

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-13/1038 of 28 July 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Hilti screw anchor HUS3

Concrete screw for use in concrete

Hilti Aktiengesellschaft 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

31 pages including 3 annexes which form an integral part of this assessment

EAD 330011-00-0601 Edition 07/2014 and EAD 330232-01-0601 Edition 12/2019

ETA-13/1038 issued on 22 July 2019

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-13/1038 English translation prepared by DIBt

Page 2 of 31 | 28 July 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 31 | 28 July 2020

European Technical Assessment ETA-13/1038 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Hilti screw anchor HUS3 is an anchor made of galvanised steel (HUS3-H, HUS3-HF, HUS3-C, HUS3-P, HUS3-PS, HUS3-PL, HUS3-A, HUS3-I, HUS3-I Flex) of sizes 6, 8, 10 and 14. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading) Method A	See Annex B4, C1 – C3
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1 and C3
Displacements and durability	See Annex B1, C10 – C11
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C4 – C6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C7 – C9

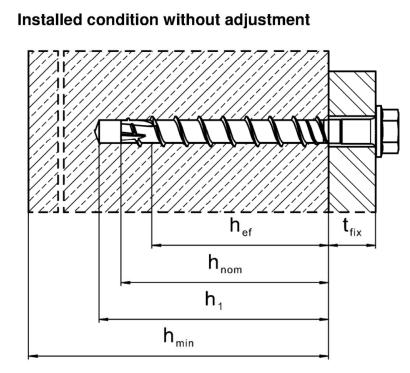
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 and the European Assessment Document EAD 330011-00-0601 the applicable European legal act is: [96/582/EC].

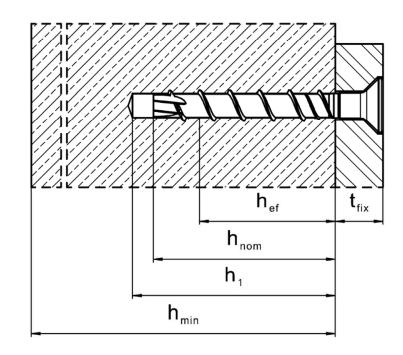
The system to be applied is: 1

European Technical Assessment ETA-13/1038 English translation prepared by DIBt

Page 4 of 31 | 28 July 2020

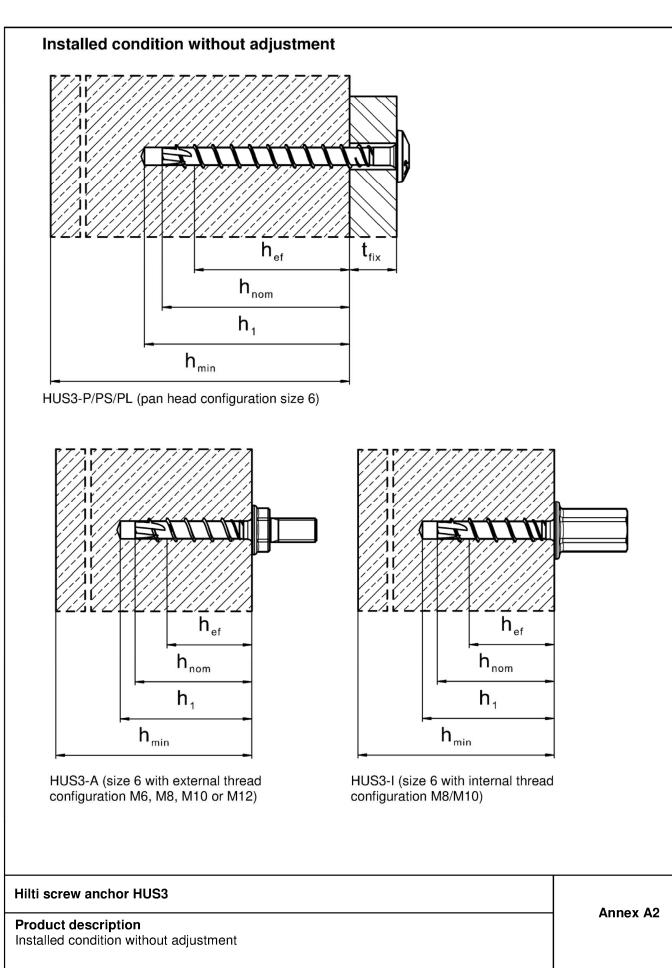

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

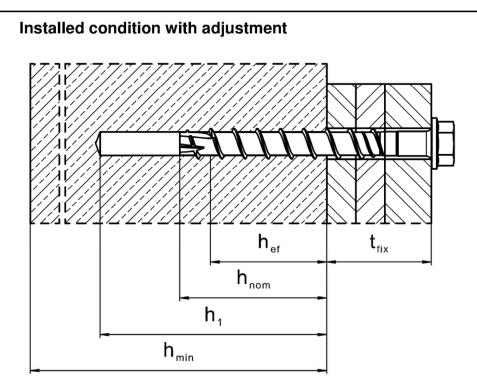

Issued in Berlin on 28 July 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Lange

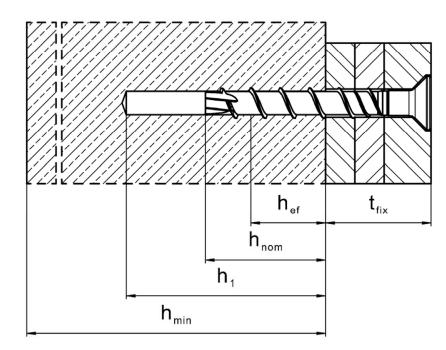
HUS3-H (hexagon head configuration sizes 6, 8, 10 and 14) HUS3-HF (hexagon head configuration sizes 8, 10 and 14)



