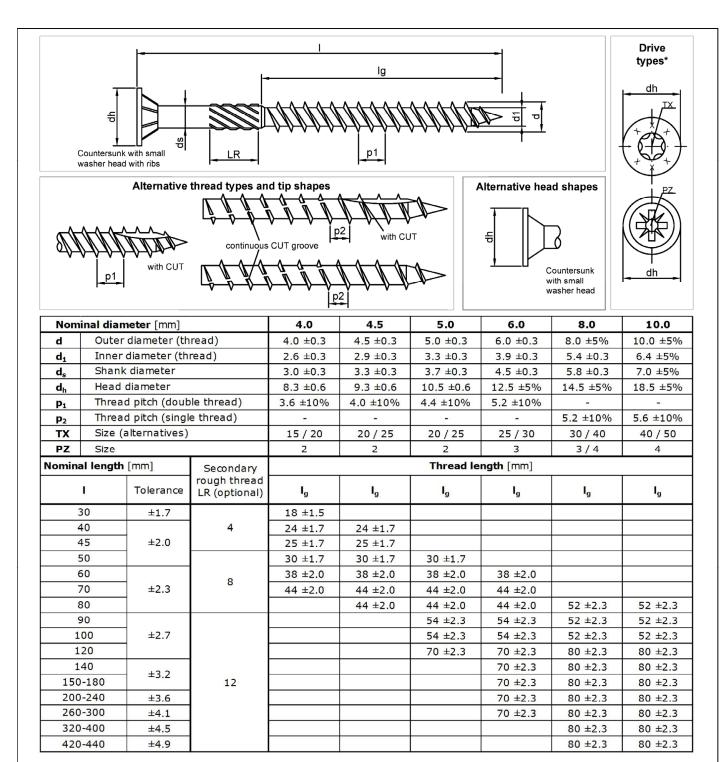
^{*} For all head shapes, the same head diameter apply.

^{**} Alternative head markings with clear reference to the respective manufacturing plant are possible.

EASYfast, EASYtop and BULLET screws	
EASYfast WAVE, EASYfast CW with full and double thread and different head and tip shapes	Annex 4.2

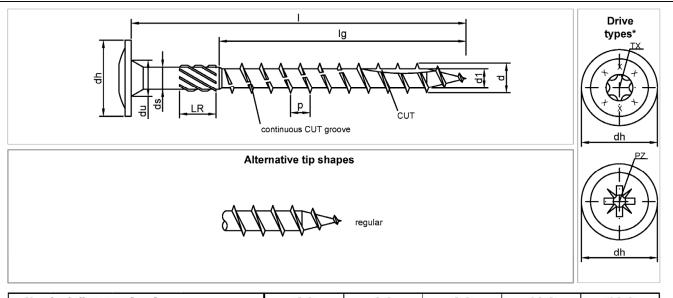
Nominal diameter [mm]			8.0	8.0	10.0	10.0		
d	Outer diameter (thread)			8.0 ±5%	8.0 ±5%	10.0 ±5%	10.0 ±5%	
d ₁	Inner dia	meter (threa	ad)	5.4 ±0.3	5.4 ±0.3	6.4 ±5%	6.4 ±5%	
d _s	Shank diameter			5.8 ± 0.3	5.8 ±0.3	7.0 ±5%	7.0 ±5%	
d _h	Head diameter			15.0 ±5%	15.0 ±5%	18.4 ±5%	18.4 ±5%	
р	Thread pitch (single thread)			5.2 ±10%	5.2 ±10%	5.6 ±10%	5.6 ±10%	
TX	Size			40	40	40	40	
PZ	Size			3	3	4	4	
Nominal length [mm] Secondary			Thread length [mm]					
I Tolerance		rough thread LR (optional)	l _g	l g (alternative)	l _g	l _g (alternative)		

Nominal length [n	nmj	Secondary Inread length [mm]				
I	Tolerance	rough thread LR (optional)	l _g	l g (alternative)	l _g	l _g (alternative)
80	±2.3		52 ±2.3		52 ±2.3	
90	⊥2 7		52 ±2.3		52 ±2.3	
100-120	±2.7		80 ±2.3	52 ±2.3	80 ±2.3	52 ±2.3
130-180	±3.2		80 ±2.3	100 ±2.7	80 ±2.3	100 ±2.7
200-240	±3.6	12	80 ±2.3	100 ±2.7	80 ±2.3	100 ±2.7
260-300	±4.1		80 ±2.3	100 ±2,7	80 ±2.3	100 ±2.7
320-400	±4.5		80 ±2.3	100 ±2.7	80 ±2.3	100 ±2.7
420-500	±4.9		80 ±2.3	100 ±2.7	80 ±2.3	100 ±2.7
520-600	±5.5		80 ±2.3	100 ±2.7	80 ±2.3	100 ±2.7


^{*} For all head shapes, the same head diameter apply.

^{**} Alternative head markings with clear reference to the respective manufacturing plant are possible.

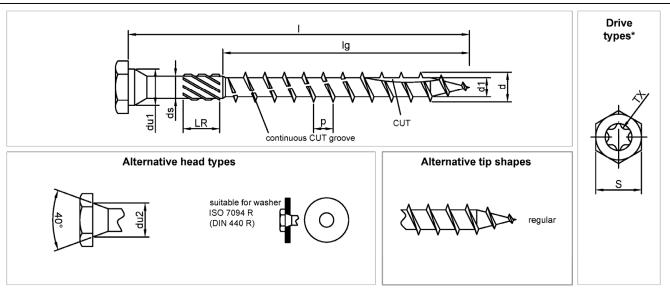
EASYfast, EASYtop and BULLET screws	
EASYfast with partial thread and different head and tip shapes	Annex 4.3



English translation prepared by DIBt

^{*} Alternative head markings with clear reference to the respective manufacturing plant are possible.

EASYfast, EASYtop and BULLET screws	
EASYfast and EASYfast CUT with different thread types, countersunk washer heads and tip shapes	Annex 4.4


Nom	Nominal diameter [mm]				8.0	8.0	10.0	10.0
d	Outer di	Outer diameter (thread)			8.0 ±5%	8.0 ±5%	10.0 ±5%	10.0 ±5%
d ₁	Inner dia	meter (three	ad)	3.9 ±0.3	5.4 ±0.3	5.4 ±0.3	6.4 ±5%	6.4 ±5%
d₅	Shank d	iameter		4.5 ±0.3	5.8 ±0.3	5.8 ±0.3	7.0 ±5%	7.0 ±5%
d _h	Head diameter			15.5 ±5%	22.0 ±5%	22.0 ±5%	25 ±5%	25 ±5%
du	Transitio	Transition diameter (head side)			10.0 ±0.5	10.0 ±0.5	12.0 ±0.6	12.0 ±0.6
р	Thread p	Thread pitch (single thread)			5.2 ±10%	5.2 ±10%	5.6 ±10%	5.6 ±10%
TX	Size (alt	ernatives)		25 / 30	30 / 40	30 / 40	40 / 50	40 / 50
PZ	Size			3	3	3	4	4
Nomina	al length [m	nm]	Secondary		Th	read length [m	nm]	
	1	Tolerance	rough thread LR (optional)	l _g	l _g	l _g (alternative)	l _g	او (alternative)
	60			30 ±1.7				
	70 122			20 11 7				

	11111	Secondary						
I	Tolerance	rough thread LR (optional)	l _g	l _g	l _g (alternative)	lg	l _g (alternative)	
60			30 ±1.7					
70	±2.3	8	30 ±1.7					
80			40 ±2.0	52 ±2.3		52 ±2.3		
90	12.7		40 ±2.0	52 ±2.3		52 ±2.3		
100-120	±2.7		50 ±2.0	80 ±2.3	52 ±2.3	80 ±2.3	52 ±2.3	
140-180	±3.2		75 ±2.3	80 ±2.3	100 ±2.7	80 ±2.3	100 ±2.7	
200-240	±3.6	12	75 ±2.3	80 ±2.3	100 ±2.7	80 ±2.3	100 ±2.7	
260-300	±4.1	12	75 ±2.3	80 ±2.3	100 ±2.7	80 ±2.3	100 ±2.7	
320-400	±4.5			80 ±2.3	100 ±2.7	80 ±2.3	100 ±2.7	
420-500	±4.9			80 ±2.3	100 ±2.7	80 ±2.3	100 ±2.7	
520-600	±5.5			80 ±2.3	100 ±2.7	80 ±2.3	100 ±2.7	

^{*} Alternative head markings with clear reference to the respective manufacturing plant are possible.

