

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

ETA-15/0296

of 13 May 2020

Injection System Hilti HIT-HY 200-A with HIT-Z-D and HIT-Z-R-D

Bonded expansion fastener for use in concrete

Hilti AG Liechtenstein Feldkircherstraße 100 9494 Schaan FÜRSTENTUM LIECHTENSTEIN

Hilti Corporation

18 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601

ETA-15/0296 issued on 27 August 2015

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-15/0296 English translation prepared by DIBt

Page 2 of 18 | 13 May 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 18 | 13 May 2020

European Technical Assessment ETA-15/0296 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The injection system Hilti HIT-HY 200-A with HIT-Z-D TP M16 or HIT-Z-F / HIT-Z-R-D TP M16 is a bonded expansion fastener consisting of a foil pack with injection mortar Hilti HIT-HY 200-A and an anchor rod. The anchor rod is placed into a drill hole filled with injection mortar. The load transfer is realised by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the base material (concrete).

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static tension load	See Annex B2, B3, C1
Characteristic resistance for static and quasi-static shear load	See Annex C2
Displacements (static and quasi-static loading)	See Annex C3
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C4 – C5

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

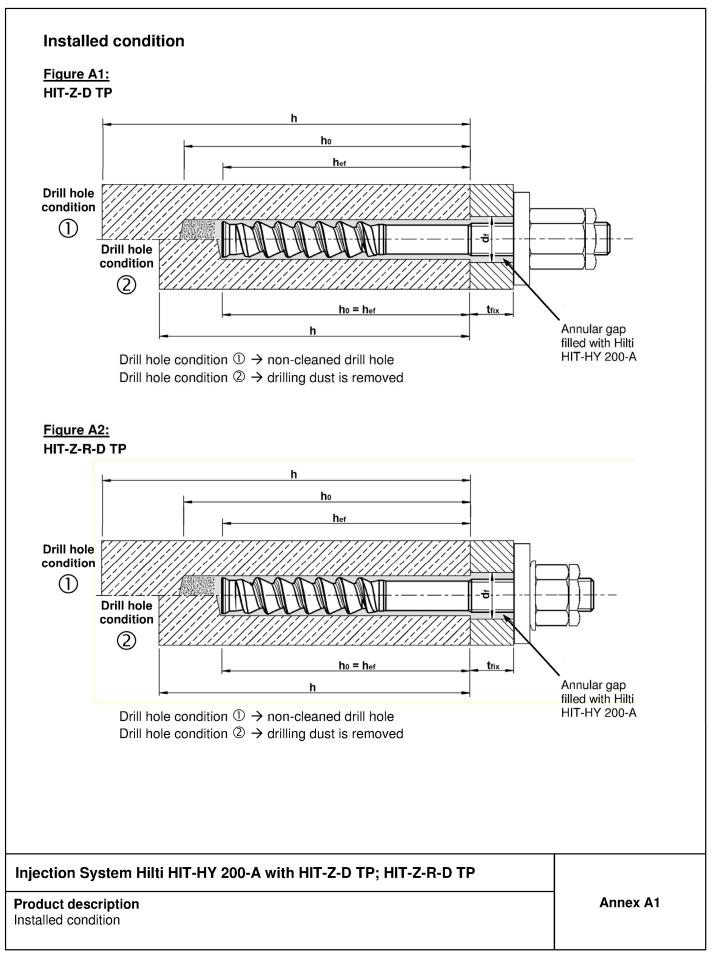
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD 330499-01-0601 the applicable European legal act is: [96/582/EC] The system to be applied is: 1

