

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0514 of 4 May 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

TSM high performance, TSM high performance A4, TSM high performance HCR

Mechanical fasteners for use in concrete

TOGE Dübel GmbH & Co. KG Illesheimer Straße 10 90431 Nürnberg DEUTSCHLAND

TOGE Dübel GmbH & Co. KG

22 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601

ETA-15/0514 issued on 28 May 2019

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-15/0514 English translation prepared by DIBt

Page 2 of 22 | 4 May 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 22 | 4 May 2020

European Technical Assessment ETA-15/0514 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The TOGE Concrete screw TSM high performance is an anchor in size 6, 8, 10, 12 and 14 mm made of galvanised steel respectively steel with zinc flake coating, made of stainless or high corrosion resistant steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 4, Annex C 1 and C 2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 and C 2
Displacements and Durability	See Annex C 7 and Annex B 1
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 3, C 4, C 5 and C 8

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 6

European Technical Assessment ETA-15/0514

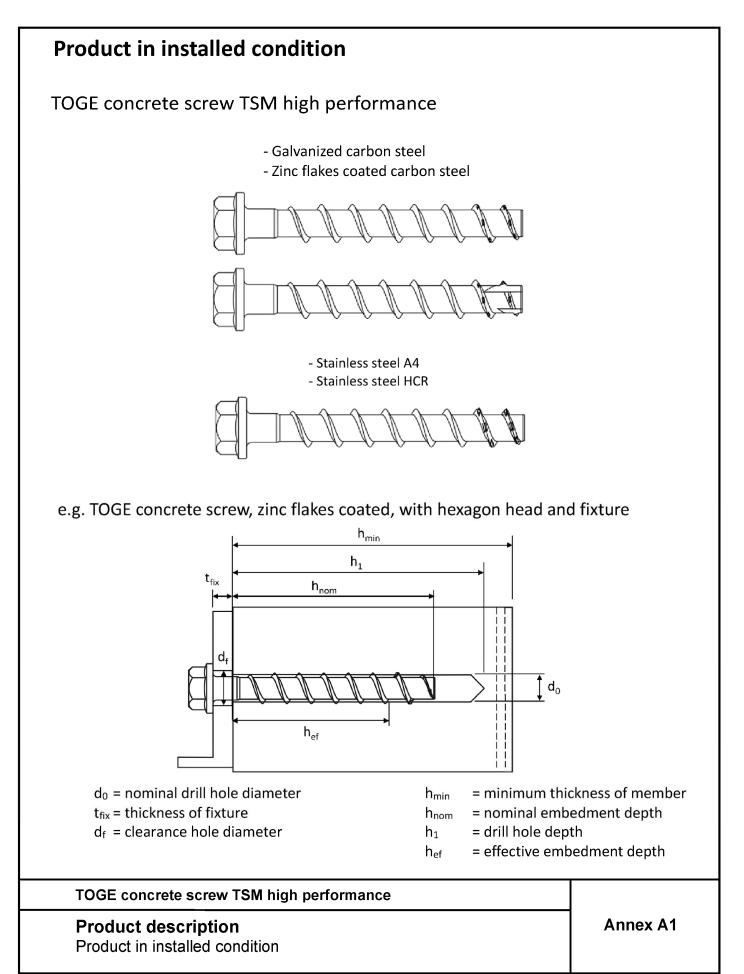
Page 4 of 22 | 4 May 2020

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

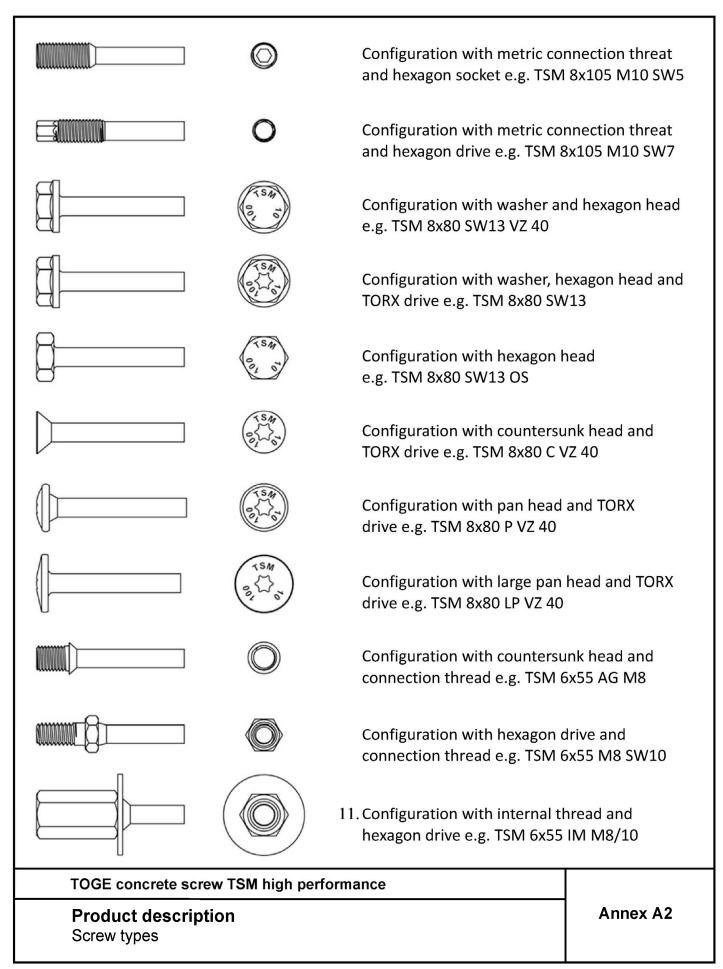
In accordance with European Assessment Document EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 4 May 2020 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Tempel