EASYfast, EASYtop and BULLET screws	
EASYfast with partial thread, washer head and different tip shapes	Annex 4.5

	Nominal diameter [mm]				8.0	10.0	10.0
d	Outer diameter (thread)			8.0 ±5%	8.0 ±5%	10.0 ±5%	10.0 ±5%
d ₁	Inner diameter (thread)			5.4 ±0.3	5.4 ±0.3	6.4 ±5%	6.4 ±5%
ds	Shank di	ameter		5.8 ±0.3	5.8 ±0.3	7.0 ±5%	7.0 ±5%
р	Thread p	oitch		5.2 ±10%	5.2 ±10%	$5.6 \pm 10\%$	5.6 ±10%
du ₁	Transitio	n diameter (head side)	10.0 ±0.5	10.0 ±0.5	12.0 ±0.6	12.0 ±0.6
du ₂	Transitio	n diameter (head side)	9.0 ±0.4	9.0 ±0.4	11.0 ±0.5	11.0 ±0.5
S	Hexagon			12	12	15	15
TX	TX Size			40	40	40	40
Nomina	lominal length [mm] Secondary Thread length [mm]						
	1	Tolerance	rough thread LR (optional)	lg	l _g (alternative)	Ig	او (alternative)
	80	±2.3		52 ±2.3		52 ±2.3	
	90	±2.7		52 ±2.3		52 ±2.3	
10	0-120	1 ±/./					
130-180				80 ±2.3		80 ±2.3	
13		±3.2		80 ±2.3 80 ±2.3	100 ±2.7	80 ±2.3 80 ±2.3	100 ±2.7
			12		100 ±2.7 100 ±2.7		100 ±2.7 100 ±2.7
20	80-180	±3.2	12	80 ±2.3		80 ±2.3	F 5 F 10 F 1 F 10 F 10 F 10 F 10 F 10 F
20 26	80-180 90-240	±3.2 ±3.6	12	80 ±2.3 80 ±2.3	100 ±2.7	80 ±2.3 80 ±2.3	100 ±2.7
20 26 32	00-180 00-240 00-300	±3.2 ±3.6 ±4.1	12	80 ±2.3 80 ±2.3 80 ±2.3	100 ±2.7 100 ±2.7	80 ±2.3 80 ±2.3 80 ±2.3	100 ±2.7 100 ±2.7

^{*} Alternative head markings with clear reference to the respective manufacturing plant are possible.

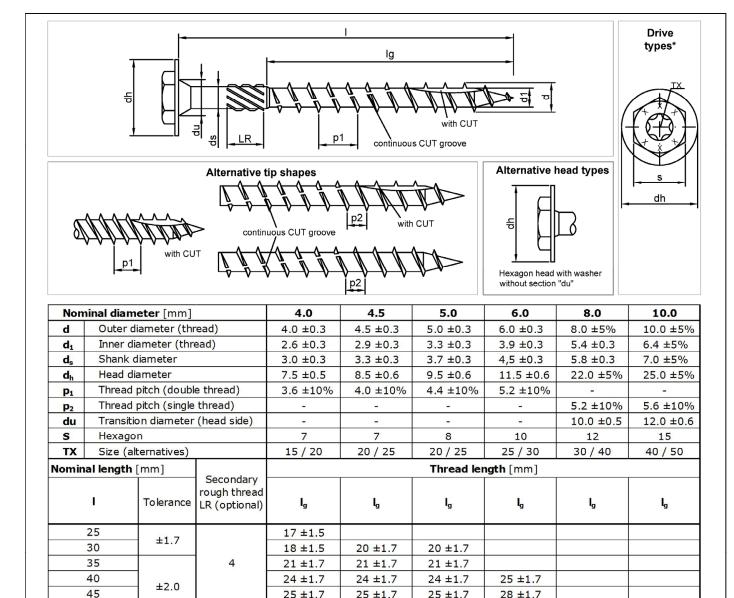
EASYfast, EASYtop and BULLET screws	
EASYfast with partial thread, different hexagon heads and tip shapes	Annex 4.6

50

55

60

70


80

90

100

110-120

130-180	±3.2	12		70 ± 2.3	80 ± 2.3	80 ± 2.3
200-240	±3.6	12		70 ±2.3	80 ±2.3	80 ±2.3
260-300	±4.1			70 ±2.3	80 ±2.3	80 ±2.3
320-400	±4.5				80 ±2.3	80 ±2.3
420-440	±4.9				80 ±2.3	80 ±2.3

25 ±1.7

 30 ± 1.7

34 ±2.0

38 ±2.0

44 ±2.0

44 ±2.0

25 ±1.7

 30 ± 1.7

34 ±2.0

 38 ± 2.0

44 ±2.0

44 ±2.0

54 ±2.3

54 ±2.3

 70 ± 2.3

28 ±1.7

 30 ± 1.7

34 ±2.0

38 ±2.0

44 ±2.0

44 ±2.0

54 ±2.3

54 ±2.3

 70 ± 2.3

52 ±2.3

52 ±2.3

 80 ± 2.3

 80 ± 2.3

52 ±2.3

52 ±2.3

80 ±2.3

80 ±2.3

 25 ± 1.7

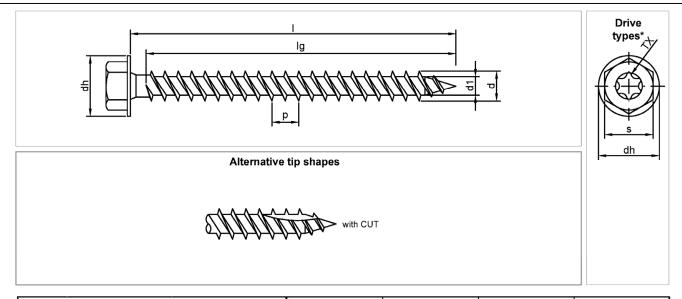
 30 ± 1.7

 34 ± 2.0

 38 ± 2.0

44 ±2.0

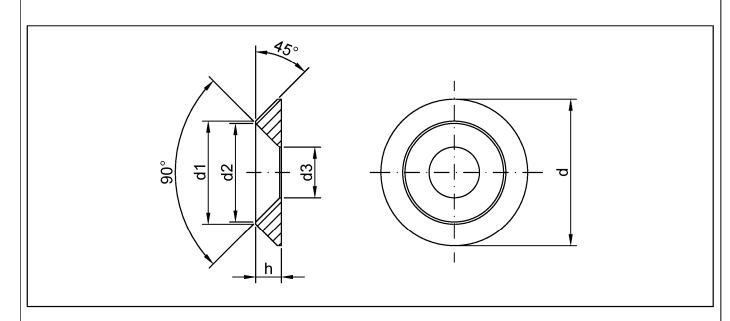
8


±2.3

±2.7

EASYfast, EASYtop and BULLET screws	
EASYfast with different thread types, different hexagon washer heads and tip shapes	Annex 4.7