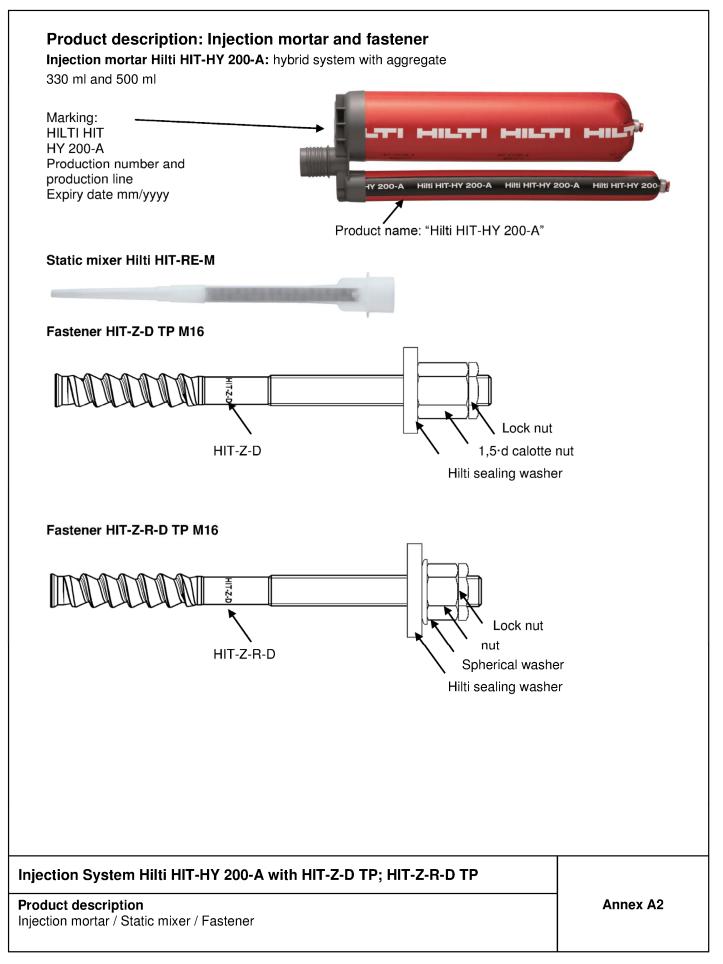
European Technical Assessment ETA-15/0296 English translation prepared by DIBt

Page 4 of 18 | 13 May 2020

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 13 May 2020 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Lange

Page 5 of European Technical Assessment ETA-15/0296 of 13 May 2020

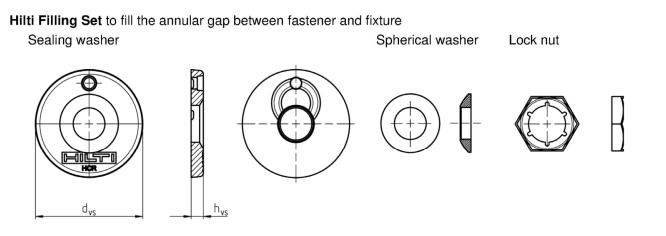


Table A1: Geometry of Hilti sealing washer

Size			M16
Diameter of sealing washer	d _{vs}	[mm]	52
Thickness of sealing washer	\mathbf{h}_{vs}	[mm]	6
Thickness of Hilti Filling Set	h _{fS}	[mm]	11

Table A2: Materials

Designation	Material		
Metal parts made of	zinc coated steel		
Anchor rod HIT-Z-D TP M16			
$ \begin{array}{ c c c c } \hline Sealing washer \\ \hline Sealing washer \\ \hline Sealing washer \\ \hline Sealing washer \\ \hline Spherical washer G19 DIN 6319:2001 \\ \hline Sealing washer \\ \hline Spherical washer G19 DIN 6319:2001 \\ \hline Sealing washer \\ \hline Spherical washer \\ \hline Spherical$			
Calotte nut	Hexagon nut with a height of 1,5 d DIN 6330:2003 Electroplated zinc coated \geq 5 μm		
Lock nutSelf locking counter nut DIN 7967:1970 Electroplated zinc coated $\geq 5 \ \mu m$			
Metal parts made of Corrosion resistance	stainless steel class III according EN 1993-1-4:2006+A1:2015		
Anchor rod HIT-Z-R-D TP M16	$f_{uk} = 610 \text{ N/mm}^2$; $f_{yk} = 490 \text{ N/mm}^2$ Elongation at fracture ($l_0=5d$) > 8% ductile Stainless steel 1.4401, 1.4404 EN 10088-1:2014		
Sealing washer Spherical washer G19 DIN 6319:2001 Stainless steel A4 EN 10088-1:2014			
Spherical washer	Stainless steel 1.4401, 1.4404 EN 10088-1:2014		
Hexagon Nut	DIN EN ISO 3506-2:2010, Grade 80, Stainless steel 1.4401, 1.4404 EN 10088-1:2014		
Lock nut	Self locking counter nut DIN 7967:1970 Stainless steel A4 EN 10088-1:2014		