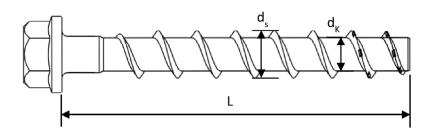

Page 6 of European Technical Assessment ETA-15/0514 of 4 May 2020

Table 1	: Material																
Part	Pro	oduct	name								Mat	erial					
all	TSM high µ	perfor	mance							-						42:20 ≥5μm	
types	TSM high µ	perfo	mance /	44	1.4	4401	; 1.44	104;	1.457	71; 1.	4578						
	TSM high µ	perfor	rmance l	HCR	1.4	4529											
Part					Nominal characteristic steel Yield strength Ultimate strength f _{vk} [N/mm ²] f _{uk} [N/mm ²]						1	Rupture elongation A ₅ [%]					
	TSM high p	perfor	rmance														
all types	TSM high µ	performance A4			560					700					≤ 8		
l types	TSM high p	perfor	rmance l	HCR													
Table 2	: Dimensic	ons															
Ancho	r size			e	5		8			10		12				14	
Nomina	al embedm	ent	h_{nom}	1	2	1	2	3	1	2	3	1	2	3	1	2	3
depth			[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Screv	v length	≤L	[mm]	500													
Core	diameter	d _ĸ	[mm]	5,	1		7,1			9,1			11,2	L		13,1	
	ad outer meter	d _s	[mm]	7,	7,5 10,6 12,6 14,6 16,6												

Marking:

TSM high perform	ance	TSM high perform	ance A4	TSM high performance H		
Screw type:	TSM	Screw type:	TSM	Screw type:	TSM	
Screw size:	10	Screw size:	10	Screw size:	10	
Screw length:	100	Screw length:	100	Screw length:	100	
		Material:	A4	Material:	HCR	
		2 001		TSAA CONTROL		
TOCE concrete		A high Performanc				

Product description

Material, Dimensions and markings

Specification of Intended use

Table 3: Anchorages subject to

TSM concrete screw size		6	5		8			10			12			14	
Nominal embedment depth		h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
depth	[mm]	40	55	45	55	65	55	75	85	65	85	100	65	85	115
Static and quasi-static load	ls										ا م م ا				
Fire exposure					All	sizes	and	all en	npea	ment	aepi	.ns			
C1 category - seismic		ok	ok				ok								
C2 category – seismic (A4 and HCR unsuitable)		,	ĸ	, 	ĸ	ok	x	x	ok	>	K	ok	>	ĸ	ok

Base materials:

- Reinforced and unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition no particular aggressive conditions exits: screw types made of stainless steel with marking A4.
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition if particular aggressive conditions exits: screw types made of stainless steel with marking HCR. Note: Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

TOGE concrete screw TSM high Performance

Intended use Specification

Annex B1

Electronic copy of the ETA by DIBt: ETA-15/0514

Specification of Intended use - continuation

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055. The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B3, Table 4.

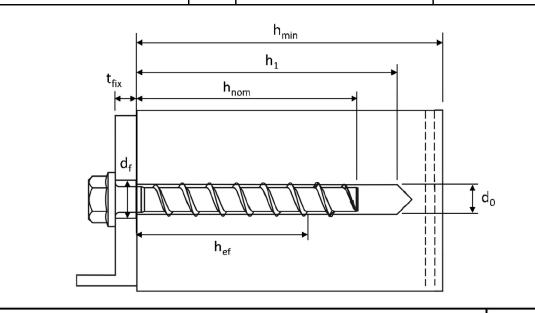
Installation:

- Hammer drilling or hollow drilling; hollow drilling only for sizes 8-14.
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.
- The borehole may be filled with injection mortar CF-T 300V or ATA 2004C.
- Adjustability according to Annex B6 for sizes 8-14, all embedment depths
- Cleaning of borehole is not necessary, if using a hollow drill