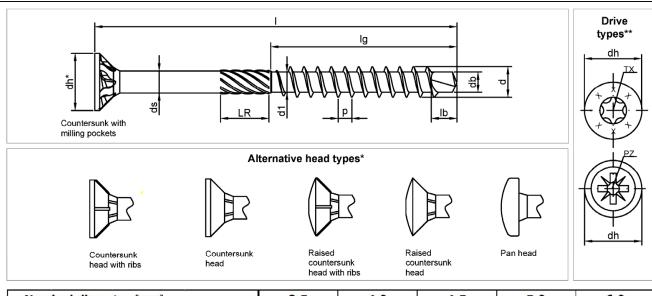
^{*} Alternative head markings with clear reference to the respective manufacturing plant are possible.



Non	ninal diameter	·[mm]	4.0	4.5	5.0	6.0
d	d Outer diameter (threa		4.0 ±0.3	4.5 ±0.3	5.0 ±0.3	6.0 ±0.3
d ₁	Inner diamet	ter (thread)	2.6 ±0.3	2.9 ±0.3	3.3 ±0.3	3.9 ±0.3
d _h	Head diamet	ter	7.5 ±0.5	8.5 ±0.6	9.5 ±0.6	11.5 ±0.6
р	Thread pitch	(double thread)	3.6 ±10%	4.0 ±10%	4.4 ±10%	5.2 ±10%
S	Hexagon		6.0	7.0	8.0	10.0
TX	Size (alterna	atives)	15 / 20	20 / 25	20 / 25	25 / 30
Nomin	al length [mm]		Thread ler	ngth [mm]	
	ı	Tolerance	l _g	l g	l _g	l _g
	20		16 ±1.5			
	25	±1.7	20 ±1.7			
	30		25 ±1.7	24 ±1.7	24 ±1.7	
	35		30 ±1.7	29 ±1.7	29 ±1.7	
	40	±2.0	35 ±2.0	34 ±2.0	34 ±2.0	32 ±2.0
	45	12.0	40 ±2.0	39 ±2.0	39 ±2.0	37 ±2.0
	50		45 ±2.0	44 ±2.0	44 ±2.0	42 ±2.0
	55		50 ±2.0	49 ±2.0	49 ±2.0	47 ±2.0
60		±2.3	55 ±2.3	54 ±2.3	54 ±2.3	52 ±2.3
	70	12.5			64 ±2.3	62 ±2.3
	80				72 ±2.3	72 ±2.3

^{*} Alternative head markings with clear reference to the respective manufacturing plant are possible.

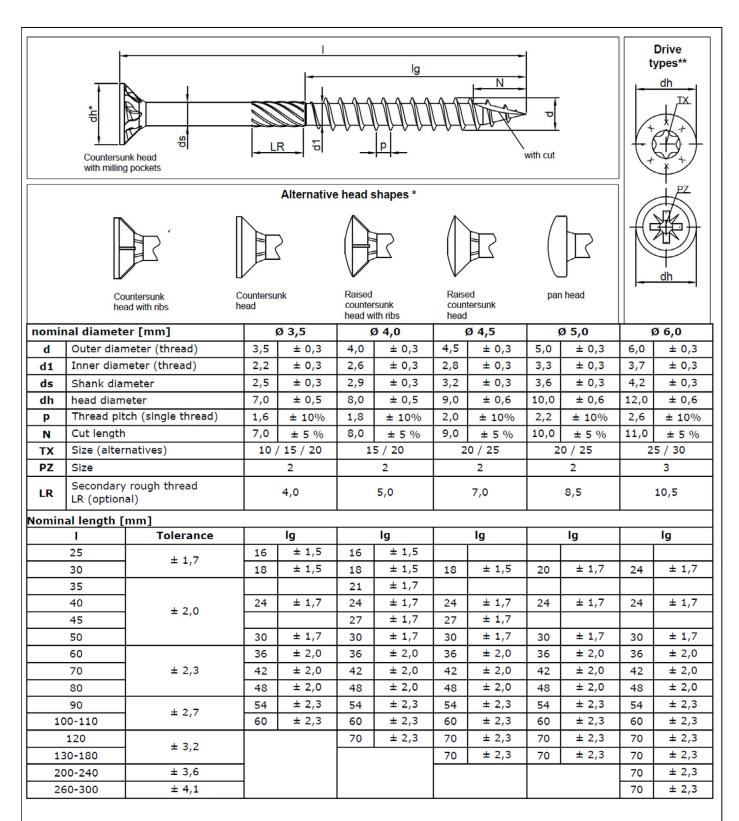
EASYfast, EASYtop and BULLET screws	
EASYfast with full and double thread, hexagon washer head and different tip shapes	Annex 4.8


	Nominal diameter (screw) [mm]	8.0	10.0
d	Outer diameter	25.0 ±0.5	32.0 ±0.5
d ₁	Diameter chamfer edge (outer)	17.5 ±0.5	22.5 ±0.5
d ₂	Diameter chamfer edge (inner)	16.5 ±0.5	21.5 ±0.5
d₃	Inner diameter	8.5 ±0.3	11.0 ±0.3
h	Height	5.0 ±0.3	5.6 ±0.3

EASYfast, EASYtop and BULLET screws	
EASYfast Washer (for timber constructions screws with countersunk head)	Annex 4.9