HUS3-C (countersunk head configuration sizes 6, 8 and 10)


Hilti screw anchor HUS3

Product description Installed condition without adjustment Annex A1



HUS3-H (hexagon head configuration sizes 8, $10 - h_{nom2}$, h_{nom3}) HUS3-HF (hexagon head configuration sizes 8 and $10 - h_{nom2}$, h_{nom3})

HUS3-C (countersunk head configuration sizes 8 and $10 - h_{nom2}$, h_{nom3})

Hilti screw anchor HUS3

Product description Installed condition with adjustment Annex A3

Table A1: Screw types		
(HURLAND	 Hilti HUS3-H, sizes 6, 8,10 a configuration, galvanized Hilti HUS3-HF, sizes 8,10 an configuration, multilayer coat 	d 14, hexagonal head
WUSZCCE TSZENE	3) Hilti HUS3-C, sizes 6, 8 and configuration, galvanized	10, countersunk head
	4) Hilti HUS3-A, size 6, externa and M12, galvanized	l thread M6, M8, M10
(See) (MILLITE	5) Hilti HUS3-P, size 6, pan hea galvanized	ad configuration,
	6) Hilti HUS3-PS, size 6, pan h configuration, galvanized	ead (small)
(X) () () () () () () () () () () () () ()	7) Hilti HUS3-PL, size 6, pan he configuration, galvanized	ead (large)
	8) Hilti HUS3-I, size 6, internal galvanized	thread M8 and M10,
	 9) Hilti HUS3-I Flex, size 6, gale thread - M8/16 preassembled with c - M10/21 preassembled with 	oupler M6 or M8,
Iti screw anchor HUS3 oduction description		Annex A4

Hilti filling set (for HUS3-H only)		
Sealing washer	Spherical washer	
Injection mortar Hilti HIT-HY 200-A Foil pack 330 ml and 500 ml		
Marking: Production Marking: Production Production number and production line Barby date mm/yyys Static mixer Hilti HIT-RE-M		
Hilti screw anchor HUS3		
Production description Components of filling set		Annex A5

Page 10 of European Technical Assessment ETA-13/1038 of 28 July 2020

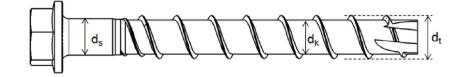

English translation prepared by DIBt

Table A2:	Materials				
Part	Designation	Material			
	Size 6 all lengths	$f_{yk} \ge 745 \text{ N/mm}^2$, $f_{uk} \ge 930 \text{ N/mm}^2$			
HUS3 screw	Size 8 all lengths	$f_{yk} \ge 695 \text{ N/mm}^2$, $f_{uk} \ge 810 \text{ N/mm}^2$	Carbon steel		
anchor (all group of an size 10 all lengths fable A1)	$f_{yk} \ge 690 \text{ N/mm}^2$, $f_{uk} \ge 805 \text{ N/mm}^2$	− Rupture elongation $A_5 \leq 8\%$			
	Size 14 all lengths	$f_{yk} \ge 630 \text{ N/mm}^2$, $f_{uk} \ge 730 \text{ N/mm}^2$			

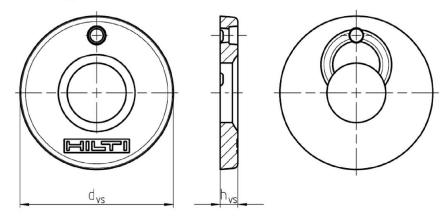
Table A3: Fastener dimensions and marking

Fastener size	HU	S3	6	6		8			10			14		
Туре			H, C, PS, I I-F			H, HF, C)	I	H, HF, C)	H, HF			
Nominal			h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
embedment dept	th	[mm]	40	55	50	60	70	55	75	85	65	85	115	
Threaded outer diameter	dt	[mm]	7	,85	10,30			12,40			16,85			
Core diameter	dĸ	[mm]	5	,85		7,85		9,90			12,95			
Shaft diameter	d₅	[mm]	6	,15	8,45			10,55			13,80			
Stressed section	As	[mm²]	2	6,9	48,4				77,0		131,7			

HUS3 : Hilti Universal Screw 3rd generation

H : Hexagonal head10 : screw diameter

45/25/15 : maximum thickness fixture $t_{fix1}/t_{fix2}/t_{fix3}$ related to the embedment depth $h_{nom1}/h_{nom2}/h_{nom3}$ (see Annex B4 and B5)


Hilti screw anchor HUS3

Production description Materials and fastener dimensions Annex A6

Fastener size	Hilti filling set size	Hilti filling washer							
0.20		Diameter d _{vs} [mm]	Thickness h _{vs} [mm]						
HUS3-H 8	M10	42	5						
HUS3-H 10	M12	44	5						
HUS3-H 14	M16	52	6						

Hilti filling washer

Hilti screw anchor HUS3

Production description Filling washer dimensions Annex A7

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loadings: all sizes and all embedment depths.
- Seismic action for performance category C1: HUS3 size 6, standard and maximum embedment depth (hnom1, hnom2). HUS3-H and HUS3-HF sizes 8, 10 and 14, standard and maximum embedment depth (hnom2, hnom3). HUS3-C sizes 8 and 10, standard and maximum embedment depth (hnom2, hnom3).
- Seismic action for performance category C2:
 - HUS3-H sizes 8, 10 and 14, maximum embedment depth (hnom3).
 - HUS3-C and HUS3-HF sizes 8 and 10, maximum embedment depth (hnom3).
- Fire exposure: All sizes and all embedment depths.

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016.
- Uncracked or cracked concrete.

