

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0514 of 22 September 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

TSM high performance, TSM high performance A4, TSM high performance HCR

Mechanical fasteners for use in concrete

TOGE Dübel GmbH & Co. KG Illesheimer Straße 10 90431 Nürnberg DEUTSCHLAND

TOGE Dübel GmbH & Co. KG

22 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601, Edition 10/2016

ETA-15/0514 issued on 4 May 2020

European Technical Assessment ETA-15/0514

Page 2 of 22 | 22 September 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-15/0514

Page 3 of 22 | 22 September 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The TOGE Concrete screw TSM high performance is an anchor in size 6, 8, 10, 12 and 14 mm made of galvanised steel respectively steel with zinc flake coating, made of stainless or high corrosion resistant steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 4, Annex C 1 and C 2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 and C 2
Displacements and Durability	See Annex C 7 and Annex B 1
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 3, C 4, C 5 and C 8

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 6

European Technical Assessment ETA-15/0514

Page 4 of 22 | 22 September 2020

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

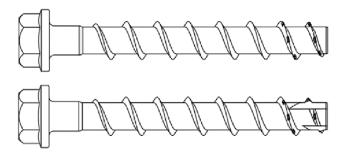
The system to be applied is: 1

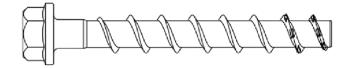
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

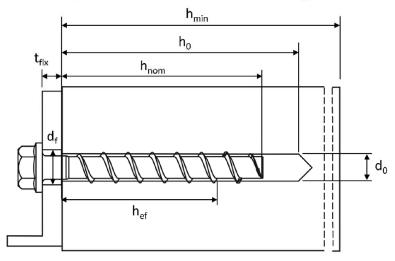
Issued in Berlin on 22 September 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department


beglaubigt: Tempel


Product in installed condition

TOGE concrete screw TSM high performance


- Galvanized carbon steel
- Zinc flakes coated carbon steel

- Stainless steel A4
- Stainless steel HCR

e.g. TOGE concrete screw, zinc flakes coated, with hexagon head and fixture

d₀ = nominal drill hole diameter

 t_{fix} = thickness of fixture

d_f = clearance hole diameter

h_{min} = minimum thickness of member

h_{nom} = nominal embedment depth

 h_0 = drill hole depth

h_{ef} = effective embedment depth

TOGE concrete screw TSM high performance

Product description

Product in installed condition

Annex A1

Z77729.20

		Configuration with metric co and hexagon socket e.g. TSM						
	0	Configuration with metric co and hexagon drive e.g. TSM 8						
	(SA)	Configuration with washer and e.g. TSM 8x80 SW13 VZ 40	nd hexagon head					
	(SA)	Configuration with washer, h TORX drive e.g. TSM 8x80 SW	•					
	Sy BC OT OCC. Y	Configuration with washer are e.g. TSM BC ST 14x130 SW24 V						
	(SA)	Configuration with hexagon I e.g. TSM 8x80 SW13 OS	nead					
	(SA)	Configuration with countersu TORX drive e.g. TSM 8x80 C \						
	(SA)	Configuration with pan head drive e.g. TSM 8x80 P VZ 40	and TORX					
	(SM)	Configuration with large pan drive e.g. TSM 8x80 LP VZ 40						
		Configuration with countersuce connection thread e.g. TSM 6						
		Configuration with hexagon connection thread e.g. TSM 6						
	hread and IM M8/10							
TOGE concrete so	Annex A2							
Product descri Screw types	Product description Screw types							

Table 1: Material

Part	Product name	Material
all	TSM high performance	- Steel EN 10263-4:2017 galvanized acc. to EN ISO 4042:2018 - Zinc flake coating according to EN ISO 10683:2018 (≥5μm)
types	TSM high performance A4	1.4401; 1.4404; 1.4571; 1.4578
	TSM high performance HCR	1.4529

		Nominal chara	acteristic steel	Rupture	
Part	Product name	Yield strength f _{yk} [N/mm²]	Ultimate strength f _{uk} [N/mm²]	elongation A₅ [%]	
	TSM high performance				
ιtypes	TSM high performance A4	560	700	≤8	
	TSM high performance HCR				