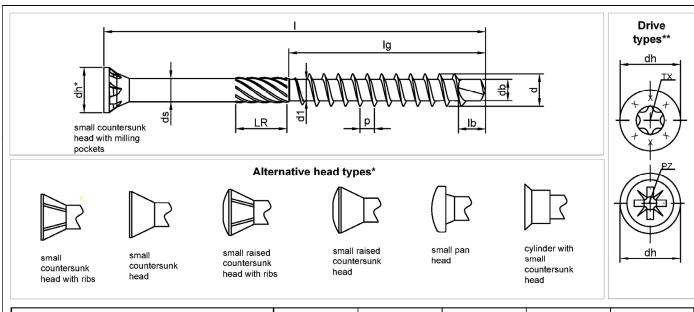
Z30389.20

Electronic copy of the ETA by DIBt: ETA-12/0280


Nominal diameter [mm]		3.5	4.0	4.5	5.0	6.0		
d	Outer diameter (thread)			3.5 ±0.3	4.0 ±0.3	4.5 ±0.3	5.0 ±0.3	6.0 ±0.3
d ₁	Inner diameter (thread)			2.2 ±0.3	2.5 ±0.3	2.7 ±0.3	3.1 ±0.3	3.7 ±0.3
ds	Shank o	liameter		2.5 ±0.3	2.8 ±0.3	3.1 ±0.3	3.5 ±0.3	4.2 ±0.3
d _h	Head di	ameter		6.7 ±0.5	7.5 ±0.5	8.5 ±0.6	9.5 ±0.6	11.5 ±0.6
р	Thread	pitch		1.6 ±10%	1.8 ±10%	2.0 ±10%	2.2 ±10%	2.6 ±10%
I _b	Drillbit le	ength		3.5 ±5%	4.0 ±5%	4.5 ±5%	5.0 ±5%	5.1 ±5%
dь	Drillbit o	liameter		2.1 ±5%	2.4 ±5%	2.6 ±5%	3.0 ±5%	3.6 ±5%
TX	Size (alt	ternatives)		10 / 20	15 / 20	20 / 25	20 / 25	25 / 30
PZ	Size			2	2	2	2	3
Nomin	al length [r	mm]	Secondary					
	I	Tolerance	rough thread LR (optional)	l _g				
	25	14 7		18 ±1.5	18 ±1.5	18 ±1.5		
	30	±1.7	141	21 ±1.7	21 ±1.7	21 ±1.7	21 ±1.7	24 ±1.7
	35			24 ±1.7	24 ±1.7	24 ±1.7	24 ±1.7	24 ±1.7
	40	120	4	26 ±1.7	26 ±1.7	26 ±1.7	26 ±1.7	26 ±1.7
	45	±2.0		28 ±1.7	28 ±1.7	28 ±1.7	28 ±1.7	28 ±1.7
	50	1		30 ±1.7	30 ±1.7	30 ±1.7	30 ±1.7	30 ±1.7
,	60		6	36 ±2.0	36 ±2.0	36 ±2.0	36 ±2.0	36 ±2.0
	70	±2.3		42 ±2.0	42 ±2.0	42 ±2.0	42 ±2.0	42 ±2.0
	80			48 ±2.0	48 ±2.0	48 ±2.0	48 ±2.0	48 ±2.0
9	0-100	±2.7		54 ±2.3	54 ±2.3	54 ±2.3	54 ±2.3	54 ±2.3
11	.0-120	±2./	12	60 ±2.3	60 ±2.3	60 ±2.3	60 ±2.3	60 ±2.3
13	30-180	±3.2	12			70 ±2.3	70 ±2.3	70 ±2.3
20	0-240	±3.6		·				70 ±2.3
26	50-300	±4.1						70 ±2.3

^{**} Alternative head markings with clear reference to the respective manufacturing plant are possible.

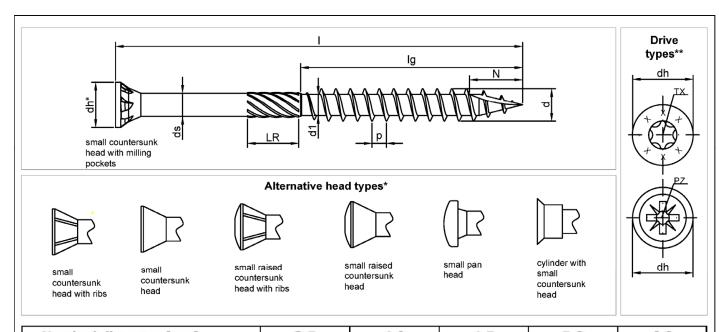
EASYfast, EASYtop and BULLET screws	
EASYtop with partial thread, drill bit and different head shapes	Annex 4.10


^{*} For all head shapes, the same head diameter apply.

EASYfast, EASYtop and BULLET screws	
EASYtop CUT with partial thread, CUT and different head shapes	Annex 4.11

Nominal diameter [mm]		3.5	4.0	4.5	5.0	6.0			
d	Outer diameter (thread)			3.5 ±0.3	4.0 ±0.3	4.5 ±0.3	5.0 ±0.3	6.0 ±0.3	
d ₁	Inner	diameter (t	hread)	2.2 ±0.3	2.5 ±0.3	2.7 ±0.3	3.1 ±0.3	3.7 ±0.3	
d_s	Shank diameter			2.5 ±0.3	2.8 ±0.3	3.1 ±0.3	3.5 ±0.3	4.2 ±0.3	
d_h	Head	diameter		5.0 ±0.5	6.0 ±0.5	7.0 ±0.5	7.5 ±0.5	11.0 ±0.6	
р	Threa	d pitch		1.6 ±10%	1.8 ±10%	2.0 ±10%	2.2 ±10%	2.6 ±10%	
I _b	Drillbit	ength		3.5 ±5%	4.0 ±5%	4.5 ±5%	5.0 ±5%	5.1 ±5%	
d_{b}	Drillbit	diameter		2.1 ±5%	2.4 ±5%	2.6 ±5%	3.0 ±5%	3.6 ±5%	
TX	Size (alternatives)	10 / 20	15 / 20	20 / 25	20 / 25	25 / 30	
PZ	Size			2	2	2	2	3	
Non	ninal leng	gth [mm]	Secondary						
	I	Tolerance	rough thread LR (optional)	l _g					
	25	117	14.7		18 ±1.5	18 ±1.5	18 ±1.5		
	30	±1.7		21 ±1.7	21 ±1.7	21 ±1.7	21 ±1.7	24 ±1.7	
	35		4	24 ±1.7	24 ±1.7	24 ±1.7	24 ±1.7	24 ±1.7	
	40	±2.0	4	26 ±1.7	26 ±1.7	26 ±1.7	26 ±1.7	26 ±1.7	
	45	12.0		28 ±1.7	28 ±1.7	28 ±1.7	28 ±1.7	28 ±1.7	
	50			30 ±1.7	30 ±1.7	30 ±1.7	30 ±1.7	30 ±1.7	
	60		6	36 ±2.0	36 ±2.0	36 ±2.0	36 ±2.0	36 ±2.0	
	70	±2.3		42 ±2.0	42 ±2.0	42 ±2.0	42 ±2.0	42 ±2.0	
	80			48 ±2.0	48 ±2.0	48 ±2.0	48 ±2.0	48 ±2.0	
90	-100	±2.7		54 ±2.3	54 ±2.3	54 ±2.3	54 ±2.3	54 ±2.3	
110	0-120	±2./	12	60 ±2.3	60 ±2.3	60 ±2.3	60 ±2.3	60 ±2.3	
130	0-180	±3.2] 12			70 ±2.3	70 ±2.3	70 ±2.3	
200	0-240	±3.6						70 ±2.3	
260	0-300	±4.1						70 ±2.3	

^{*} For all head shapes, the same head diameter apply. ** Alternative head markings with clear reference to the respective manufacturing plant are possible.