TOGE concrete screw TSM high Performance

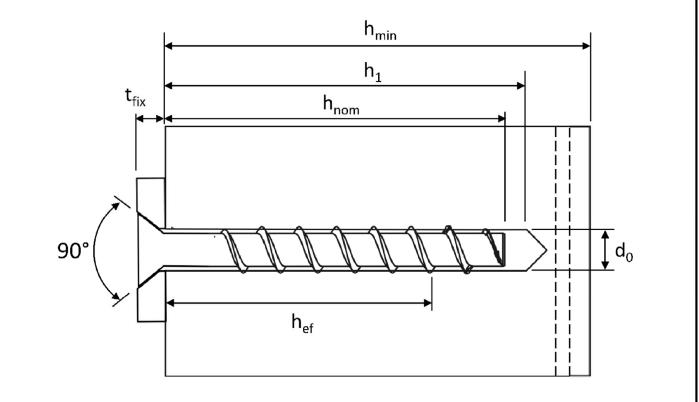
Intended use Specification continuation

Annex B2


Page 10 of European Technical Assessment ETA-15/0514 of 4 May 2020

English translation prepared by DIBt

Table 4: Installation parame	ters											
TSM concrete screw size			E	5		8		10				
Nominal embedment depth		h_{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
		[mm]	40	55	45	55	65	65 55		85		
Nominal drill hole diameter	d_0	[mm]	6 8				10					
Cutting diameter of drill bit	er of drill bit $d_{cut} \leq [r]$			10		8,45			10,45			
Drill hole depth	h₁≥	[mm]	45	60	55	65	75	65	85	95		
Clearance hole diameter	d _f ≤	[mm]	8	8		12		14				
Installation torque (version with connection thread)	T _{inst}	[Nm]	1	0		20			40			
Torque impact screw driver		[Nm]		•	e accord	ding to r	nanufac	turer's		ions		
			16	0		300			400			
TSM concrete screw size			12					14				
Nominal embedment depth		h_{nom}	h _{nom1}	h _{nor}	_{n2} ł	nom3	h _{nom1}	h _{nor}	_{n2} ł	nom3		
		[mm]	65	85		100	75	100	D C	115		
Nominal drill hole diameter	d_0	[mm]		1	2			1	4			
Cutting diameter of drill bit	d _{cut} ≤	[mm]		12	,50			14	,50			
Drill hole depth	h₁≥	[mm]	75	95		110	85	110	D C	125		
Clearance hole diameter	d _f ≤	[mm]		1	6			1	8			
Installation torque (version with connection thread)	[Nm]		6	0			8	0				
	-				Max. torque according to manufacturer's instructio					ions		
Torque impact screw driver		[Nm]		65	50			65	50			