Use conditions (Environmental conditions):

• Anchorages subject to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018.
- Fasteners with an effective embedment depth less than 40 mm shall be used under dry internal exposure conditions for fixing of statically indeterminate structural components only, when the load in case of failure of one fastener can be distributed to other fasteners.
- For the HUS3-PL 6, installed as described in Table B1 (Annex B3), the characteristic resistance to shear loading of a group of two or three screws shall be limited to the characteristic value of one screw. The characteristic resistance to shear loading of a group of four or more screws shall be limited to the characteristic value of two screws.

Hilti screw anchor HUS3

Intended use Specifications

Specifications of intended use

Installation:

- Hammer drilling: all sizes and all embedment depths.
- Hollow drill bit: only size 14.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or obligue tension load it is not the direction of the load application.
- After installation further turning of the fastener must not be possible.
- The head of the fastener must be supported on the fixture and is not damaged.
- Adjustability according to Annex B9 for: HUS3-H, HUS3-HF and HUS3-C size 8 (h_{nom2} = 60 mm and h_{nom3} = 70 mm) HUS3-H, HUS3-HF and HUS3-C size 10 (h_{nom2} = 75 mm and h_{nom3} = 85 mm)
- Installation with Hilti filling set (HUS3-H only) according to Annex B8.

Hilti screw anchor HUS3

Intended use Specifications

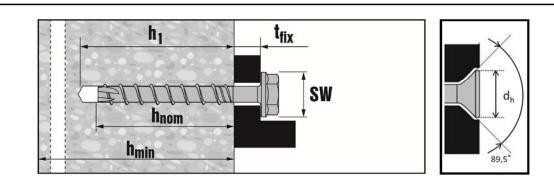
Fastener size HUS3								e	5					
Туре			н	с	Α	P- PS	I I-Flex	PL	н	c	Α	P- PS	l I-Flex	PL
Nominal embedmenth depth	h _{nom}	[mm]				40						55		
Nominal drill hole diameter	do	[mm]						6	6					
Cutting diameter of drill bit	d _{cut} ≤	[mm]						6,4	40					
Clearance hole diameter	d _f ≤	[mm]	9 10							ç	9			
Wrench size (H, A, I -type)	SW	[mm]	13	-	13	-	13	-	13	-	13	-	13	-
Countersunk head diameter	dh	[mm]	-	11,5	-	-	-	-	-	11,5	-	-	-	-
Torx size (C, P, PS, PL –type)	ΤХ	-	-	30	-	30	-	30	-	30	-	30	-	30
Depth of drill hole in floor/ wall position	h₁ ≥	[mm]				50						65		
Depth of drill hole in ceiling position	h₁ ≥	[mm]				43						58		
Installation Torque	Tinst	[Nm]				20						25		
Setting tool ¹⁾ Strength class	≥ (220/25						ilti SIW Hilti SIV						

¹⁾ Installation with other impact screw driver of equivalent power is possible.

Table B2: Installation parameters HUS3 size 8, 10 and 14

Fastener size HUS3				8			10			14			
Туре			H, HF, C			H	H, HF, C	;		H, HF			
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Nominal embedmenth depth	h _{nom}	[mm]	50	60	70	55	75	85	65	85	115		
Nominal drill hole diameter	do	[mm]		8			10		14				
Cutting diameter of drill bit	d _{cut} ≤	[mm]		8,45			10,45		14,50				
Clearance hole diameter	d _f ≤	[mm]		12			14			18			
Wrench size (H, HF-type)	SW	[mm]		13			15			21			
Diameter of countersunk head	dh	[mm]		18			21			-			
Torx size (C-type)	ΤХ	-		45			50			-			
Depth of drill hole	h₁ ≥	[mm]	60	70	80	65	85	95	75	95	125		
Depth of drill hole (with adjustability setting process)	h ₁ ≥	[mm]	-	80	90	-	95	105		-			
Setting tool ¹⁾ Strength class		C20/25	Hilti	SIW 14 SIW 22 SIW 22	A or		SIW 22 SIW 22		Hilti	Hilti SIW 22 T-A			
CIASS	>	C20/25		Hilti SIW 22 T-A									

¹⁾ Installation with other impact screw driver of equivalent power is possible.


Hilti screw anchor HUS3

Intended use Installation parameters

Page 15 of European Technical Assessment ETA-13/1038 of 28 July 2020

English translation prepared by DIBt

Installation parameters for HUS3-H and -C

Table B3: Minimum thickness of concrete member, minimum edge distance and
spacing HUS3 size 6

Fastener size	HUS3			6					
				h _{nom1}	h _{nom2}				
Nominal embed	lmenth depth	h _{nom}	[mm]	40	55				
Minumum thickr member	ness of concrete	h _{min}	[mm]	80	100				
Cracked and	Minimum spacing	Smin	[mm]	35	35				
non-cracked concrete	Minimum edge distance	Cmin	[mm]	35	35				

Table B4:Minimum thickness of concrete member, minimum edge distance and
spacing HUS3 size 8, 10 and 14

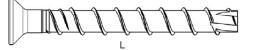
Fastener size	e HUS3				8			10			14	
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embe depth	dmenth	h _{nom}	[mm]	50	60	70	55	75	85	65	85	115
Minumum thick concrete memb		h _{min}	[mm]	100	100	120	100	130	140	120	160	200
	Minimum	_	[]	50	50	50	50	50	50	<u> </u>	<u> </u>	60
Cracked and non-cracked concrete	spacing	Smin	[mm]	40 if c ≥ 50	50	50	50	50	50	60	60	60
	Minimum edge distance	Cmin	[mm]	40	40	40	50	50	50	60	60	60