EASYfast, EASYtop and BULLET screws

EASYtop OH

with partial thread, drill bit and different ornamental head shapes

Annex 4.12

Nom	inal diamete	er [mm]	3.5	4.0	4.5	5.0	6.0
d	Outer diameter (thread)		3.5 ±0.3	4.0 ±0.3	4.5 ±0.3	5.0 ±0.3	6.0 ±0.3
d ₁	Inner diameter (thread) Shank diameter		2.2 ±0.3	2.6 ±0.3	2.8 ±0.3	3.3 ±0.3	3.7 ±0.3
d _s	Shank dia	ameter	2.5 ±0.3	2.9 ±0.3	3.2 ±0.3	3.6 ±0.3	4.2 ±0.3
d _h	Head dia	meter	5.0 ±0.5	6.0 ±0.5	7.0 ±0.5	7.5 ±0.5	11.0 ±0.6
р	Thread pi	itch	1.6 ±10%	1.8 ±10%	2.0 ±10%	2.2 ±10%	2.6 ±10%
N	CUT lengt	th	7.0 ±5%	8.0 ±5%	9.0 ±5%	10.0 ±5%	11.0 ±5%
TX	Size (alte	rnatives)	10 / 20	15 / 20	20 / 25	20 / 25	25 / 30
PZ	Size		2	2	2	2	3
LR	Secondar (optional)	y rough thread	4.0	5.0	7.0	8.5	10.5
Nomina	al length [m	m]					
	1	Tolerance	l _g				
	25		16 ±1.5	16 ±1.5			
	30	±1.7	18 ±1.5	18 ±1.5	18 ±1.5	20 ±1.7	24 ±1.7
	40	12.0	24 ±1.7	24 ±1.7	24 ±1.7	24 ±1.7	24 ±1.7
	50	±2.0	30 ±1.7	30 ±1.7	30 ±1.7	30 ±1.7	30 ±1.7
	60		36 ±2.0	36 ±2.0	36 ±2.0	36 ±2.0	36 ±2.0
	70	±2.3	42 ±2.0	42 ±2.0	42 ±2.0	42 ±2.0	42 ±2.0
	80		48 ±2.0	48 ±2.0	48 ±2.0	48 ±2.0	48 ±2.0
	90		54 ±2.3	54 ±2.3	54 ±2.3	54 ±2.3	54 ±2.3
100-110		±2.7	60 ±2.3	60 ±2.3	60 ±2.3	60 ±2.3	60 ±2.3
120				70 ±2.3	70 ±2.3	70 ±2.3	70 ±2.3
13	30-180				70 ±2.3	70 ±2.3	70 ±2.3
	30 100	±3.2			70 12.5	70 -2.5	, 0 -210
200-240		±3.2 ±3.6			70 12.3	70 =2.0	70 ±2.3

^{*} For all head shapes, the same head diameter apply. ** Alternative head markings with clear reference to the respective manufacturing plant are possible.

EASYfast, EASYtop and BULLET screws

EASYtop OH CUT

with partial thread, CUT and different ornamental head shapes

Annex 4.13

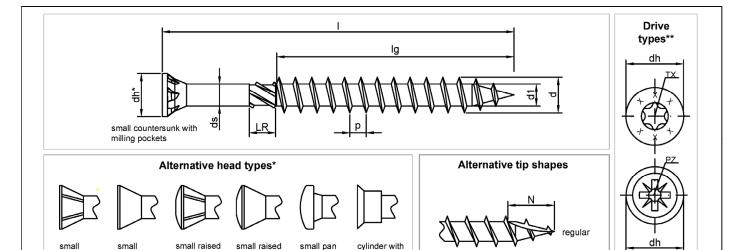
countersunk

head with ribs head

80

90

100-110


120-180

200-240

260-300

countersunk

small

countersunk head

head

countersunk

head

inal diameter	[mm]	3.5	4.0	4.5	5.0	6.0
Outer diameter (thread)		3.5 ±0.3	4.0 ±0.3	4.5 ± 0.3	5.0 ± 0.3	6.0 ± 0.3
Inner diamet	er (thread)	2.1 ±0.3	2.3 ±0.3	2.5 ± 0.3	2.9 ± 0.3	3.5 ± 0.3
Shank diame	eter	2.2 ±0.3	2.5 ±0.3	2.7 ±0.3	3.1 ±0.3	3.6 ± 0.3
Head diamet	er	5.0 ±0.5	6.0 ±0.5	7.0 ±0.5	7.5 ±0.5	11.0 ±0.6
CUT length		6.5 ±5%	7.5 ±5%	8.5 ±5%	9.5 ±5%	11.0 ±5%
Thread pitch		1.6 ±10%	1.8 ±10%	2.0 ±10%	2.2 ±10%	2.6 ±10%
Size (alterna	itives)	10 / 20	15 / 20	15 / 20	20 / 25	25 / 30
Size		2	2	2	2	3
Secondary rough thread LR (optional)		4.0	5.0	7.0	8.5	10.5
al length [mm]					
ı	Tolerance	l _g	l _g	l _g	l g	l _g
25	14.7	16 ±1.5	16 ±1.5			
30	±1./	18 ±1.5	18 ±1.5	18 ±1.5	20 ±1.7	24 ±1.7
40	+2.0	24 ±1.7	24 ±1.7	24 ±1.7	24 ±1.7	24 ±1.7
50	±2.U	30 ±1.7	30 ±1.7	30 ±1.7	30 ±1.7	30 ±1.7
60		36 ±2.0	36 ±2.0	36 ±2.0	36 ±2.0	36 ±2.0
70	±2.3	42 ±2.0	42 ±2.0	42 ±2.0	42 ±2.0	42 ±2.0
_	Outer diamed Inner diamed Shank diamed Head diamed CUT length Thread pitch Size (alternative Size Secondary ro (optional) al length [mm I 25 30 40 50 60	Inner diameter (thread) Shank diameter Head diameter CUT length Thread pitch Size (alternatives) Size Secondary rough thread LR (optional) al length [mm] I Tolerance 25 30 40 50 60	Outer diameter (thread) 3.5 ±0.3 Inner diameter (thread) 2.1 ±0.3 Shank diameter 2.2 ±0.3 Head diameter 5.0 ±0.5 CUT length 6.5 ±5% Thread pitch 1.6 ±10% Size (alternatives) 10 / 20 Size 2 Secondary rough thread LR (optional) 4.0 al length [mm] Image: secondary rough thread LR (optional) al length [mm] 2.0 25 ±1.7 30 ±1.7 40 ±2.0 50 30 ±1.7 50 30 ±2.0	Outer diameter (thread) 3.5 ± 0.3 4.0 ± 0.3 Inner diameter (thread) 2.1 ± 0.3 2.3 ± 0.3 Shank diameter 2.2 ± 0.3 2.5 ± 0.3 Head diameter 5.0 ± 0.5 6.0 ± 0.5 CUT length $6.5 \pm 5\%$ $7.5 \pm 5\%$ Thread pitch $1.6 \pm 10\%$ $1.8 \pm 10\%$ Size (alternatives) $10 / 20$ $15 / 20$ Size 2 2 Secondary rough thread LR (optional) 4.0 5.0 Is length [mm] 1.6 ± 1.5 1.6 ± 1.5 Image: A size of the content o	Outer diameter (thread) 3.5 ± 0.3 4.0 ± 0.3 4.5 ± 0.3 Inner diameter (thread) 2.1 ± 0.3 2.3 ± 0.3 2.5 ± 0.3 Shank diameter 2.2 ± 0.3 2.5 ± 0.3 2.7 ± 0.3 Head diameter 5.0 ± 0.5 6.0 ± 0.5 7.0 ± 0.5 CUT length $6.5 \pm 5\%$ $7.5 \pm 5\%$ $8.5 \pm 5\%$ Thread pitch $1.6 \pm 10\%$ $1.8 \pm 10\%$ $2.0 \pm 10\%$ Size (alternatives) $10 / 20$ $15 / 20$ $15 / 20$ Size 2 2 2 Secondary rough thread LR (optional) 4.0 5.0 7.0 All length [mm] Image: Image	Outer diameter (thread) 3.5 ± 0.3 4.0 ± 0.3 4.5 ± 0.3 5.0 ± 0.3 Inner diameter (thread) 2.1 ± 0.3 2.3 ± 0.3 2.5 ± 0.3 2.9 ± 0.3 Shank diameter 2.2 ± 0.3 2.5 ± 0.3 2.7 ± 0.3 3.1 ± 0.3 Head diameter 5.0 ± 0.5 6.0 ± 0.5 7.0 ± 0.5 7.5 ± 0.5 CUT length $6.5 \pm 5\%$ $7.5 \pm 5\%$ $8.5 \pm 5\%$ $9.5 \pm 5\%$ Thread pitch $1.6 \pm 10\%$ $1.8 \pm 10\%$ $2.0 \pm 10\%$ $2.2 \pm 10\%$ Size (alternatives) $10 / 20$ $15 / 20$ $15 / 20$ $20 / 25$ Size 2 2 2 2 Secondary rough thread LR (optional) 4.0 5.0 7.0 8.5 al length [mm] Ig Ig Ig Ig Ig 2 2 2 2 2 3 4.0 5.0 7.0 8.5 2 2 2 2 2 2 2 2 2 2 2 2