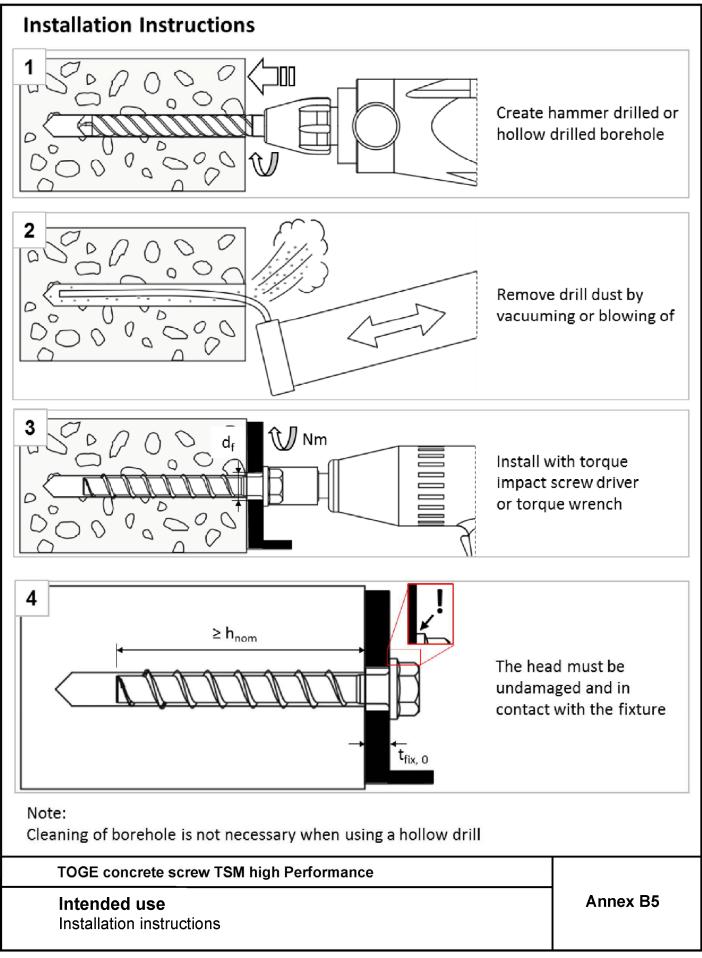

TOGE concrete screw TSM high Performance

Intended use Installation parameters

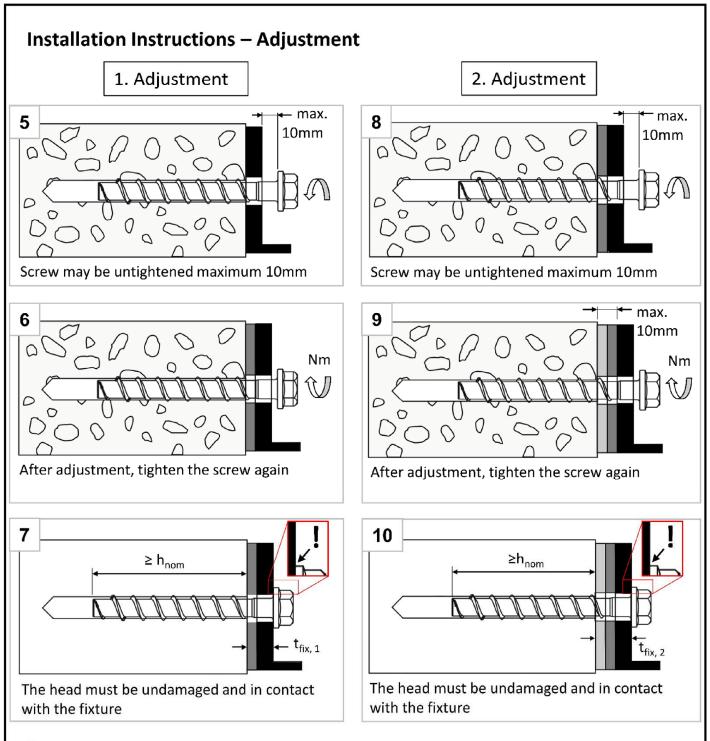
Annex B3

Table 5: Minimum thicl	kness o	of mem	ber, mi	nimum	edge	e di	istance	and mi	nimum	spacin	5		
TSM concrete screw s	ize		6	8					10				
Nominal embedment de	onth	h _{nom}	h _{nom1}	h _{nom2}	h _{non}	n1	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
	eptii	[mm]	40	55	45	;	55	65	55	75	85		
Minimum thickness of member	h_{min}	[mm]	80 90 102										
Minimum edge distance	C _{min}	[mm]	40 40 50 50										
Minimum spacing	S _{min}	[mm]	4()	40)	5	0		50			
TSM concrete screw s	ize		12						14	14			
Nominal embedment de	onth	h _{nom}	h_{nom1}	h _{nor}	m2	h _{nom3}		om3 h _{nom1}		n2	h _{nom3}		
	eptii	[mm]	65	85	5	1(00 75		100)	115		
Minimum thickness of member	h _{min}	[mm]	80	10	1	12	20	87	119	119 138			
Minimum edge distance	C _{min}	[mm]	mm] 50 70 50 70										
Minimum spacing	S _{min}	[mm]	[mm] 50 70 50 70										

TOGE concrete screw TSM high Performance

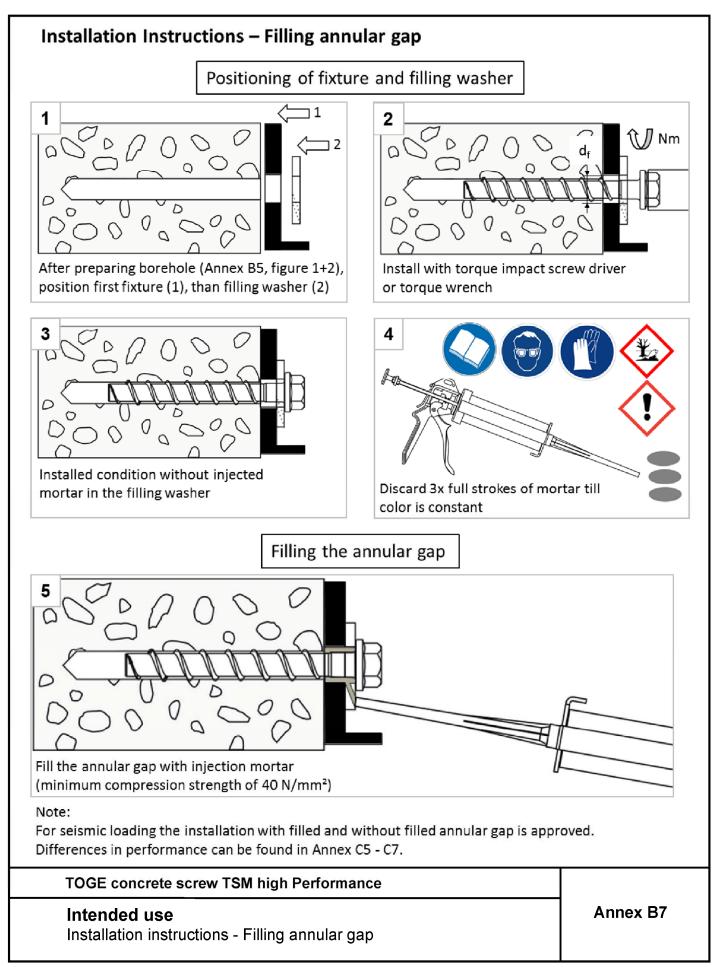

Intended use

Minimum thickness of member, minimum edge distance and minimum spacing


Annex B4

Electronic copy of the ETA by DIBt: ETA-15/0514

Note:


The fastener can be adjusted maximum two times. The total allowed thickness of shims added during the adjustment process is 10mm. The final embedment depth after adjustment process must be larger or equal than h_{nom} .