Intended use

Minimum concrete thickness and minimum edge distance and spacing

Annex B4

Electronic copy of the ETA by DIBt: ETA-13/1038


Fastener size						(3						
	н	С	A	l I-Flex	Ρ	PS PL	н	c	A	l I-Flex	Ρ	PS PL	
Nominal embedment depth				10m1 40		h _{nom2} 55							
[mm]								of fixture [mm]					
_ength of screw [mm]	t _{fix1}	t _{fix2}											
40	-	-	0	0	-	-	-	-	-	-	-	-	
45	5	5	5	5	5	5	-	-	-	-	-	-	
55	-	-	15	15	-	-	-	-	0	0	-	-	
60	20	20	-	-	20	20	5	5	-	-	5	5	
70	-	30	-	-	-	-	-	15	-	-	-	-	
80	40	-	-	-	40	-	25	-	-	-	25	-	
100	60	-	-	-	-	-	45	-	-	-	-	-	
120	80	-	-	-	-	-	65	-	-	-	-	-	
135	-	-	95	-	-	-	-	-	80	-	-	-	
155	-	-	115	-	-	-	-	-	100	-	-	-	
175	-	-	135	-	-	-	-	-	120	-	-	-	
195	-	-	155	-	-	-	-	-	140	-	-	-	

¹⁾ non-standard lengths, in the range 40 mm \leq L \leq 195 mm, are also in the scope of this ETA.

Table B6: Standard¹⁾ screw lengths and maximum thickness of fixture for HUS3-C size 8, 10

Fastener size		8			10	
Nominal embedment depth [mm]	h _{nom1} 50	h _{nom2} 60	h _{nom3} 70	h _{nom1} 55	h _{nom2} 75	h _{nom3} 85
		Thi	ckness of	f fixture [n	nm]	
Length of screw [mm]	t _{fix1}	t _{fix2}	t _{fix3}	t _{fix1}	t _{fix2}	t _{fix3}
65	15	5	-	-	-	-
70	-	-	-	15	-	-
75	25	15	-	-	-	-
85	35	25	15	-	-	-
90	-	-	-	35	15	-
100	-	-	-	45	25	15

¹⁾ non-standard lengths, in the range 65 mm \leq L \leq 100 mm, are also in the scope of this ETA.

Hilti screw anchor HUS3

Intended use


Standard screw lengths and thickness of fixture

Fastener size		8			10			14	
Nominal embedment depth	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
[mm]	50	60	70	55	75	85	65	85	115
				Thickne	ss of fixtu	ure [mm]			1
Length of screw [mm]	t _{fix1}	t _{fix2}	t _{fix3}	t _{fix1}	t _{fix2}	t _{fix3}	t _{fix1}	t _{fix2}	t _{fix3}
55	5	-	-	-	-	-	-	-	-
60	-	-	-	5	-	-	-	-	-
65	15	5	-	-	-	-	-	-	-
70	-	-	-	15	-	-	-	-	-
75	25	15	5	-	-	-	10	-	-
80	-	-	-	25	5	-	-	-	-
85	35	25	15	-	-	-	-	-	-
90	-	-	-	35	15	5	-	-	-
100	50	40	30	45	25	15	35	15	-
110	-	-	-	55	35	25	-	-	-
120	70	60	50	-	-	-	-	-	-
130	-	-	-	75	55	45	65	45	15
150	100	90	80	95	75	65	85	65	35

Table B7: Standard¹⁾ screw lengths and maximum thickness of fixture for HUS3-H, HUS3-HF

¹⁾ non-standard lengths, in the range 55 mm \leq L \leq 150 mm, are also in the scope of this ETA.


Hilti screw anchor HUS3

Intended use Standard screw lengths and thickness of fixture

110	ole drilling	
a)	Hammer drilling (HD): Size 6 to 14	 b) Hammer drilling with Hilti hollow drill bit (HDB): Size 14 only. After drilling, proceed to fastener setting
1.1.55 1.1.55		
Dr	ill hole cleaning	
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Image: state	lean the drill hole. ble cleaning is not required when $3x$ ventilation ¹⁾ after drilling is executed and one the following conditions is fulfilled: drilling is in the vertical upwards orientation; or drilling is in vertical downwards direction and the drilling depth is increased ²⁾ by additional 3^*d_0 ; or Hilti hollow drill bit TE-CD is used for drilling (available for HUS3 10 and HUS3 14 only). Moving the drill bit in and out of the drill hole 3 times after the recommended drilling depth h is achieved. This procedure shall be done with both revolution and hammer functions activate in the drilling machine. For more details read the relevant Instruction for use. It shall be ensured that the thickness of the concrete member h fulfills the following equation: $h \ge h_1 + \Delta h$, with $\Delta h = \max (2^*d_0; 30 \text{ mm})$. Δh is the minimum distance between the drilling end and the opposite end of the concrete member.
Fa a)	stener setting Setting by impact screw d	iver b) Setting by torque wrench
,		
		Setting parameters listed in Table B1 and B2
Se	tting check	Setting parameters listed in Table B1 and B2
Se	h ₁	Setting parameters listed in Table B1 and B2
Se		

Table B8: Maximum working time and minimum curing time HY 200-A

Temperature in the base material T	Maximum working time t _{work}	Minimum curing time t _{cure}
> 0 °C to 5 °C	25 min	2 h
> 5 °C to 10 °C	15 min	75 min
> 10 °C to 20 °C	7 min	45 min
> 20 °C to 30 °C	4 min	30 min
> 30 °C to 40 °C	3 min	30 min