Table 2: Dimensions

Anchor size		6		8		10			12			14				
Nominal embedm	ent	h _{nom}	1	2	1	2	3	1	2	3	1	2	3	1	2	3
depth		[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Screw length	≤L	[mm]	500													
Core diameter	d_{κ}	[mm]	5,	5,1 7,1				9,1			11,1			13,1		
Thread outer diameter	d _s	[mm]	7,	7,5		10,6		12,6		14,6			16,6			

Marking:

TSM high performance

Screw type: TSM Screw size: 10 Screw length: 100

TSM high performance BC ST

Screw type: TSM BC ST
Screw size: 10
Screw length: 100

TSM high performance A4

Screw type: TSM
Screw size: 10
Screw length: 100
Material: A4

TSM high performance HCR

Screw type: TSM
Screw size: 10
Screw length: 100
Material: HCR

TOGE concrete screw TSM high Performance

Product description

Material, Dimensions and markings

Z77729.20

Specification of Intended use

Table 3: Anchorages subject to

TSM concrete screw size		(6		8			10		12				14	
Nominal embedment		h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
depth	[mm]	40	55	45	55	65	55	75	85	65	85	100	65	85	115
Static and quasi-static loads			All sizes and all embedment deaths												
Fire exposure			All sizes and all embedment depths												
C1 category - seismic		ok	ok				ok								
C2 category – seismic (A4 and HCR: no performance assessed)		;	x	;	х	ok	х	х	ok)	‹	ok	,	x	ok

Base materials:

- Compacted reinforced and unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition no particular aggressive conditions exits: screw types made of stainless steel with marking A4.
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition if particular aggressive conditions exits: screw types made of stainless steel with marking HCR.
 - Note: Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

TOGE concrete screw TSM high Performance

Intended use
Specification

Annex B1

Specification of Intended use - continuation

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055.
 The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B3, Table 4.

Installation:

- Hammer drilling or hollow drilling; hollow drilling only for sizes 8-14.
- Anchor installation carried out by appropriately qualified personnel and under the supervision
 of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.
- The borehole may be filled with injection mortar CF-T 300V or ATA 2004C.
- Adjustability according to Annex B6 for sizes 8-14, all embedment depths
- Cleaning of borehole is not necessary, if using a hollow drill

TOGE concrete screw TSM high Performance	
Intended use Specification continuation	Annex B2

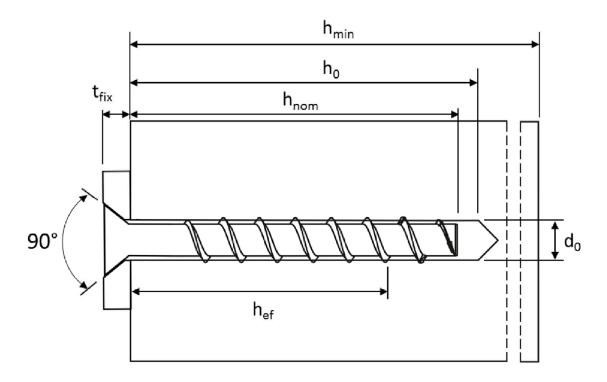
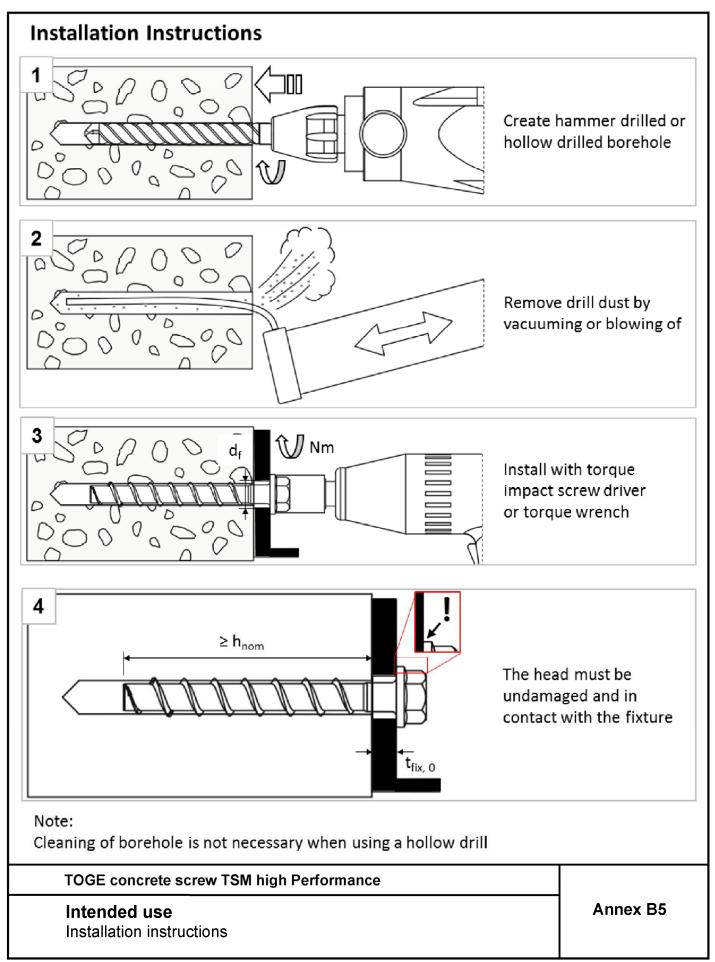
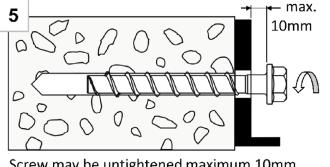