TOGE concrete screw TSM high Performance

Intended use Installation instructions - Adjustment

Annex B6

Table 6: Cha	racteristic val	ues fo	r static	and q	uasi-st	atic loa	ading,	sizes 6	-10			
TSM concret	e screw size			(5		8			10		
Nominal emb	edment depth		h _{nom} [mm]	h _{nom1} 40	h _{nom2} 55	h _{nom1} 45	h _{nom2} 55	h _{nom3} 65	h _{nom1} 55	h _{nom2} 75	h _{nom³} 85	
Steel failure	for tension and	l shear			55	45				/5	- 85	
Characteristic		N _{Rk,s}	[kN]	<u> </u>	ŀ,0		27,0			45,0		
Partial factor		γ _{Ms,N}	[-]		.,-			,5		,-		
Characteristic		V ⁰ _{Rk,s}	[kN]	7	7,0 13,5 17,0 22,5 34,						,0	
Partial factor	shear load	γ _{Ms,V}	[-]	1,25								
Ductility facto	or	k ₇	[-]	0,8								
Characteristic	bending load	M ⁰ _{Rk,s}	[Nm]	10),9		26,0			56,0		
Pull-out failu	ire											
Character-	cracked	N _{Rk,p}	[kN]	2,0	4,0	5,0	9,0	12,0	9,0	≥ N ⁰	Rk,c ¹⁾	
istic tension load C20/25	uncracked	N _{Rk,p}	[kN]	4,0	9,0	7,5	12,0	16,0	12,0	20,0	26,0	
	C25/30		1,12									
Increasing factor for	C30/37	Ψ	[-]				1,	22				
N _{Rk,p}	N _{Rk,p} C40/50							41				
	C50/60						1,	58				
Concrete fai	lure: Splitting fa	ailure, o	concret	e cone	failure	and pr	y-out fa	ailure				
Effective emb	edment depth	h _{ef}	[mm]	31	44	35	43	52	43	60	68	
k-factor	cracked	k _{cr}	[-]				7	,7				
	uncracked	kucr	[-]				11	l,0				
Concrete	spacing	S _{cr,N}	[mm]				3 x	h _{ef}				
cone failure	edge distance	C _{cr,N}	[mm]				1,5	x h _{ef}				
Splitting	resistance	N ⁰ Rk,sp	[kN]	2,0	4,0	5,0	9,0	12,0	9,0	16,0	19,0	
failure	spacing	S _{cr,Sp}	[mm]	120	160	120	140	150	140	180	210	
	edge distance	C _{cr,Sp}	[mm]	60	80	60	70	75	70	90	105	
Factor for pry	-out failure	k ₈	[-]			1	,0			2	,0	
Installation fa	ctor	γ_{inst}	[-]				1	,0				
Concrete ed	ge failure						-	-	-	-		
-	th in concrete	$I_f = h_{ef}$	[mm]	31	44	35	43	52	43	60	68	
Nominal oute screw	Iominal outer diameter of				5		8			10		
¹⁾ $N^{0}_{Rk,c}$ accordin	ng to EN 1992-4:2	018							-			
TOGE	concrete screw	ITSM h	nigh Pe	rforma	nce							
	rmances cteristic values	for sta	tic and	quasi-	static lo	bading,	sizes 6	6-10	Annex C1			

Table 7: Char	acteristic values fo	or static	and c	juasi-sta	atic load	ling, size	es 12-1	4			
TSM concrete	e screw size				12			14			
Neminal emplo	due out douth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Nominal embe	ament depth		[mm]	65	85	100	75	100	115		
Steel failure f	or tension and shea	ar loadin	g								
Characteristic	tension load	N _{Rk,s}	[kN]		67,0 94,0						
Partial factor t	ension load	γms,N	[-]		1,5						
Characteristic	shear load	V ⁰ _{Rk,s}	[kN]	33,5 42,0 56,0							
Partial factor s	hear load	γ _{Ms,V}	[-]			1,	25				
Ductility facto	r	k 7	[-]			0	,8				
Characteristic	bending load	M ⁰ _{Rk,s}	[Nm]		113,0			185,0			
Pull-out failu	re										
Characteristic	cracked	N _{Rk,p}	[kN]	12,0)			
tension load C20/25	uncracked	N _{Rk,p}	[kN]	16,0			$\geq N^{0}_{Rk,c}$ ¹	,			
	C25/30										
Increasing	C30/37	 111				1,	22				
factor for N _{Rk,p}	C40/50	Ψ	[-]			1,-	41				
	C50/60					1,	58				
Concrete fail	ure: Splitting failure	, concre	te con	e failure	and pry	-out fail	ure				
Effective embe	edment depth	h _{ef}	[mm]	50	67	80	58	79	92		
k-factor -	cracked	k _{cr}	[-]	7,7							
K-Tactor	uncracked	k _{ucr}	[-]			11	.,0				
Concrete	spacing	S _{cr,N}	[mm]			3 x	h _{ef}				
cone failure	edge distance	C _{cr,N}	[mm]			1,5	x h _{ef}				
Splitting	resistance	N ⁰ _{Rk,sp}	[kN]	12,0	18,5	24,5	15,0	24,0	30,0		
failure	spacing	S _{cr} ,Sp	[mm]	150	210	240	180	240	280		
	edge distance	C _{cr,Sp}	[mm]	75	105	120	90	120	140		
Factor for pry-		k ₈	[-]	1,0	2,	,0	1,0	2	,0		
Installation fac	tor	γ_{inst}	[-]			1	,0				
Concrete edg											
Effective lengt		l _f = h _{ef}	[mm]	50	67	80	58	79	92		
	diameter of screw	d_{nom}	[mm]		12			14			
	g to EN 1992-4:2018										
TOGE c	oncrete screw TSM	high Pe	rforma	nce							
	mances eristic values for stati	c and qu	asi-stat	ic loadin	g, sizes ´	12-14		Anne>	c C2		