Hilti screw anchor HUS3

Intended use

Installation instructions with Hilti filling set

Drilling depth and fixture thicknes	S
h ₁ = h _{nom,adj,0} +10mm t _{fix,0}	
h _{nom,adj,0}	
Adjusting process	
1 st step	
2 nd step	
Setting check	
	A screw can be adjusted maximum two times. The total allowed thickness of shims added during the adjustment process is 10 mm. The final embedment depth after adjustment process must be larger or equathan h_{nom2} or h_{nom3} .
screw anchor HUS3	

Fastener	size HUS3								1	6					
Туре				Н	С	A	I I-Flex	Ρ	PS PL	н	С	A	I I-Flex	Ρ	P: Pi
Nominal e	mbedment depth	h _{nom}	[mm]				ח _{nom1} 40		1		1		h _{nom2} 55		
Steel failu	re for tension and	shear loa	d							1					
Characteri	stic resistance	$N_{Rk,s}$	[kN]	24	22		24		21	24	22		24		2
Partial fact	or	$\gamma_{Ms,N}^{1)}$	[-]						1	,4					I
Characteri	stic resistance	$V^0_{Rk,s}$	[kN]						12	2,5					
Partial fact	or	$\gamma_{Ms,V}$ 1)	[-]						1	,5					
Ductility fa	ctor	k 7	[-]						0	,8					
Characteri	stic resistance	M ⁰ Rk,s	[Nm]						2	21					
Pull-out fa	ilure														
	stic resistance in ed concrete C20/25	N _{Rk,p}	[kN]				7					9		7	,5
	stic resistance in Increte C20/25	N _{Rk,p}	[kN]				2,5						6		
Increasing		C30/37	[-]						1,	22					
factor for		C40/50	[-]						1,	41					
concrete y	c	C50/60	[-]						1,	58					
Concrete	cone and splitting	failure													
	mbedment depth	h _{ef}	[mm]				30						42		
Characteri prevent sp	stic resistance to litting	$N^0_{Rk,sp}$	[kN]				7					9		7	,5
Factor	Cracked	k cr,N	[-]						7	,7					
for	Non-cracked	k _{ucr,N}	[-]						1	1,0					
Concrete cone	Edge distance	Ccr,N	[mm]						1,5	5 h _{ef}					
failure	Spacing	Scr,N	[mm]						3	h _{ef}					
Splitting	Edge distance	C _{cr,sp}	[mm]				60						63		
failure	Spacing	Scr,sp	[mm]				120						126		
Robustnes	s	γinst	[-]						1	,2					
Concrete	pry-out failure														
Pry-out fac	tor	k ₈	[-]				1,0						1,5		
Concrete	edge failure														
Effective le	ength of fastener	$I_{\rm f} = h_{\rm ef}$	[mm]				30						42		
Outside dia	ameter of fastener	d _{nom}	[mm]							6					
) In absence	e of other national re	gulations		-											
	hor HUS3														

Table C2: Essential characteristics under static and quasi-static load in
concrete for HUS3 size 8, 10, 14

Fastener	size HUS3				8			10			14	
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal er	mbedment depth	h _{nom}	[mm]	50	60	70	55	75	85	65	85	115
Adjustme	nt			1	1	1	1	I	1	I	1	1
Total max. adjustment	thickness of t layers	t _{adj}	[mm]	-	10	10	-	10	10	-	-	-
Max. numb	per of adjustments	na	[-]	-	2	2	-	2	2	-	-	-
Steel failu	re for tension load											
Characteri	stic resistance	N _{Rk,s}	[kN]		39,2			62,2			96,6	
Partial fact	or	$\gamma_{Ms,N}{}^{1)}$	[-]					1,4				
Pull-out fa	ailure			-								
non-cracke	stic resistance in ed concrete C20/25	N _{Rk,p}	[kN]	9	12	16	12	20	32	20	30	44
	stic resistance in oncrete C20/25	N _{Rk,p}	[kN]	6	9	12	9	15	19	15	19	30
Increasing		C30/37	[-]					1,22				
factor for		C40/50	[-]					1,41				
concrete ψ	lc	C50/60	[-]					1,58				
Concrete	cone and splitting f	ailure										
	mbedment depth	h _{ef}	[mm]	40	46,4	54,9	41,6	58,6	67,1	49,3	66,3	91,8
Characteris prevent sp	stic resistance to litting	$N^0_{Rk,sp}$	[kN]	9	12	16	12	20	26	17	26	42
Factor	Cracked	k cr,N	[-]					7,7				
for	Non-cracked	k _{ucr,N}	[-]					11,0				
Concrete cone	Edge distance	Ccr,N	[mm]					1,5 h _{ef}				
failure	Spacing	Scr,N	[mm]					3 h _{ef}				
Splitting	Edge distance	C cr,sp	[mm]	60	70	85	65	90	110	85	100	140
failure	Spacing	Scr,sp	[mm]	120	140	170	130	180	220	170	200	280
Robustnes	S	γinst	[-]					1,0				

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS3

Performances

Essential characteristics under static and quasi-static load in concrete

Annex C2

Electronic copy of the ETA by DIBt: ETA-13/1038

Table C2 continued

Fastener size HUS3				8			10			14	
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment depth	h _{nom}	[mm]	50	60	70	55	75	85	65	85	115
Adjustment											
Total max. thickness of adjustment layers	t _{adj}	[mm]	-	10	10	-	10	10	-	-	-
Max. number of adjustments	n _a	[-]	-	2	2	-	2	2	-	-	-
Steel failure for shear load							-				
Characteristic resistance	$V^0_{Rk,s}$	[kN]	1	9	22	3	0	34	5	5	62
Partial factor	$\gamma_{Ms,v^{1)}}$	[-]					1,5				
Ductility factor	k 7	[-]					0,8				
Characteristic resistance	$M^0_{Rk,s}$	[Nm]		46			92			187	
Concrete pry-out failure											
Pry-out factor	k ₈	[-]	1,0	2	,0	1,0			2,0		
Concrete edge failure				•							
Effective length of fastener	$I_{\rm f} = h_{\rm ef}$	[mm]	40	46,4	54,9	41,6	58,6	67,1	49,3	66,3	91,8
Outside diameter of fastener	dnom	[mm]		8			10			14	