 ± 2.7

±3.2

±3.6

±4.1

countersunk

head with ribs

 48 ± 2.0

54 ±2.3

 60 ± 2.3

 70 ± 2.3

EASYfast, EASYtop and BULLET screws	
EASYtop OH "S", EASYtop OH CUT "S" with partial thread and different ornamental head and tip shapes	Annex 4.14

48 ±2.0

54 ±2.3

60 ±2.3

 70 ± 2.3

 48 ± 2.0

54 ±2.3

 60 ± 2.3

 70 ± 2.3

48 ±2.0

54 ±2.3

60 ±2.3

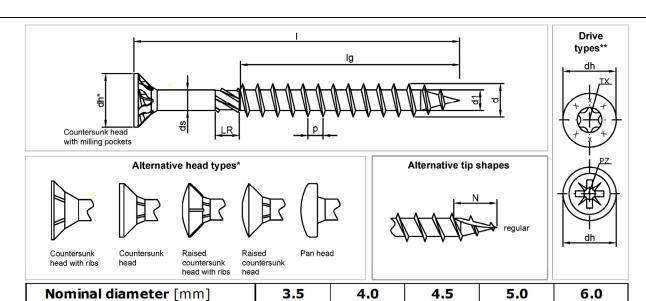
 70 ± 2.3

48 ±2.0

54 ±2.3

 60 ± 2.3

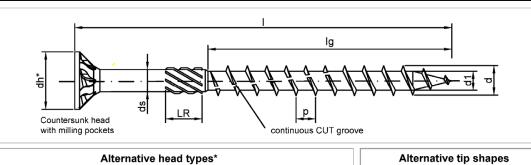
 70 ± 2.3

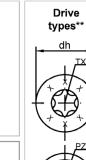

 70 ± 2.3

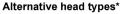
 70 ± 2.3

^{*} For all head shapes, the same head diameter apply.

^{**} Alternative head markings with clear reference to the respective manufacturing plant are possible.


Nominal diameter [mm]		3.5	4.0	4.5	5.0	0.0
Outer diame	ter (thread)	3.5 ±0.3	4.0 ±0.3	4.5 ±0.3	5.0 ±0.3	6.0 ±0.3
Inner diamet	er (thread)	2.1 ±0.3	2.3 ±0.3	2.5 ±0.3	2.9 ±0.3	3.5 ±0.3
Shank diame	eter	2.2 ±0.3	2.5 ±0.3	2.7 ±0.3	3.1 ±0.3	3.6 ±0.3
Head diamet	er	7.3 ±0.5	8.3 ±0.6	9.3 ±0.6	10.3 ±0.6	11.8 ±0.6
CUT length		6.5 ±5%	7.5 ±5%	8.5 ±5%	9.5 ±5%	11.0 ±5%
Thread pitch		1.6 ±10%	1.8 ±10%	2.0 ±10%	2.2 ±10%	2.6 ±10%
Size (alterna	itives)	10 / 20	15 / 20	20 / 25	20 / 25	25 / 30
Size		2	2	2	2	3
Secondary rough thread (optional)		4.0	5.0	7.0	8.5	10.5
al length [mm]					
I	Tolerance	l _g	l _g	l _g	l _g	l _g
25	±1.7	16 ±1.5	16 ±1.5			
30		18 ±1.5	18 ±1.5	18 ±1.5	20 ±1.7	24 ±1.7
40	+ 2 0	24 ±1.7	24 ±1.7	24 ±1.7	24 ±1.7	24 ±1.7
50	12.0	30 ±1.7	30 ±1.7	30 ±1.7	30 ±1.7	30 ±1,7
60		36 ±2.0	36 ±2.0	36 ±2.0	36 ±2.0	36 ±2.0
70	±2.3	42 ±2.0	42 ±2.0	42 ±2.0	42 ±2.0	42 ±2.0
80		48 ±2.0	48 ±2.0	48 ±2.0	48 ±2.0	48 ±2.0
90		54 ±2.3	54 ±2.3	54 ±2.3	54 ±2.3	54 ±2.3
100-110	±2.7	60 ±2.3	60 ±2.3	60 ±2.3	60 ±2.3	60 ±2.3
120			70 ±2.3	70 ±2.3	70 ±2.3	70 ±2.3
130-140	+3.2		70 ±2.3	70 ±2.3	70 ±2.3	70 ±2.3
150-180	13.2			70 ±2.3	70 ±2.3	70 ±2.3
200-240	±3.6					70 ±2.3
260-300	±4.1					70 ±2.3
	Outer diamed Inner diamed Shank diamed Head diamed CUT length Thread pitch Size (alternative Size Secondary ro (optional) al length [mm] I 25 30 40 50 60 70 80 90 100-110 120 130-140 150-180 200-240	Outer diameter (thread) Inner diameter (thread) Shank diameter Head diameter CUT length Thread pitch Size (alternatives) Size Secondary rough thread (optional) al length [mm] I Tolerance 25 30 40 50 60 70 40 50 60 70 40 50 60 70 40 50 60 70 40 50 60 70 40 50 60 70 40 50 60 70 40 40 50 40 40 40 50 40 40 40 40 40 40 40 40 40 40 40 40 40	Outer diameter (thread) 3.5 ±0.3 Inner diameter (thread) 2.1 ±0.3 Shank diameter 2.2 ±0.3 Head diameter 7.3 ±0.5 CUT length 6.5 ±5% Thread pitch 1.6 ±10% Size (alternatives) 10 / 20 Size 2 Secondary rough thread (optional) I Tolerance Ig 25 ±1.7 30 ±1.7 40 ±2.0 50 10-10 ±2.3 100-110 ±2.7 120 130-140 ±3.6	Outer diameter (thread) 3.5 ±0.3 4.0 ±0.3 Inner diameter (thread) 2.1 ±0.3 2.3 ±0.3 Shank diameter 2.2 ±0.3 2.5 ±0.3 Head diameter 7.3 ±0.5 8.3 ±0.6 CUT length 6.5 ±5% 7.5 ±5% Thread pitch 1.6 ±10% 1.8 ±10% Size (alternatives) 10 / 20 15 / 20 Size 2 2 Secondary rough thread (optional) 4.0 5.0 Size 1	Outer diameter (thread) 3.5 ±0.3 4.0 ±0.3 4.5 ±0.3 Inner diameter (thread) 2.1 ±0.3 2.3 ±0.3 2.5 ±0.3 Shank diameter 2.2 ±0.3 2.5 ±0.3 2.7 ±0.3 Head diameter 7.3 ±0.5 8.3 ±0.6 9.3 ±0.6 CUT length 6.5 ±5% 7.5 ±5% 8.5 ±5% Thread pitch 1.6 ±10% 1.8 ±10% 2.0 ±10% Size (alternatives) 10 / 20 15 / 20 20 / 25 Size 2 2 2 Secondary rough thread (optional) 4.0 5.0 7.0 al length [mm] I Tolerance Ig Ig Ig 25 ±1.7 18 ±1.5 16 ±1.5 18 ±1.5 30 ±1.7 18 ±1.5 18 ±1.5 18 ±1.5 40 ±2.0 24 ±1.7 24 ±1.7 24 ±1.7 30 ±1.7 30 ±1.7 30 ±1.7 30 ±1.7 30 ±1.7 60 ±2.3 42 ±2.0 42 ±2.0 42 ±2.0 48 ±2.0 48 ±2.0 </th <th>Outer diameter (thread) 3.5 ± 0.3 4.0 ± 0.3 4.5 ± 0.3 5.0 ± 0.3 Inner diameter (thread) 2.1 ± 0.3 2.3 ± 0.3 2.5 ± 0.3 2.9 ± 0.3 Shank diameter 2.2 ± 0.3 2.5 ± 0.3 2.7 ± 0.3 3.1 ± 0.3 Head diameter 7.3 ± 0.5 8.3 ± 0.6 9.3 ± 0.6 10.3 ± 0.6 CUT length 6.5 ± 5% 7.5 ± 5% 8.5 ± 5% 9.5 ± 5% Thread pitch 1.6 ± 10% 1.8 ± 10% 2.0 ± 10% 2.2 ± 10% Size (alternatives) 10 / 20 15 / 20 20 / 25 20 / 25 Size 2 2 2 2 Secondary rough thread (optional) 4.0 5.0 7.0 8.5 al length [mm] I Tolerance Ig Ig Ig Ig 40 ± 1.7 16 ± 1.5 18 ± 1.5 18 ± 1.5 20 ± 1.7 40 ± 2.0 ± 2.1 36 ± 2.0 36 ± 2.0 36 ± 2.0 36 ± 2.0 36 ± 2.0 36 ± 2.0 42 ± 1.7 24 ± 1.7 24 ± 1.7</th>	Outer diameter (thread) 3.5 ± 0.3 4.0 ± 0.3 4.5 ± 0.3 5.0 ± 0.3 Inner diameter (thread) 2.1 ± 0.3 2.3 ± 0.3 2.5 ± 0.3 2.9 ± 0.3 Shank diameter 2.2 ± 0.3 2.5 ± 0.3 2.7 ± 0.3 3.1 ± 0.3 Head diameter 7.3 ± 0.5 8.3 ± 0.6 9.3 ± 0.6 10.3 ± 0.6 CUT length 6.5 ± 5% 7.5 ± 5% 8.5 ± 5% 9.5 ± 5% Thread pitch 1.6 ± 10% 1.8 ± 10% 2.0 ± 10% 2.2 ± 10% Size (alternatives) 10 / 20 15 / 20 20 / 25 20 / 25 Size 2 2 2 2 Secondary rough thread (optional) 4.0 5.0 7.0 8.5 al length [mm] I Tolerance Ig Ig Ig Ig 40 ± 1.7 16 ± 1.5 18 ± 1.5 18 ± 1.5 20 ± 1.7 40 ± 2.0 ± 2.1 36 ± 2.0 36 ± 2.0 36 ± 2.0 36 ± 2.0 36 ± 2.0 36 ± 2.0 42 ± 1.7 24 ± 1.7 24 ± 1.7