Table 8: Seismic category C1 -	- Charao	cterist	ic loac	l value	S					
TSM concrete screw size			(5	8	10		12	14	
Nousing Lough advant double		h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom3}	h _{nom3}	h _{nom3}	
Nominal embedment depth		[mm]	40	55	65	55	85	100	115	
Steel failure for tension and she	ar load									
Characteristic load	N _{Rk,s,eq}	[kN]	14	ŀ,0	27,0	45	i,0	67,0	94,0	
Partial factor tension load	γ _{Ms,eq}	[-]				1,5				
Characteristic load	V _{Rk,s,eq}	[kN]	4,7	5,5	8,5	13,5	15,3	21,0	22,4	
Partial factor shear load	$\gamma_{Ms,eq}$	[-]				1,25	5			
With filling of the annular gap $^{1)}$	$lpha_{gap}$	[-]				1,0				
Without filling of the annular gap	p α _{gap} [-] 0,5									
Pull-out failure										
Characteristic tension load in cracked concrete C20/25	N _{Rk,p,eq}	[kN]	2,0	4,0	12,0	9,0		≥ N ⁰ _{Rk,c}	2)	
Concrete cone failure										
Effective embedment depth	h _{ef}	[mm]	31	44	52	43	68	80	92	
Edge distance	C _{cr,N}	[mm]				1,5 x	h _{ef}			
Spacing	S _{cr,N}	[mm]				3 x h	ef			
Installation safety factor	γ_{inst}	[-]				1,0				
Concrete pry-out failure										
Factor for pry-out failure	k ₈	[-]		1	,0			2,0		
Concrete edge failure										
Effective length in concrete	l _f = h _{ef}	[mm]	31	44	52	43	68	80	92	
Nominal outer diameter of screw	d_{nom}	[mm]	6	6	8	10	10	12	14	
¹⁾ Filling of the annular gap according	to annex	B7, figu	ire 5							

Filling of the annular gap according to annex B7, figure 5

²⁾ $N^0_{Rk,c}$ according to EN 1992-4:2018

TOGE concrete screw TSM high Performance

Performances Seismic category C1 – Characteristic load values

Table 9: Seismic category C2 ¹⁾ – according to annex B7, figure 5	Charact	eristic	load value	s with fille	d annular (gap		
TSM concrete screw size			8	10	12	14		
		h _{nom}		h _{nom3}				
Nominal embedment depth		[mm]	65	85	100	115		
Steel failure for tension								
Characteristic load	N _{Rk,s,eq}	[kN]	27,0	45,0	67,0	94,0		
Partial factor tension load	γ _{Ms,eq}	[-]		1	,5			
With filling of the annular gap	α_{gap}	[-]		1	,0			
Pull-out failure								
Characteristic load in cracked concrete	N _{Rk,p,eq}	[kN]	2,4	5,4	7,1	10,5		
Steel failure for shear load								
Characteristic load	V _{Rk,s,eq}	[kN]	9,9	18,5	31,6	40,7		
Partial factor shear load	γ _{Ms,eq}	[-]		1,	25			
With filling of the annular gap	$lpha_{gap}$	[-]		1	,0			
Concrete cone failure								
Effective embedment depth	h _{ef}	[mm]	52	68	80	92		
Edge distance	C _{cr,N}	[mm]		1,5	x h _{ef}			
Spacing	S _{cr,N}	[mm]		3 x	: h _{ef}			
Installation safety factor	γinst	[-]		1	,0			
Concrete pry-out failure								
Factor for pry-out failure	k ₈	[-]	1,0		2,0			
Concrete edge failure								
Effective length in concrete	l _f = h _{ef}	[mm]	52	68	80	92		
Nominal outer diameter of screw	d _{nom}	[mm]	8	10	12	14		