Injection System Hilti HIT-HY 200-A with HIT-Z-D TP; HIT-Z-R-D TP

Product description Hilti Filling Set, Materials Annex A3

Specifications of intended use

Anchorages subject to:

- Static and quasi static loading
- Seismic performance category C1 and C2 in hammer drilled holes.

Base material:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206-1:2013 +A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206-1:2010 +A1:2016.
- · Cracked and non-cracked concrete.

Temperature in the base material:

- at installation
 - +5 °C to +40 °C for the standard variation of temperature after installation
- · in-service

Temperature range I: -40 °C to +40 °C

(max. long term temperature +24 °C and max. short term temperature +40 °C) Temperature range II: -40 °C to +80 °C

(max. long term temperature +50 °C and max. short term temperature +80 °C) Temperature range III: -40 °C to +120 °C

(max. long term temperature +72 °C and max. short term temperature +120 °C)

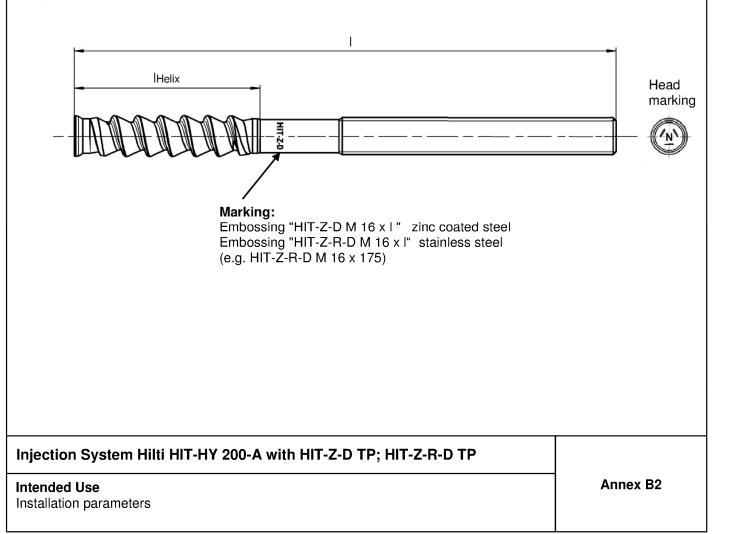
Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials)
- For all other conditions according EN 1993-1-4:2006 +A1:2015 corresponding to corrosion resistance class Table A2 Annex A2 (stainless steel)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- The anchorages are designed in accordance with EN 1992-4:2018 and EOTA Technical Report TR 055

Installation:


- · Use category: dry or wet concrete (not in flooded holes)
- Installation direction: D3: downward and horizontal and upward (e.g. overhead).
- Drilling technique: hammer drilling, hammer drilling with hollow drill bit TE-CD, TE-YD, diamond coring
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