TSM concrete screw size			(5		8			10		
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom}	
•	1	[mm]	40	55	45	55	65	55	75	85	
Nominal drill hole diameter	d ₀	[mm]	•	5		8			10		
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,4	40		8,45			10,45		
Drill hole depth	h ₀ ≥	[mm]	45	60	55	65	75	65	85	95	
Clearance hole diameter	d _f ≤	[mm]	8	3		12			14		
Installation torque (version with connection thread)	T _{inst}	[Nm]	1	0		20			40		
Torque impact screw driver		 [Nm]	Max	ι. torqu	e accord	ding to r	nanufac	turer's	instruct	ions	
		נואווון	16	50		300			400		
TSM concrete screw size				1	.2			1	4		
Nominal embedment depth		h _{nom}	h _{nom1}	h _{no}	_{m2} ł	n _{om3}	h _{nom1}	h _{nor}	_{m2} h	n _{om3}	
		[mm]	65	85	5	100	75	10	0	115	
Nominal drill hole diameter	d_0	[mm]	12					14			
Cutting diameter of drill bit	d _{cut} ≤	[mm]		12,50					14,50		
Drill hole depth	h ₀ ≥	[mm]	75 95 110 85				110	o	125		
Clearance hole diameter	d _f ≤	[mm]	16				1	.8			
Installation torque (version with connection thread)	T _{inst}	[Nm]	60					8	0		
Torque impact screw driver		[Nm]	Max			ding to r	nanufac	turer's instructions 650			
	•		<u>l</u>	min	50		<u> </u>	0:	50		
			h_0			J					
t _{fix}		h _n	iom			7					
d_{f}				<u> </u>	*						
		h _{ef}			<u>\</u>			d _o			
								T			

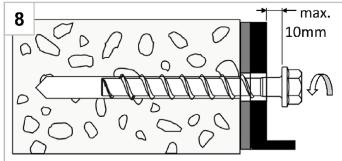
Table 5: Minimum thickness of member, minimum edge distance and minimum spacing


TSM concrete screw s	(5		8		10						
Naminal ambadment d	h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}			
Nominal embedment depth		[mm]	40	55	45	55	65	55	75	85		
Minimum thickness of member	h _{min}	[mm]		80						102		
Minimum edge distance	C _{min}	[mm]	40		40	50		50				
Minimum spacing	S _{min}	[mm]	4	0	40	5	0		50			