1) A4 and HCR not suitable

TOGE concrete screw TSM high Performance

Performances Seismic category C2 – Characteristic load values with filled annular gap

					ular gap			
		8	10	12	14			
	h _{nom}		h _n	om3				
	[mm]	65	85	100	115			
n head ty	ype)							
N _{Rk,s,eq}	[kN]	27,0	45,0	67,0	94,0			
γ _{Ms,eq}	[-]		. 1	,5				
ype)								
N _{Rk,p,eq}	[kN]	2,4	5,4	7,1	10,5			
i gon hea	d type)							
V _{Rk,s,eq}	[kN]	10,3	21,9	24,4	23,3			
γ _{Ms,eq}	[-]		1,	25				
α_{gap}	[-]		0	,5				
r sunk he	ad type	e)						
N _{Rk,s,eq}	[kN]	27,0	45,0					
γ _{Ms,eq}	[-]	1	,5	no performa	no performance assessed			
ad type)								
N _{Rk,p,eq}	[kN]	2,4	5,4	no performa	nce assessed			
itersunk	head to	ype)						
	[kN]	3,6	13,7					
	[-]	1,	25	no performa	nce assessed			
α_{gap}	[-]	0	,5					
h _{ef}	[mm]	52	68	80	92			
C _{cr,N}	[mm]		1,5	x h _{ef}				
S _{cr,N}	[mm]		3 x	: h _{ef}				
γ_{inst}	[-]		1	,0				
k ₈	[-]	1,0		2,0				
l _f = h _{ef}	[mm]	52	68	80	92			
d _{nom}	[mm]	8	10	12	14			
	n head ty $N_{Rk,s,eq}$ $\gamma_{Ms,eq}$ $\gamma_{Ms,eq}$ $\gamma_{Rk,s,eq}$ $\gamma_{Rk,s,eq}$ $\gamma_{Ms,eq}$ $\gamma_{Ms,eq}$ α_{gap} rsunk hea $N_{Rk,s,eq}$ $\gamma_{Ms,eq}$ α_{gap} $N_{Rk,s,eq}$ $\gamma_{Ms,eq}$ $\gamma_{Ms,eq}$ α_{gap} $N_{Rk,s,eq}$ $\gamma_{Ms,eq}$ γ	$ h_{nom} [mm] $	k h 8 h [mm] 65 n head type) N 27,0 γ Ms,eq [kN] 27,0 γ Ms,eq [-]	$\begin{tabular}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			

TOGE concrete screw TSM high Performance

Performances

Seismic category C2 – Characteristic load values without filled annular gap

Table 11: Fir	e expo	osure – cł	naract	eris	tic v	alue	es of	f res	ista	nce							
TSM concrete screw size				6		8		10		12		14					
h _{nom}			1	2	1	2	3	1	2	3	1	2	3	1	2	3	
Nominal embedment depth [r		[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115	
Steel failure	for ter	sion and s	shear	load													
R30 N _{Rk,s,fi30}		[kN]	0,9		2,4		4,4		7,3		10,3						
	R60	N _{Rk,s} ,fi60	[kN]	0,8		1,7		3,3		5,8		8,2					
	R90	N _{Rk,s} ,fi90	[kN]	0,6		1,1			2,3		4,2			5,9			
characteristic	R120	N _{Rk,s,fi120}	[kN]	0,4		0,7			1,7		3,4		4,8				
	R30	V _{Rk,s,fi30}	[kN]	0,9		2,4			4,4		7,3		10,3				
	R60	V _{Rk,s} ,fi60	[kN]	0,8		1,7			3,3		5,8		8,2				
Resistance	R90	V _{Rk,s} ,fi90	[kN]	0,6		1,1			2,3		4,2		5,9				
	R120	V _{Rk,s,fi120}	[kN]	0,4			0,7			1,7		3,4		4,8			
	R30	M ⁰ _{Rk,s,fi30}		0,7		2,4			5,9		12,3		20,4				
	R60	M ⁰ _{Rk,s} ,fi60		0,6			1,8		4,5		9,7		15,9				
	R90	M ⁰ _{Rk,s} ,fi90		0,5			1,2			3,0		7,0		11,6			
R120 M ⁰ _{Rk,s,fi120} [Nm] 0,3 0,9 2,3 5,7 9,4																	
Pull-out failure																	
Characteristic Resistance	R30- R90	N _{Rk,p,fi}	[kN]	0,5	1,0	1,3	2,3	3,0	2,3	4,0	4,8	3,0	4,7	6,2	3,8	6,0	7,6
	R120	N _{Rk,p,fi}	[kN]	0,4	0,8	1,0	1,8	2,4	1,8	3,2	3,9	2,4	3,8	4,9	3,0	4,8	6,1
Concrete cone failure																	
Characteristic Resistance	R30- R90	N ⁰ Rk,c,fi	[kN]	0,9	2,2	1,2	2,1	3,4	2,1	4,8	6,6	3,0	6,3	9,9	4,4	9,6	14,0
	R120	N ⁰ Rk,c,fi	[kN]	0,7	1,8	1,0	1,7	2,7	1,7	3,8	5,3	2,4	5,1	7,9	3,5	7,6	11,2
Edge distanc		•		-	-	-	-	-	-	-	-	-	-			-	
R30 bis R120		C _{cr} ,fi	[mm]							2	x he	f					
In case of fire	attack	from more	than o	one s	side,	the	mini	mum	edg	e dis	tanc	e sha	all be	e ≥300)mm		
Spacing																	
R30 bis R120		S _{cr,fi}	[mm]							4	x h _e	f					
Pry-out failure																	
R30 bis R120 k ₈ [-]				1,0				2,0 1,0 2,0			1,0 2,0						
The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given value.											n						
TOCE		to corow 7	- SM h:		Dorfo)rm o	<u></u>										
IUGE	concre	te screw 1	SIM NI	ign F	ento	orma	nce										