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS3

Annex C3

Performances Essential characteristics under static and quasi-static load in concrete

Fastener s	ize HUS3									6					
Туре				н	С	A	I I-Flex	Р	PS PL	н	С	A	l I-Flex	Р	PS PL
Nominal em	bedment depth	h _{nom}	[mm]		1	1	h _{nom1} 40	11			1	1	h _{nom2} 55	1	
Steel failure	e for tension and	shear load	d												
Characterist	ic resistance	N _{Rk,s,C1}	[kN]	24	22		24		21	24	22		24		21
Partial facto	r	$\gamma_{Ms,N}^{1)}$	[-]						1	,4					
Characterist	ic resistance	$V_{Rk,s,C1}$	[kN]							5					
Partial facto	r	$\gamma_{Ms,V}$ 1)	[-]						1	,5					
Pull-out fail	ure														
Characterist cracked con	ic resistance in crete	NRk,p,C1	[kN]				2,5						4		
Concrete co	one failure														
Effective em	bedment depth	h _{ef}	[mm]				30			T			42		
Concrete	Edge distance	Ccr,N	[mm]						1,5	5 h _{ef}					
cone failure	Spacing	Scr,N	[mm]						3	h _{ef}					
Robustness		γinst	[-]						1	,2					
Concrete p	ry-out failure														
Pry-out facto	or	k ₈	[-]				1,0						1,5		
Concrete e	dge failure														
Effective len	gth of fastener	$I_{\rm f} = h_{\rm ef}$	[mm]				30						42		
Outside diar	neter of fastener	d _{nom}	[mm]							6					

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS3

Annex C4

Performances

Essentials characteristics for seismic performance category C1 in concrete

Table C4: Essential characteristics for seismic performance category C1 in concrete for HUS3 size 8, 10, 14

Fastener s	size HUS3			ł	B	1	0	1	4
				h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}
Nominal em	bedment depth	h _{nom}	[mm]	60	70	75	85	85	115
Steel failur	e for tension and	shear load			•	•	·		•
Characterist	tic resistance	N _{Rk,s,C1}	[kN]	39	9,2	62	2,2	96	6,6
Partial facto	r	$\gamma_{Ms,N}^{1)}$	[-]			1	,4	•	
Characterist	tic resistance	V _{Rk,s,C1}	[kN]	1.	1,9	16,8	17,7	22,5	34,5
Partial facto	r	$\gamma_{Ms,V}^{1)}$	[-]			1	,5		
Pull-out fai	lure								
Characterist cracked con	tic resistance in Icrete	N _{Rk,p,C1}	[kN]	9	12	15	19	19	30
Concrete c	one failure							•	
Effective em	bedment depth	h _{ef}	[mm]	46,4	54,9	58,6	67,1	66,3	91,8
Concrete	Edge distance	Ccr,N	[mm]		•	1,5	5 h _{ef}		•
cone failure	Spacing	Scr,N	[mm]			3	h _{ef}		
Robustness		γinst	[-]			1	,0		
Concrete p	ry-out failure		·						
Pry-out facto	or	k ₈	[-]			2	,0		
Concrete e	dge failure								
Effective ler	ngth of fastener	$I_{\rm f} = h_{\rm ef}$	[mm]	46,4	54,9	58,6	67,1	66,3	91,8
Outside diar	meter of fastener	d _{nom}	[mm]	:	8	1	0	1	4

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS3

Annex C5

Performances

Essentials characteristics for seismic performance category C1 in concrete

Table C5: Essential characteristics for seismic performance category C2 in concrete

Fastener size	e HUS3			8	10	14
				h _{nom3}	h _{nom3}	h _{nom3}
Nominal embed	dment depth	h _{nom}	[mm]	70	85	115
Adjustment			ł			
Total max. thicl layers	kness of adjustment	t _{adj}	[mm]	10	10	-
Max. number o	f adjustments	n _a	[-]	2	2	-
Steel failure fo	or tension load		·			
Characteristic r	resistance	N _{Rk,s,C2}	[kN]	39,2	62,2	96,6
Partial factor		$\gamma_{Ms,N}^{1)}$	[-]		1,4	
Pull out failure			L. L			
Characteristic r cracked concre		N _{Rk,p,C2}	[kN]	3,2	9,4	17,7
Concrete cone	e failure					
Effective embe	dment depth	h _{ef}	[mm]	54,9	67,1	91,8
Concrete	Edge distance	Ccr,N	[mm]		1,5 h _{ef}	
cone failure	Spacing	Scr,N	[mm]		3 h _{ef}	
Robustness		γinst	[-]		1,0	
Steel failure for	or shear load					
Installation with	n Hilti filling set (HUS	3-H only)				
Factor for annu	ılar gap	$lpha_{gap}$	[-]		1,0	
Characteristic r	esistance	V _{Rk,s,C2}	[kN]	14,7	25,6	46,5
Partial factor		$\gamma_{Ms,V^{1)}}$	[-]		1,5	
Installation with	nout Hilti filling set					
Factor for annu	ılar gap	$lpha_{gap}$	[-]		0,5	
Characteristic r	resistance	V _{Rk,s,C2}	[kN]	10,8	17,7	34,4
Partial factor		$\gamma_{Ms,V^{1)}}$	[-]		1,5	
Concrete pry-	out failure		L. L			
Pry-out factor		k ₈	[-]		2,0	
Concrete edge	e failure		L. L			
Effective length	of fastener	$I_{\rm f} = h_{\rm ef}$	[mm]	54,9	67,1	91,8
Outside diamet	er of fastener	d _{nom}	[mm]	8	10	14