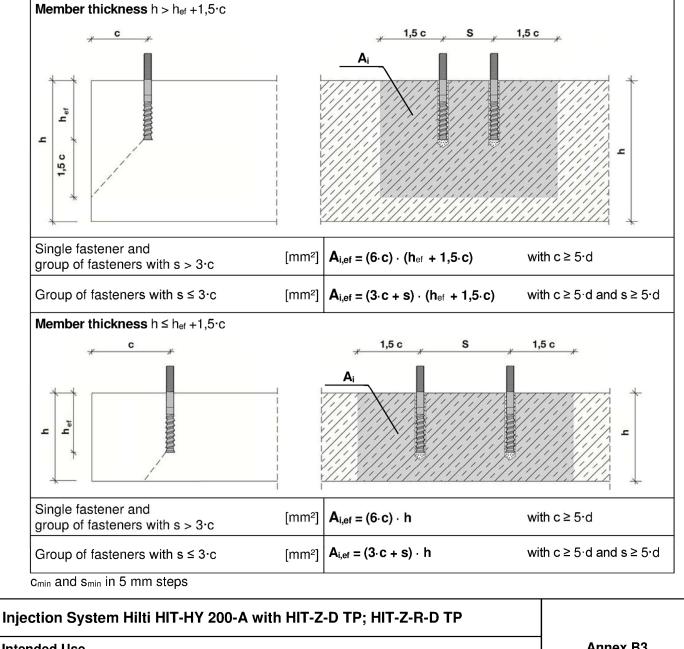
Injection System Hilti HIT-HY 200-A with HIT-Z-D TP; HIT-Z-R-D TP

Intended Use Specifications Annex B1

Deutsches Institut für Bautechnik

HIT-Z-D TP; HIT-Z-R	D TP			M16
Nominal diameter		d	[mm]	16
Nominal diameter of drill bit		do	[mm]	18
Langth of factoriar		min l	[mm]	175
Length of fastener		max I	[mm]	240
Length of helix	I _{Helix}	[mm]	96	
Nominal anchorage depth		h _{ef}	[mm]	125
Drill hole condition ① Minimum thickness of concrete member		h_{min}	[mm]	225
Drill hole condition ^② Minimum thickness of	h _{min}	[mm]	160	
Maximum depth of dri	ll hole	ho	[mm]	h – 2 d₀
Maximum diameter of clearance hole in the fixture		df	[mm]	20
Maximum fixture thickness		t _{fix}	[mm]	80
Installation torque	HIT-Z-D TP	T _{inst}	[Nm]	80
moment	HIT-Z-D-R TP	Tinst	[Nm]	155

Minimum edge distance and spacing


For the calculation of minimum spacing and minimum edge distance of fasteners in combination with different thickness of concrete member the following equation shall be fulfilled:

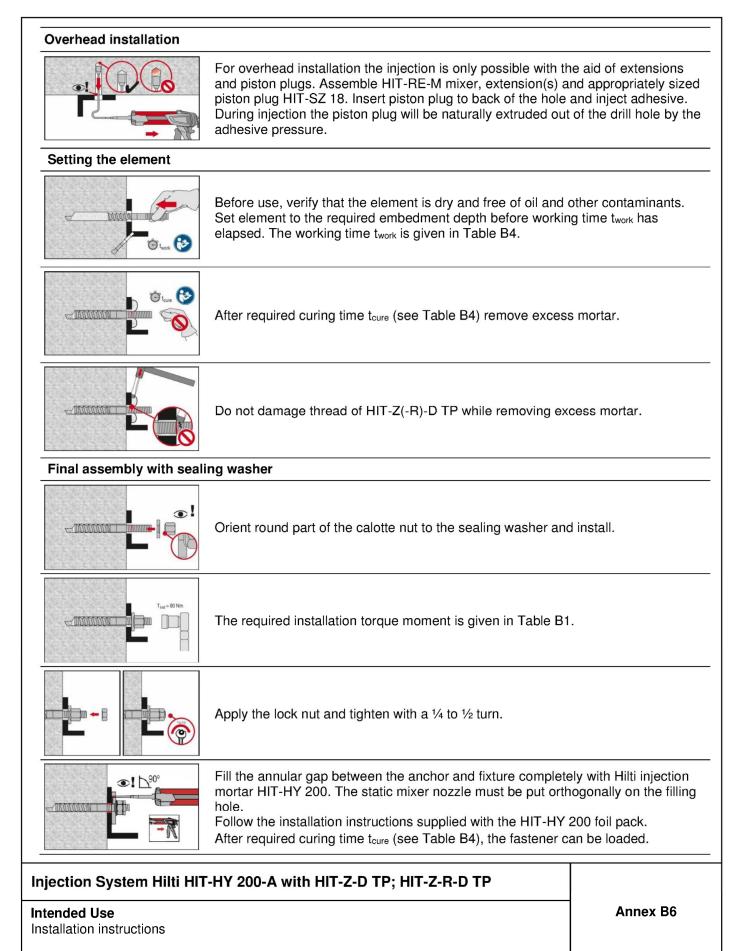
 $A_{i,req} < A_{i,ef}$

Table B2: Required area Ai,req

HIT-Z-D TP; HIT-Z-R-D TP			M16
Cracked concrete	A _{i,req}	[mm²]	94700
Non-cracked concrete	Ai,req	[mm²]	128000

Table B3: Effective area Ai,ef

Installation parameters: member thickness, spacing and edge distances


Temperature in the base material T		Maximum working time	Minimu	m curing time t _{cure}		
5 °C		25 min		2 hours		
6 °C to 10 °(C	15 min		75 min		
11 °C to 20 °C		7 min		45 min		
21 °C to 30 °C	C	4 min		30 min		
31 °C to 40 °C	C	3 min		30 min		
stallation						
ole drilling Hammer drilling						
Hammer drilling with h	appropriately <u>Pre-setting</u> : D rotation-hamn complete, pro	with a hammer drill set in ro sized carbide drill bit. rill hole to the required drill ner mode using an appropr ceed to the "injection prepa	ling depth with a ha riately sized carbide	mmer drill set in drill bit. After drilling		
Hammer drilling with h		h-setting: Drill hole to the re	auired embedmon	t depth with an		
Diamond coring	drilling when a condition ②). step in the ins Diamond cori corresponding	This drilling system removes used in accordance with the After drilling is completed stallation instruction. Ing is permissible when suit g core bits are used. Ing: Drill hole through the cl	e user's manual (se d, proceed to the "ir table diamond core	ee Annex A1 - Boreho njection preparation" drilling machines and		
	Pre-setting: Drill hole to the required embedment depth.					
rill hole cleaning						
No cleaning required for						
Hole flushing and evacuation	ation required for	r wet-drilled diamond corec	d holes.			
◆2x ◆ 本		from the back of the hole of the pressure is sufficient.	over the whole leng	th until water runs		
Ŷ		from the back of the hole (i sed air (min. 6 bar at 6 m³/ł				
	free compress		h) to evacuate the v			

	Mark the element and check the setting depth. The element until the required embedment depth. If it is not possible to in required embedment depth, remove the dust in the drill hole	sert the element to the
Injection preparation		
	Tightly attach Hilti mixing nozzle HIT-RE-M to foil pack mar the mixing nozzle. Observe the instruction for use of the dispenser and the mo Check foil pack holder for proper function. Insert foil pack ir put holder into dispenser.	ortar.
Inject adhesive from the	e back of the drill hole without forming air voids	
	Inject the adhesive starting at the back of the hole, slowly w with each trigger pull. The quantity of mortar should be selected so that the annul is filled.	
	Injection is possible with the aid of extensions and piston pl HIT-RE-M mixer, extension(s) and appropriately sized pisto Insert piston plug to back of the hole and inject adhesive. D piston plug will be naturally extruded out of the drill hole by The quantity of mortar should be selected so that the annul is filled.	on plug HIT-SZ 18. During injection the the adhesive pressure
	After injection is completed, depressurize the dispenser by trigger. This will prevent further adhesive discharge from the	
ection System Hilti HI	T-HY 200-A with HIT-Z-D TP; HIT-Z-R-D TP	
·		Annex B5