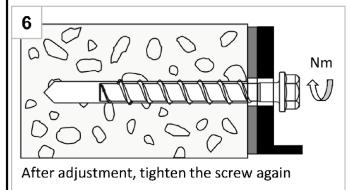
TSM concrete screw s			12		14				
Nominal ambadment d	h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2} h _{nom3}			
Nominal embedment depth		[mm]	65	85	100	75	100	115	
Minimum thickness of member	h _{min}	[mm]	80	101	120	87	119	138	
Minimum edge distance	C _{min}	[mm]	50		70	50	70		
Minimum spacing	S _{min}	[mm]	5	0	70	50	70		

TOGE concrete screw TSM high Performance	
Intended use Minimum thickness of member, minimum edge distance and minimum spacing	Annex B4



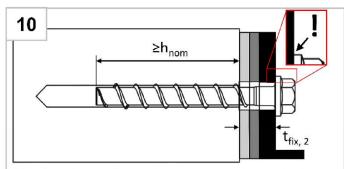

Installation Instructions - Adjustment

1. Adjustment



Screw may be untightened maximum 10mm

2. Adjustment


Screw may be untightened maximum 10mm

The head must be undamaged and in contact with the fixture

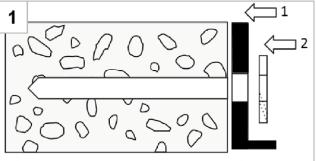
The head must be undamaged and in contact with the fixture

Note:

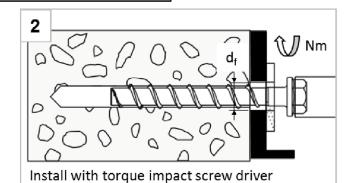
The fastener can be adjusted maximum two times. The total allowed thickness of shims added during the adjustment process is 10mm. The final embedment depth after adjustment process must be larger or equal than h_{nom}.

TOGE concrete screw TSM high Performance

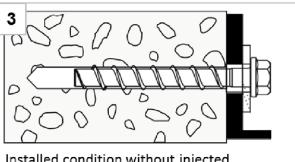
Intended use

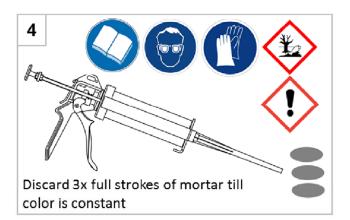

Installation instructions - Adjustment

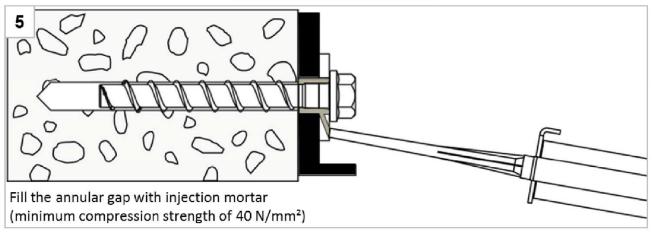
Annex B6



Installation Instructions - Filling annular gap


Positioning of fixture and filling washer


After preparing borehole (Annex B5, figure 1+2), position first fixture (1), than filling washer (2)


or torque wrench

Installed condition without injected mortar in the filling washer

Filling the annular gap

Note:

For seismic loading the installation with filled and without filled annular gap is approved. Differences in performance can be found in Annex C5 - C7.