* For all head shapes, the same head diameter apply. ** Alternative head markings with clear reference to the respective manufacturing plant are possible.


EASYfast, EASYtop and BULLET screws

EASYtop ST "S", EASYtop CUT "S" with partial thread and different head and tip shapes

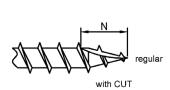
Annex 4.15

head with ribs

Countersunk

head

countersunk


head with ribs

countersunk

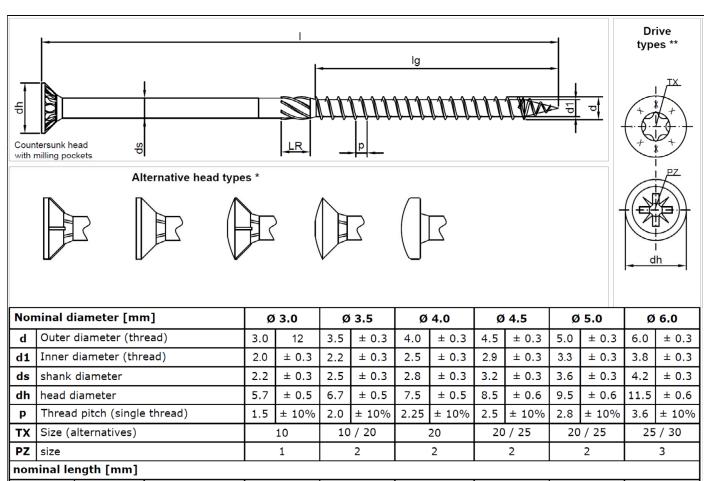
head

Nor	ninal diameter [mm]	3.5	4.0	4.5	5.0	6.0	8.0	10.0
d	Outer diameter (thread)	3.5 ±0.3	4.0 ±0.3	4.5 ±0.3	5.0 ±0.3	6.0 ±0.3	8.0 ±5%	10.0 ±5%
d ₁	Inner diameter (thread)	2.1 ±0.3	2.5 ±0.3	2.7 ±0.3	3.2 ±0.3	4.0 ±0.3	5.3 ±0.3	6.3 ±5%
ds	Shank diameter	2.3 ±0.3	2.7 ±0.3	3.0 ±0.3	3.7 ±0.3	4.2 ±0.3	5.8 ±0.3	7.0 ±5%
d _h	Head diameter	6.8 ±0.5	7.8 ±0.5	8.8 ±0.6	9.8 ±0.6	11.8 ±0.6	14.5 ±5%	17.8 ±5%
N	CUT length	6.5 ±5%	7.5 ±5%	8.5 ±5%	9.5 ±5%	11.0 ±5%	12.0 ±5%	14.0 ±5%
р	Thread pitch (coarse thread	2.2 ±10%	2.5 ±10%	2.8 ±10%	3.1 ±10%	3.6 ±10%	5.2 ±10%	5.6 ±10%
TX	Size (alternatives)	15 / 20	15 / 20	20 / 25	20 / 25	25 / 30	30 / 40	40 / 50
PZ	Size	2	2	2	2	3	3	4
LR	Secondary rough thread LR (optional)	4.0	5.0	7.0	7.9	4.9 (I up to 100) 9.9 (I from 110)	9.9	9.9
Manai	and loweth [mana]							

Nominal lengt	h [mm]							
I	Tolerance	l _g	l _g	l _g	l _g	l g	l _g	l g
30	±1.7	18 ±1.5	18 ±1.5	18 ±1.5	20 ±1.7	24 ±1.7		
40	±2.0	24 ±1.7	24 ±1.7	24 ±1.7	24 ±1.7	24 ±1.7		
50		30 ±1.7	30 ±1.7	30 ±1.7	30 ±1.7	30 ±1.7		
60		36 ±2.0	36 ±2.0	36 ±2.0	36 ±2.0	36 ±2.0		
70	±2.3	42 ±2.0	42 ±2.0	42 ±2.0	42 ±2.0	42 ±2.0	42 ±2.0	
80		48 ±2.0	48 ±2.0	48 ±2.0	48 ±2.0	48 ±2.0	48 ±2.0	
90		54 ±2.3	54 ±2.3	54 ±2.3	54 ±2.3	54 ±2.3	54 ±2.3	
100	127	60 ±2.3	60 ±2.3	60 ±2.3	60 ±2.3	60 ±2.3	80 ±2.3	
110	±2.7	66 ±2.3	66 ±2.3	66 ±2.3	66 ±2.3	66 ±2.3	80 ±2.3	
120	1	70 ±2.3	70 ±2.3	70 ±2.3	70 ±2.3	70 ±2.3	80 ±2.3	
130-140	12.2	70 ±2.3	70 ±2.3	70 ±2.3	70 ±2.3	70 ±2.3	80 ±2.3	
150-180	±3.2					70 ±2.3	80 ±2.3	80 ±2.3
200-240	±3.6					70 ±2.3	80 ±2.3	80 ±2.3
260-300	±4.1					70 ±2.3	80 ±2.3	80 ±2.3
320-400	±4.5					70 ±2.3	80 ±2.3	80 ±2.3

^{*} For all head shapes, the same head diameter apply. ** Alternative head markings with clear reference to the respective manufacturing plant are possible.