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS3

Performances

Essentials characteristics for seismic performance category C2 in concrete

Annex C6

Fastener HUS	3			6	
Туре				H, C, A, I, I-Fle	ex, P, PS, PL
Nominal embedr	nent depth	h _{nom}	[mm]	h _{nom1} 40	h _{nom2} 55
Steel failure for	tension and s	hear load	l (F _{Rk,s,fi}	$= N_{Rk,s,fi} = V_{Rk,s,fi}$	
	R30	N _{Rk,s,fi}	[kN]	0,5	1,6
	R60	N _{Rk,s,fi}	[kN]	0,5	1,2
	R90	N _{Rk,s,fi}	[kN]	0,5	0,8
Characteristic	R120	N _{Rk,s,fi}	[kN]	0,4	0,7
resistance	R30	M ⁰ Rk,s,fi	[Nm]	0,4	1,4
	R60	M ⁰ Rk,s,fi	[Nm]	0,4	1,1
	R90	M ⁰ Rk,s,fi	[Nm]	0,4	0,7
	R120	M ⁰ Rk,s,fi	[Nm]	0,3	0,6
Pull-out failure					
Characteristic resistance	R30 R60 R90	N _{Rk,p,fi}	[kN]	0,6	1,5
	R120	N _{Rk,p,fi}	[kN]	0,5	1,2
Concrete cone	failure				
Characteristic resistance	R30 R60 R90	N ⁰ Rk,c,fi	[kN]	0,8	1,8
	R120	N ⁰ Rk,c,fi	[kN]	0,7	1,5
Edge distance					
	R30 to R120) Ccr,fi	[mm]	2 h	ef
In case of fire att	ack from more	than one	side, the	e minimum edge distance shall be	≥ 300 mm
Fastener spacir	ng				
	R30 to R120) Scr,fi	[mm]	2 c _c	r,fi
Concrete pry-ou	ut failure				
	R30 to R120	k ₈	[-]	1,0	1,5

Hilti screw anchor HUS3

Performances

Essential characteristics under fire exposure in concrete

Annex C7

Table C7: Essential characteristics under fire exposure in concrete for HUS3-H and HUS3-HF Fastener HUS3-H and HUS3-HF 10 14 8 h_{nom3} h_{nom2} h_{nom1} h_{nom2} h_{nom1} h_{nom2} h_{nom3} h_{nom1} h_{nom3} Nominal embedment depth $\mathbf{h}_{\mathsf{nom}}$ [mm] 50 60 70 55 75 85 65 85 115 Steel failure for tension and shear load (F_{Rk,s,fi} = N_{Rk,s,fi} = V_{Rk,s,fi}) R30 [kN] 3,2 3.5 3.8 6,2 10,4 10.6 N_{Rk,s,fi} 6,1 R60 N_{Rk,s,fi} [kN] 2,4 2,6 2,8 4,6 4,7 7,8 8,1 R90 1.6 1.6 1.9 3,1 3,2 5.3 5.5 N_{Rk,s,fi} [kN] N_{Rk,s,fi} R120 [kN] 1,2 1,2 1,5 2,4 2,5 4,0 4,3 Characteristic resistance R30 M⁰Rk,s,fi 3,8 4,1 4,4 9,1 9,2 20,4 20,6 [Nm] M⁰Rk,s,fi 7.0 15.7 R60 [Nm] 2.8 3.0 3.4 6.9 15,4 R90 M⁰Rk,s,fi 2,3 4,6 4,8 10,4 10,7 [Nm] 1,9 1,9 R120 M⁰_{Rk.s.fi} [Nm] 1,5 1,4 1,7 3,5 3,7 7,9 8,3 **Pull-out failure** R30 1,5 3,0 4,0 4,9 4,8 7,8 R60 [kN] 2,3 2,4 3,1 N_{Rk,p,fi} Characteristic R90 resistance N_{Rk,p,fi} R120 [kN] 1,2 1,8 2,4 1,9 3,2 3,9 2,5 3,8 6,3 Concrete cone failure R30 N⁰Rk,c,fi R60 [kN] 1,8 2,6 4,0 2,0 4,7 6,6 3,0 6,4 14,4 Characteristic R90 resistance R120 N⁰Rk.c.fi [kN] 1,4 2,1 3,2 1,6 3,8 5,3 2,4 5,1 11,5 Edge distance R30 to R120 Ccr,fi [mm] $2 h_{\text{ef}}$ In case of fire attack from more than one side, the minimum edge distance shall be ≥ 300 mm **Fastener spacing** R30 to R120 scr.fi [mm] 2 ccr,fi Concrete pry-out failure 1,0 2,0 1,0 2,0 R30 to R120 k8 [-] The anchorage depth shall be increased for wet concrete by at least 30 mm compared to the given value