TOGE concrete screw TSM high Performance

Intended use

Installation instructions - Filling annular gap

Annex B7

Table 6: Cha	racteristic val	ues fo	r static	and q	uasi-st	atic lo	ading,	sizes 6	-10		
TSM concret	e screw size			(5		8			10	
No main al a mah	a dua a mt da mth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal emb	edment depth		[mm]	40	55	45	55	65	55	75	85
Steel failure	for tension and	shear	loadin	 g							
Characteristic	tension load	N _{Rk,s}	[kN]	14	l,0		27,0			45,0	
Partial factor		γ _{Ms,N}	[-]			•	1,	,5	•		
Characteristic	shear load	V ⁰ _{Rk,s}	[kN]	7,	,0	13	3,5	17,0	22,5	34	.,0
Partial factor		γ _{Ms,V}	[-]				1,	25			
Ductility factor	or	k ₇	[-]				0,	,8			
Characteristic	bending load	$M^0_{Rk,s}$	[Nm]	10),9		26,0			56,0	
Pull-out failu	ire										
Character-	cracked	$N_{Rk,p}$	[kN]	2,0	4,0	5,0	9,0	12,0	9,0	≥ N ⁰	Rk,c ¹⁾
istic tension load C20/25	uncracked	$N_{Rk,p}$	[kN]	4,0	9,0	7,5	12,0	16,0	12,0	20,0	26,0
	C25/30						1,	12			
Increasing factor for	C30/37	Ψς	[-]				1,	22			
N _{Rk,p}	C40/50	r c	[-]				1,	41			
Т	C50/60						1,	58			
Concrete fail	ure: Splitting fa	ailure, d	concret	e cone	failure	and pr	y-out fa	ailure			
Effective emb	edment depth	h _{ef}	[mm]	31	44	35	43	52	43	60	68
k-factor	cracked	k _{cr}	[-]				7,	,7			
K-Tactor	uncracked	k _{ucr}	[-]				11	.,0			
Concrete	spacing	S _{cr,N}	[mm]				3 x	h _{ef}			
cone failure	edge distance	C _{cr,N}	[mm]				1,5	x h _{ef}			
0 11	resistance	N ⁰ Rk,sp	[kN]	2,0	4,0	5,0	9,0	12,0	9,0	16,0	19,0
Splitting failure	spacing	S _{cr,Sp}	[mm]	120	160	120	140	150	140	180	210
	edge distance	C _{cr,Sp}	[mm]	60	80	60	70	75	70	90	105
Factor for pry	-out failure	k ₈	[-]			1	,0			2,	.0
Installation fa	ctor	γinst	[-]				1,	,0			
Concrete ed	ge failure										
	th in concrete	I _f = h _{ef}	[mm]	31	44	35	43	52	43	60	68
	r diameter of	d_{nom}	[mm]	(5		8			10	
screw 1) N ⁰ _{Bk c} accordin	ng to EN 1992-4:20					<u> </u>					
	concrete screw		igh Da	rforma	nce						
Perfo	rmances cteristic values					oading,	sizes 6	6-10	_ A	nnex C	3 1

TOGE Perfo	concrete screw TSI	/I high Pe	rforma	nce				Annex	. 00
¹⁾ N ⁰ _{Rk,c} accordi	ng to EN 1992-4:2018								
	er diameter of screw	d_{nom}	[mm]		12			14	
Effective leng	th in concrete	$I_f = h_{ef}$	[mm]	50	67	80	58	79	92
Concrete ed	ge failure								
Installation fa	actor	γinst	[-]			1,	.0		
Factor for pry	v-out failure	k ₈	[-]	1,0	2,	.0	1,0	2	,0
	edge distance	C _{cr,Sp}	[mm]	75	105	120	90	120	140
Splitting failure	spacing	S _{cr,Sp}	[mm]	150	210	240	180	240	280
Splitting	resistance	N ⁰ _{Rk,sp}	[kN]	12,0	18,5	24,5	15,0	24,0	30,0
cone failure	edge distance	C _{cr,N}	[mm]			1,5	x h _{ef}		
Concrete	spacing	S _{cr,N}	[mm]			3 x	h _{ef}		
k-factor	uncracked	k _{ucr}	[-]			11	.,0		
le foots:	cracked	k _{cr}	[-]			7,	.7		
Effective emb	edment depth	h _{ef}	[mm]	50	67	80	58	79	92
Concrete fai	lure: Splitting failur	e, concre	te cone	e failure	and pry				
	C50/60	\dashv				1,			
Increasing factor for N _{Rk}		Ψ_{c}	[-]			1,			
la ana e etc	C30/37	\dashv				1,			
C20/25	C25/30	• • KK,p	[[,,,,]	10,0		1,:	12		
tension load	uncracked	N _{Rk,p}	[kN]	16,0			≥ N ⁰ _{Rk,c} 1)		
Pull-out failu Characteristic		N _{Rk,p}	[kN]	12,0					
		141 KK,5	[[]		113,0			100,0	
•	bending load	M ⁰ _{Rk,s}	[Nm]		113,0			185,0	
Ductility factor	or	k ₇	[-]			0,			
Partial factor		γ κκ,s γ _{Ms,V}	[-]		l 72	1,:	 25		
Characteristic		V ⁰ _{Rk,s}	[kN]	33,5	42		.5	56,0	
Partial factor		γ _{Ms,N}	[-]		07,0	1	.5	<i>9</i> 4,∪	
	for tension and sho tension load	N _{Rk,s}	lg [kN]		67,0			94,0	
Stool failura	for tonsion and she	ar leadin	11				, ,		
Nominal emb	edment depth		[mm]	65	85	100	75	100	115
TOTAL COLLEGE	te Serew Size		h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom}
TSM concret	te screw size		l		12			14	