Installation instructions

HIT-Z-D TP; HIT-Z-R-D TP	M16			
Installation safety factor	γinst	[-]		1,0
Steel failure				
HIT-Z-D TP	N _{Rk,s}	[kN]		96
HIT-Z-R-D TP	N _{Rk,s}	[kN]		96
Pull-out failure				
in uncracked concrete				
Temperature range I: 40 °C / 24 °C	N _{Rk,p,ucr}	[kN]		115
Temperature range II: 80 °C / 50 °C	$N_{Rk,p,ucr}$	[kN]		105
Temperature range III: 120 °C / 72 °C	$N_{Rk,p,ucr}$	[kN]		95
in cracked concrete				
Temperature range I: 40 °C / 24 °C	$N_{Rk,p,cr}$	[kN]		105
Temperature range II: 80 °C / 50 °C	$N_{Rk,p,cr}$	[kN]		95
Temperature range III: 120 °C / 72 °C	N _{Rk,p,cr}	[kN]	85	
Concrete cone failure				
Effective embedment depth	h _{ef,min}	[mm]	96	
	$h_{ef,max}$	[mm]	192	
Factor for uncracked concrete	k _{ucr,N}	[-]		11,0
Factor for cracked concrete	k _{cr,N}	[-]		7,7
Edge distance	C _{cr,N}	[mm]	1,5 · h _{ef}	
Spacing	S _{cr,N}	[mm]	3,0 ⋅ h _{ef}	
Splitting failure				-
-	h / h _{ef} ≥ 2	.,35	1,5 · h _{ef}	h/h _{nom} 2,35
Edge distance c _{er,sp} [mm] for	2,35 > h / h _{ef}	> 1,35	6,2 · h _{ef} - 2,0 · h	1,35
	h / h _{ef} ≤ 1	,35	3,5 · h _{ef}	1,5·h _{nom} 3,5·h _{nom}
Spacing s	cr,sp	[mm]		2·C _{cr,sp}

Injection System Hilti HIT-HY 200-A with HIT-Z-D TP; HIT-Z-R-D TP

Performances

Essential characteristics under tension loads in case of static and quasi-static loading

Table C2: Essential characteristics for HIT-Z(-R)-D TP under shear load in case of static and quasi static loading

HIT-Z-D TP; HIT-Z-R-D TP			M16
Installation safety factor	γinst	[-]	1,0
Steel failure without lever arm			
HIT-Z-D TP	$V^{0}_{Rk,s}$	[kN]	48
HIT-Z-R-D TP	V ⁰ Rk,s	[kN]	57
Ductility factor	k 7		1,0
Steel failure with lever arm			
HIT-Z-D TP	M ⁰ Rk,s	[Nm]	203
HIT-Z-R-D TP	M ⁰ Rk,s	[Nm]	203
Concrete pry-out failure			
Pry-out factor	k ₈	[-]	2,0
Concrete edge failure			
Effective length of fastener in shear loading	lf	[mm]	h _{ef}
Diameter of fastener	d	[mm]	16

Injection System Hilti HIT-HY 200-A with HIT-Z-D TP; HIT-Z-R-D TP

Performances

Essential characteristics under shear load in case of static and quasi static loading

Table C3: Displacements under tension load ¹⁾ for HIT-Z(-R)-D TP in case of static and quasi static loading

HIT-Z-D TP; HIT-	Z-R-D TP	M16		
Temperature ran	ge I : 40°C / 24°C		Non-cracked concrete	Cracked concrete
D'a da cara da	δ_{N0} – factor	[mm/kN]	0,05	0,09
Displacement	δ _{N∞} – factor	[mm/kN]	0,13	0,21
Temperature ran	ge II : 80°C / 50°C		· · · · ·	
Diaplacement	δ_{N0} – factor	[mm/kN]	0,06	0,10
Displacement	δ _{N∞} – factor	[mm/kN]	0,15	0,23
Temperature ran	ge III : 120°C / 72°C		· · ·	
Diaplacement	δ_{N0} – factor	[mm/kN]	0,06	0,11
Displacement	δ _{N∞} – factor	[mm/kN]	0,16	0,25

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0} - factor \cdot N$

(N: action tension load) $\delta_{N^\infty} = \delta_{N^\infty} - factor\,\cdot\,N$

Table C4: Displacements under shear load ¹⁾ for HIT-Z(-R)-D TP in case of static and quasi static loading