EASYfast, EASYtop and BULLET screws


EASYtop ST CT, EASYtop CUT CT

with partial and coarse thread and different head and tip shapes

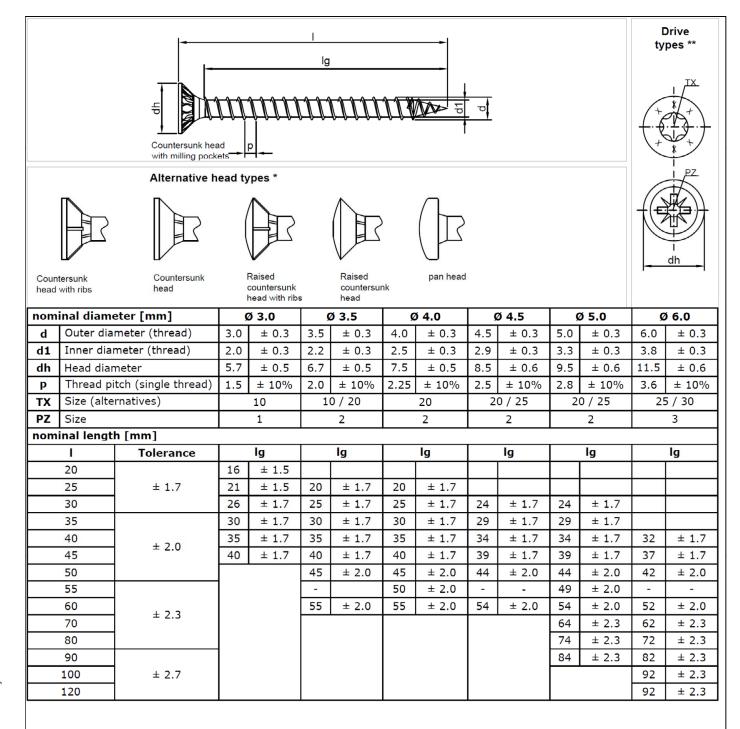
Annex 4.16

Electronic copy of the ETA by DIBt: ETA-12/0280

nominal length [mm]														
I	tolerance	secondary rough thread LR (optional)		lg										
25	± 1.7		17	± 1.5	17	± 1.5								
30	± 1.7		18	± 1.5	18	± 1.7	18	± 1.5	20	± 1.7	20	± 1.7		
35		4	21	± 1.7	21	± 1.7	21	± 1.7	21	± 1.7	21	± 1.7		
40	± 2.0	2.0	24	± 1.7	24	± 1.7	24	± 1.7	24	± 1.7	24	± 1.7	25	± 1.7
45] ± 2.0		25	± 1.7	25	± 1.7	25	± 1.7	25	± 1.7	25	± 1.7	28	± 1.7
50					30	± 1.7	30	± 1.7	30	± 1.7	30	± 1.7	30	± 1.7
55		8			34	± 2.0	34	± 2.0	34	± 2.0	34	± 2.0	34	± 2.0
60	± 2.3	8			38	± 2.0	38	± 2.0	38	± 2.0	38	± 2.0	38	± 2.0
70 - 80							44	± 2.0	44	± 2.0	44	± 2.0	44	± 2.0
90 - 100	± 2.7								54	± 2.3	54	± 2.3	54	± 2.3
110 - 120	± 2.7										70	± 2.3	70	± 2.3
130 - 180	± 3.2	12											70	± 2.3
200 - 240	± 3.6												70	± 2.3
260 - 300	± 4.1												70	± 2.3

* For all head shapes, the same head diameter apply.	** Alternative head markings with clea	r reference manufacturing plant are possible.
--	--	---

EASYfast, EASYtop and BULLET screws


EASYfast WAVE PLUS

with partial and single thread and different head and tip shapes

Annex 4.17

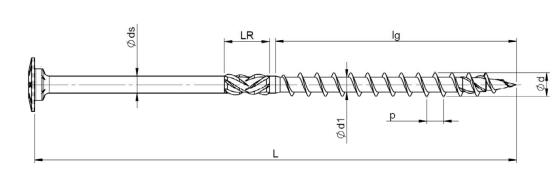
English translation prepared by DIBt

Į	For all nead snapes, the same nead diameter apply.	"Alternative head markings with clear reference manufacturing plant are possible.
ſ		

EASYfast, EASYtop and BULLET screws

EASYfast WAVE PLUS

with full and single thread and different head and tip shapes


Annex 4.18

BULLET COMBI (countersunk head)

BULLET (washer head)

BULLET COMBI (countersunk head)								
nominal dia	meter [mm]		Ø8,0					
d	Outer diamete	er (thread)	8,0 ±0,4					
d1	Inner diamete	r (thread)	5,3 ±0,3					
ds	shank diamete	meter 5,8 ±0,3			8 ±0,3			
dh	head diamete	r	15,0 ±0,75					
р	Thread pitch (single thread)		5,6 ±10%				
TX	Size		40					
no	ominal length	[mm]		thread I	ength [mm]			
L	tolerance	LR (optional)	lg	tolerance	lg (Alternativ)	tolerance		
80	± 2,3		52					
90	. 0.7		52		52			
100-120	± 2,7		80			± 2,3		
130-180	± 3,2		80	± 2,3	100			
200-240	± 3,6	15 ±1,5	80		100			
260-300	± 4,1		80		100	± 2,7		
320-400	± 4,5		80		100			
420-500	± 4,9		80		100			
520-600	± 5,5		80		100			

	BULLET (washer head)									
	nominal dia	ameter [mm]		Ø8,0						
	d	d Outer diameter (thread)			8,0 ±0,4					
٦	d1	Inner diamete	r (thread)	5,3 ±0,3						
1	ds	shank diamete	er		5,8	3 ±0,3				
٦	dh	head diamete	r		18,4	±0,92				
1	р	Thread pitch (single thread)		5,6	±10%				
٦	TX Size					40				
٦	nominal length [mm]				thread le	ength [mm]				
•	L	tolerance	LR (optional)	lg	tolerance	lg (Alternativ)	tolerance			
]	80	± 2,3		52						
	90	± 2,7		52		52				
	100-120			80			± 2,3			
1	130-180	± 3,2		80		100				
1	200-240	± 3,6	15 ±1,5	80	± 2,3	100				
1	260-300	± 4,1		80]	100	± 2,7			
1	320-400	± 4,5		80		100	± 2,1			
1	420-500	± 4,9		80		100				
╛	520-600	± 5,5		80		100				

EASYfast, EASYtop and BULLET screws	
BULLET COMBI, BULLET with partial thread and different head shapes	Annex 4.19