Z77729.20

Table 8: Seismic category C1 –	- Charac	cterist	ic load	l value	!S				
TSM concrete screw size			f	6	8	1	.0	12	14
Naminal ambadment denth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom3}	h _{nom3}	h _{nom3}
Nominal embedment depth		[mm]	40	55	65	55	85	100	115
Steel failure for tension and she	ar load								
Characteristic load	$N_{Rk,s,eq}$	[kN]	14	1,0	27,0	45	5,0	67,0	94,0
Partial factor	γMs,eq	[-]				1,5)		
Characteristic load	$V_{Rk,s,eq}$	[kN]	4,7	5,5	8,5	13,5	15,3	21,0	22,4
Partial factor	γMs,eq	[-]				1,25	5		
With filling of the annular gap 1)	α_{gap}	[-]				1,0	1		
Without filling of the annular gap	$lpha_{\sf gap}$	[-]				0,5	1		
Pull-out failure									
Characteristic tension load in cracked concrete C20/25	$N_{Rk,p,eq}$	[kN]	2,0	4,0	12,0	9,0		≥ N ⁰ _{Rk,c}	2)
Concrete cone failure									
Effective embedment depth	h _{ef}	[mm]	31	44	52	43	68	80	92
Edge distance	C _{cr,N}	[mm]				1,5 x	h _{ef}		
Spacing	S _{cr,N}	[mm]				3 x h	lef		
Installation factor	γinst	[-]				1,0)		
Concrete pry-out failure									
Factor for pry-out failure	k ₈	[-]		1	,0			2,0	
Concrete edge failure									
Effective length in concrete	I _f = h _{ef}	[mm]	31	44	52	43	68	80	92
Nominal outer diameter of screw	d_{nom}	[mm]	6	6	8	10	10	12	14

 $^{2)}$ N 0 _{Rk,c} according to EN 1992-4:2018

 $^{\rm 1)}$ Filling of the annular gap according to annex B7, figure 5

TOGE concrete screw TSM high Performance

Performances

Seismic category C1 – Characteristic load values

Annex C3

TSM concrete screw size			8	10	12	14
		h _{nom}		h _{nc}	om3	
Nominal embedment depth		[mm]	65	85	100	115
Steel failure for tension						
Characteristic load	N _{Rk,s,eq}	[kN]	27,0	45,0	67,0	94,0
Partial factor	γMs,eq	[-]		1,	.5	
With filling of the annular gap	$lpha_{\sf gap}$	[-]		1,	,0	
Pull-out failure						
Characteristic load in cracked concrete	$N_{Rk,p,eq}$	[kN]	2,4	5,4	7,1	10,5
Steel failure for shear load						
Characteristic load	$V_{Rk,s,eq}$	[kN]	9,9	18,5	31,6	40,7
Partial factor	γMs,eq	[-]		1,2	25	
With filling of the annular gap	$\alpha_{\sf gap}$	[-]		1,	.0	
Concrete cone failure						
Effective embedment depth	h _{ef}	[mm]	52	68	80	92
Edge distance	C _{cr,N}	[mm]		1,5	x h _{ef}	
Spacing	S _{cr,N}	[mm]		3 x	h _{ef}	
Installation factor	γinst	[-]		1,	.0	
Concrete pry-out failure						
Factor for pry-out failure	k ₈	[-]	1,0		2,0	
Concrete edge failure						
Effective length in concrete	I _f = h _{ef}	[mm]	52	68	80	92
Nominal outer diameter of screw	d _{nom}	[mm]	8	10	12	14