HIT-Z-D TP; HIT-	Z-R-D TP		M16
Diaplacement	δ_{V0} – factor	[mm/kN]	0,04
Displacement	δv∞ – factor	[mm/kN]	0,06

¹⁾ Calculation of the displacement

 $\begin{array}{l} \delta_{V0} = \delta_{V0} - factor \cdot V \\ \delta_{V\infty} = \delta_{V\infty} - factor \cdot V \end{array}$ (V: action shear load)

Performances

Displacements

Table C5: Essential characteristics under tension load for HIT-Z(-R)-D TP in case of seismic performance category C1

HIT-Z-D TP; HIT-Z-R-D TP			M16
Installation safety factor	γinst	[-]	1,0
Steel failure			
HIT-Z-D TP	N _{Rk,s,C1}	[kN]	96
HIT-Z-R-D TP	N _{Rk,s,C1}	[kN]	96
Pullout failure			
in cracked concrete C20/25			
Temperature range I: 40 °C / 24 °C	N _{Rk,p,C1}	[kN]	100
Temperature range II: 80 °C / 50 °C	N _{Rk,p,C1}	[kN]	90
Temperature range III: 120 °C / 72 °C	N _{Rk,p,C1}	[kN]	80

Table C6: Characteristic resistance under shear load for HIT-Z(-R)-D TP in case of seismic performance category C1

HIT-Z-D TP; HIT-Z-R-D TP			M16
Steel failure without lever arm			
HIT-Z-D TP	V _{Rk,s,C1}	[kN]	28
HIT-Z-R-D TP	V _{Rk,s,C1}	[kN]	31

Injection System Hilti HIT-HY 200-A with HIT-Z-D TP; HIT-Z-R-D TP

Performances

Essential characteristics and displacements for seismic performance category C1

Table C7: Essential characteristics for HIT-Z(-R)-D TP under tension load for seismic performance category C2

-	-	
		M16
γinst	[-]	1,0
N _{Rk,s,C2}	[kN]	96
N _{Rk,s,C2}	[kN]	96
N _{Rk,p,C2}	[kN]	70
N _{Rk,p,C2}	[kN]	60
NRk,p,C2	[kN]	50
	NRk,s,C2 NRk,s,C2 NRk,p,C2 NRk,p,C2	N _{Rk,s,C2} [kN] N _{Rk,s,C2} [kN] N _{Rk,p,C2} [kN] N _{Rk,p,C2} [kN]

Table C8: Essential characteristics for HIT-Z(-R)-D TP shear tension load for seismic performance category C2

HIT-Z-D TP; HIT-Z-R-D TP			M16
Steel failure			
Characteristic resistance HIT-Z-D TP	$V_{Rk,s,C2}$	[kN]	41
Characteristic resistance HIT-Z-R-D TP	$V_{Rk,s,C2}$	[kN]	41

Table C9: Displacements under tension load for HIT-Z(-R)-D TP for seismic performance category C2

HIT-Z-D TP; HIT-Z-R-D TP			M16
Displacement DLS	$\delta_{\text{N,C2}(\text{DLS})}$	[mm]	1,9
Displacement ULS	$\delta_{\text{N,C2}(\text{ULS})}$	[mm]	3,6

Table C10: Displacements under shear load for HIT-Z(-R)-D TP for seismic performance category C2

HIT-Z-D TP; HIT-Z-R-D TP			M16
Displacement DLS HIT-Z-D TP	δ V,C2DLS)	[mm]	3,1
Displacement ULS HIT-Z -D TP	δ V,C2(ULS)	[mm]	6,2
Displacement DLS HIT-Z-R-D TP	$\delta \text{V,C2(DLS)}$	[mm]	3,1
Displacement ULS HIT-Z-R-D TP	$\delta_{V,C2(ULS)}$	[mm]	6,2

Injection System Hilti HIT-HY 200-A with HIT-Z-D TP; HIT-Z-R-D TP

Performances

Essential characteristics and displacements for seismic performance category C2