Performances

Fire exposure - characteristic values of resistance

Deutsches Institut für Bautechnik

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	h _{nom3} 85 9,6 0,9 1,2 11,9 1,0 1,2								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	85 9,6 0,9 1,2 11,9 1,0								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9,6 0,9 1,2 11,9 1,0								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,9 1,2 11,9 1,0								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,2 11,9 1,0								
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	11,9 1,0								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,0								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,2								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
Nominal embedment depth [mm] 65 85 100 75 100 1 $Cracked$ tension load N [kN] 5,7 9,4 12,3 7,6 12,0 1 $Cracked$ displacement δ_{N0} [mm] 0,9 0,5 1,0 0,5 0,8 0 δ_{N0} [mm] 1,0 1,2 1,2 0,9 1,2 1,3 1,3 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	nom3								
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	115								
concrete $d_{isplacement}$ d_{No} [mm] 0.9 0.5 1.0 0.5 0.8 0.8 displacement δ_{No} [mm] 1.0 1.2 1.2 0.9 1.2	15,1								
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0,7								
	1,0								
	21,2								
Concrete displacement O _{NO} [mm] 1,0 1,1 1,2 0,9 1,2 (0,8								
$\begin{bmatrix} 0.010, 0.00 \\ 0.00$	1,0								
Table 13: Displacements under static and quasi-static shear load									
TSM concrete screw size6810									
Nominal embedment depth hnom hnom hnom hnom hnom hnom hnom hno	h_{nom3}								
[40 55 45 55 65 55 75]	85								
Cracked shear load V [kN] 3,3 8,6 16,2									
	2,7								
uncracked concretedisplacement $\delta_{V^{\infty}}$ [mm]3,14,14,3	4,3								
TSM concrete screw size1214	14								
Nominal embedment depth hnom hnom hnom hnom hnom hnom hnom hno	nom3								
[mm] 65 85 100 75 100 1	115								
Cracked shear load V [kN] 20,0 30,5	30,5								
and δ_{V0} [mm] 4,0 3,1									
uncracked concretedisplacement $\delta_{V^{\infty}}$ [mm]6,04,7									

TOGE concrete screw TSM high Performance

Performances Displacements under static and quasi-static loads

	1) D: 1								
Table 14: Seismic category C2 according to annex B7, figure		acemen	its with fill	ed annulai	r gap				
TSM concrete screw size	8	10	12	14					
	h _{nom3}								
Nominal embedment depth	h _{nom} [mm]	65	85	100	115				
Displacements under tension le	oads (hexa	i gon hea	ad type)	<u> </u>					
Displacement DLS	$\delta_{N,eq(DLS)}$	[mm]	0,66	0,32	0,57	1,16			
Displacement ULS	$\delta_{N,eq(ULS)}$	[mm]	1,74	1,36	2,36	4,39			
Displacements under shear loads (hexagon head type with hole clearance)									
Displacement DLS	$\delta_{V,eq(DLS)}$	[mm]	1,68	2,91	1,88	2,42			
Displacement ULS	$\delta_{V,eq(ULS)}$	[mm]	5,19	6,72	5,37	9,27			
Table 15: Seismic category C2 ¹⁾ – Displacements without filled annular gap according to annex B7, figure 3									
TSM concrete screw size			8	10	12	14			
Nominal embedment depth	h _{nom} [mm]	65	h _{nom3} 55 85 100 11						
					100 115				
Displacements under tension l		Ť T							
Displacement DLS	$\delta_{N,eq(DLS)}$	[mm]	0,66	0,32	0,57	1,16			
Displacement ULS	$\delta_{N,eq(ULS)}$	_	1,74	1,36	2,36	4,39			
Displacements under tension le					T				
Displacement DLS	$\delta_{N,eq(DLS)}$	[mm]	0,66	0,32	no performance assesse				
Displacement ULS	$\delta_{N,eq(ULS)}$	[mm]	1,74	1,36					
Displacements under shear loa	ads (hexag o	on head	type with h	nole clearan	ce)				
Displacement DLS	$\delta_{V,eq(DLS)}$	[mm]	4,21	4,71	4,42	5,60			
Displacement ULS	$\delta_{V,eq(ULS)}$	[mm]	7,13	8,83	6,95	12,63			
Displacements under shear loa	ads (counte	e rsunk h	ead type w	ith hole clea	arance)				
Displacement DLS	[mm]	2,51	2,98						
Displacement ULS	$\delta_{V,eq(ULS)}$	[mm]	7,76	6,25	no performance assessed				
¹⁾ A4 and HCR not suitable									

¹⁾ A4 and HCR not suitable

TOGE concrete screw TSM high Performance

Performances

Displacements under seismic loads