1) /	11 200	1 LCD	not c	uitable
\perp	1 4 and	I HCK	not s	uitable

	TOGE concrete	screw	TSM	high	Performance
--	---------------	-------	-----	------	-------------

Performances

Seismic category C2 - Characteristic load values with filled annular gap

Annex C4

TSM concrete screw size			8	10	12	14
Name in all and a dual and density		h _{nom}		h _n	om3	•
Nominal embedment depth		[mm]	65	85	100	115
Steel failure for tension (hexago	n head t	ype)				
Characteristic load	N _{Rk,s,eq}	[kN]	27,0	45,0	67,0	94,0
Partial factor	γ _{Ms,eq}	[-]		1	.,5	•
Pull-out failure (hexagon head ty	pe)					
Characteristic load in cracked concrete	N _{Rk,p,eq}	[kN]	2,4	5,4	7,1	10,5
Steel failure for shear load (hexa	gon hea	d type)		•	•	•
Characteristic load	$V_{Rk,s,eq}$	[kN]	10,3	21,9	24,4	23,3
Partial factor	γ _{Ms,eq}	[-]		1,	.25	
Without filling of the annular gap	$lpha_{\sf gap}$	[-]		C	,5	
Steel failure for tension (counter	rsunk he	ad type)			
Characteristic load	N _{Rk,s,eq}	[kN]	27,0	45,0		
Partial factor	γMs,eq	[-]	1	,5	no perform	ance assessed
Pull-out failure (countersunk he	ad type)				•	
Characteristic load in cracked concrete	$N_{Rk,p,eq}$	[kN]	2,4	5,4	no perform	ance assessec
Steel failure for shear load (cour	tersunk	head ty	/pe)			
Characteristic load	$V_{Rk,s,eq}$	[kN]	3,6	13,7		
Partial factor	γ _{Ms,eq}	[-]	1,	25	no perform	ance assessec
Without filling of the annular gap	$lpha_{\sf gap}$	[-]	0	,5		
Concrete cone failure						
Effective embedment depth	h _{ef}	[mm]	52	68	80	92
Edge distance	C _{cr,N}	[mm]		1,5	x h _{ef}	
Spacing	S _{cr,N}	[mm]		3 >	ւ h _{ef}	
Installation factor	γinst	[-]		1	.,0	
Concrete pry-out failure						
Factor for pry-out failure	k ₈	[-]	1,0		2,0	
Concrete edge failure						
Effective length in concrete	I _f = h _{ef}	[mm]	52	68	80	92
Nominal outer diameter of screw	d_{nom}	[mm]	8	10	12	14
¹⁾ A4 and HCR not suitable						