Performances

Essential characteristics under fire exposure in concrete

Annex C8

Electronic copy of the ETA by DIBt: ETA-13/1038

Fastener HUS3-C					8			10	
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment deptl	ı	h _{nom}	[mm]	50	60	70	55	75	85
Steel failure for tension a	and shear load	(F _{Rk,s,fi} =	N _{Rk,s,fi} =	= V _{Rk,s,fi})					
	R30	N _{Rk,s,fi}	[kN]		0,5			1,2	
	R60	N _{Rk,s,fi}	[kN]		0,4			1,0	
	R90	N _{Rk,s,fi}	[kN]	0,3			0,8		
Characteristic resistance	R120	N _{Rk,s,fi}	[kN]		0,2			0,6	
	R30	M ⁰ Rk,s,fi	[Nm]		0,6			1,7	
	R60	M ⁰ Rk,s,fi	[Nm]		0,5			1,5	
	R90	M ⁰ Rk,s,fi	[Nm]		0,4			1,1	
	R120	M ⁰ Rk,s,fi	[Nm]		0,3			0,9	
Pull-out failure				1			1		
Characteristic resistance	R30 R60 R90	N _{Rk,p,fi}	[kN]	1,5	2,3	3,0	2,4	4,0	5,0
	R120	N _{Rk,p,fi}	[kN]	1,2	1,8	2,4	1,9	3,2	4,0
Concrete cone failure						•			
Characteristic resistance	R30 R60 R90	N ⁰ Rk,c,fi	[kN]	1,8	2,6	4,0	2,0	4,7	6,6
	R120	N ⁰ Rk,c,fi	[kN]	1,5	2,1	3,2	1,6	3,8	5,3
Edge distance				•					
	R30 to R120	Ccr,fi	[mm]			2	h _{ef}		
n case of fire attack from	more than one	side, the r	ninimum	ı edge di	stance s	hall be ≥	300 mm	ו	
Fastener spacing									
	R30 to R120	Scr,fi	[mm]			2 0	Ccr,fi		
Concrete pry-out failure									
	R30 to R120	k ₈	[-]	1,0	2	,0	1,0	2	,0
The anchorage depth shal	I be increased f	or wet co	ncrete b	v at least	t 30 mm	compare	ed to the	given va	lue

Hilti screw anchor HUS3

Performances

Essential characteristics under fire exposure in concrete

Annex C9

Deutsches Institut für Bautechnik

Fastener size	HUS3			6					
Туре				H, C, A, I, P, PS, PL	H, C, A, I	P, PS, PL			
Nominal embed	ment depth	h _{nom}	[mm]	h _{nom1} 40	h _{nom2} 55				
Cracked concrete C20/25 to	Tension Load	Ν	[kN]	1,0	2,4				
		δ _{N0}	[mm]	0,1	0	,1			
C50/60	Displacement	δ _{N∞}	[mm]	0,6	0,6				
Non-cracked	Tension Load	Ν	[kN]	2,8	3,6	3,0			
concrete C20/25 to C50/60	Diaplacement	δ_{N0}	[mm]	0,2	0,2				
	Displacement	δ _{N∞}	[mm]	0,3	0	,3			

Table C10: Displacements under tension loads

Fastener size HUS3					8			10			14		
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal emb	edment depth		[mm]	50	60	70	55	75	85	65	85	115	
Cracked	Tension Load	N	[kN]	4,3	5,7	7,6	5,7	9,5	13,2	8,3	13,0	21,2	
concrete C20/25 to		δ _{N0}	[mm]	0,3	0,4	0,3	0,4	0,4	0,4	0,6	0,5	0,5	
C50/60		δ _{N∞}	[mm]	0,7	0,7	0,6	0,4	0,4	0,5	0,9	1,2	1,0	
Non- cracked	Tension Load	N	[kN]	6,6	8,9	11,8	8,7	14,8	20,5	12,9	20,1	32,8	
concrete	Displacement	δ_{N0}	[mm]	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,2	0,3	
C20/25 to C50/60		δ _{N∞}	[mm]		0,3			0,2			0,5		

Table C11: Displacements under shear loads

Fastene	r size HUS3			(6		8			10			14	
				h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal e	embedment de	oth	[mm]	40	55	50	60	70	55	75	85	65	85	115
Cracked	Shear Load	V	[kN]	6	,0		8,1			13,3			21,4	
concrete C20/25	Diaglogoment	δ _{ν0}	[mm]	1,1	1,9	2,5	3,4	2,9	3,8	3,7	3,2	3,6	3,2	2,4
to C50/60	Displacement	δ∨∞	[mm]	2,0	2,8	3,7	5,1	4,4	5,7	5,5	4,9	5,4	6,9	3,5

Hilti screw anchor HUS3

Performances

Displacement values in case of static and quasi-static loading

Annex C10

Electronic copy of the ETA by DIBt: ETA-13/1038

Table C12: Displacements under tension load for seismic performance category C2

Fastener size HUS	8	10	14		
			h _{nom3}	h _{nom3}	h _{nom3}
Nominal embedment c	lepth		70	85	115
Displacement DLS	δ _{N,C2} (DLS)	[mm]	0,35	0,57	1,43
Displacement ULS	δ _{N,C2} (ULS)	[mm]	0,65	2,08	4,32

Table C13: Displacements under shear load for seismic performance category C2

Fastener size HUS3	8	10	14		
			h _{nom3}	h _{nom3}	h _{nom3}
Nominal embedment d	epth		70	85	115
Installation with Hilti fill	ing set (HUS3-H	l only)			
Displacement DLS	$\delta_{V,C2}$ (DLS)	[mm]	1,81	1,80	2,52
Displacement ULS	$\delta_{V,C2}$ (ULS)	[mm]	4,60	4,03	6,79
Installation without Hilt	i filling set				
Displacement DLS	$\delta_{V,C2}$ (DLS)	[mm]	3,93	4,15	4,93
Displacement ULS	$\delta_{V,C2}$ (ULS)	[mm]	5,55	6,15	9,14

Hilti screw anchor HUS3

Performances

Displacement values in case of seismic performance category C2

Annex C11

Electronic copy of the ETA by DIBt: ETA-13/1038