Z77729.20

Seismic category C2 - Characteristic load values without filled annular gap

TSM concret	te screv	w size		(5		8			10			12			14	
Name in all and		4 dau4b	h _{nom}	1	2	1	2	3	1	2	3	1	2	3	1	2	3
Nominal emb	eamen	it depth	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	11
Steel failure	for ter	sion and s	shear l	oad													•
	R30	N _{Rk,s,fi30}	[kN]	0,	,9		2,4			4,4			7,3			10,3	3
	R60	N _{Rk,s,fi60}	[kN]	0,	,8		1,7			3,3			5,8			8,2	
	R90	N _{Rk,s,fi90}	[kN]	0,	,6		1,1			2,3			4,2			5,9	
	R120	N _{Rk,s,fi120}	[kN]	0,	,4		0,7			1,7			3,4			4,8	
	R30	V _{Rk,s,fi30}	[kN]	0,	,9		2,4			4,4			7,3			10,3	3
characteristic	R60	V _{Rk,s,fi60}	[kN]	0,	,8		1,7			3,3			5,8			8,2	
Resistance	R90	$V_{Rk,s,fi90}$	[kN]	0,	,6		1,1			2,3			4,2			5,9	
	R120	$V_{Rk,s,fi120}$	[kN]	0,	,4		0,7			1,7			3,4			4,8	
	R30	M ⁰ Rk,s,fi30			,7		2,4			5,9			12,3			20,4	
	R60	M ⁰ Rk,s,fi60			,6		1,8			4,5			9,7		<u> </u>	15,9	
	R90	M ⁰ _{Rk,s,fi90}			,5		1,2			3,0			7,0		<u> </u>	11,6	
	R120	M ⁰ Rk,s,fi120	[Nm]	0,	,3		0,9			2,3			5,7			9,4	
Pull-out failu	ıre																
Characteristic	R30- R90	N _{Rk,p,fi}	[kN]	0,5	1,0	1,3	2,3	3,0	2,3	4,0	4,8	3,0	4,7	6,2	3,8	6,0	7,
Resistance	R120	N _{Rk,p,fi}	[kN]	0,4	0,8	1,0	1,8	2,4	1,8	3,2	3,9	2,4	3,8	4,9	3,0	4,8	6,
Concrete co	na failı	ıra				-						-		•			
Concrete to	R30-													Π	Ι		
Characteristic Resistance	R90	N ⁰ Rk,c,fi	[kN]			1,2						<u> </u>		9,9	4,4	9,6	14
	R120	N ⁰ Rk,c,fi	[kN]	0,7	1,8	1,0	1,7	2,7	1,7	3,8	5,3	2,4	5,1	7,9	3,5	7,6	11
Edge distance	e																
R30 bis R120		C _{cr,fi}	[mm]							2	x he	f					
In case of fire	attack	from more	than o	one s	side,	the	minir	num	edg	e dis	tanc	e sha	all be	≥300	Omm		
Spacing																	
R30 bis R120		S _{cr,fi}	[mm]							4	x he	f					
Pry-out failur	 е	- 51,11	1							<u> </u>		•					
R30 bis R120		k ₈	[-]			1	.0			2	,0	1,0	7	2,0	1,0	2	,0
	e deptl	h has to be		sed f	for w			ete b	y at	_			<u> </u>				_

TOGE concrete screw TSM high Performance

Performances

Fire exposure – characteristic values of resistance

Annex C6

uncracked

concrete

displacement

4,7

TSM concre	ete screw size			6	5			8				10	
Nominal om	bedment depth		h _{nom}	h _{nom1}	h _{nom2}	h,	nom1	h _{nor}	m2	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom}
Nominal em	beament depth		[mm]	40	55	,	45	55	5	65	55	75	85
Crackad	tension load	N	[kN]	0,95	1,9	2	2,4	4,3	3	5,7	4,3	7,9	9,6
Cracked concrete	displacement	$\delta_{ extsf{N0}}$	[mm]	0,3	0,6	(0,6	0,7	7	0,8	0,6	0,5	0,9
	displacement	$\delta_{N^{\infty}}$	[mm]	0,4	0,4	(0,6	1,0)	0,9	0,4	1,2	1,2
l la cana alca al	tension load	N	[kN]	1,9	4,3	3	3,6	5,7	7	7,6	5,7	9,5	11,
Uncracked concrete	displacement	$\delta_{ extsf{N0}}$	[mm]	0,4	0,6	(0,7	0,9)	0,5	0,7	1,1	1,0
	displacement	$\delta_{N^{\infty}}$	[mm]	0,4	0,4	(0,6	1,0)	0,9	0,4	1,2	1,2
TSM concre	ete screw size				12						14		
Naminalam	hadmant danth		h _{nom}	h _{nom1}	h _{nom2}	2	h _{no}	m3	h	n _{om1}	h _{nom2}	2	1 _{nom3}
Nominai em	bedment depth		[mm]	65	85		10			75	100		115
Cracked	tension load	N	[kN]	5,7	9,4		12	,3		7,6	12,0		
concrete	displacement	$\delta_{ extsf{N0}}$	[mm]	0,9	0,5		1,	0		0,5	0,8		
concrete	displacement	δ _{N∞}	[mm]	1,0	1,2		1,	2		0,9	1,2		1,0
Uncracked	tension load	N	[kN]	7,6	13,2		17	,2	1	10,6	16,9		
concrete	displacement	$\delta_{ ext{N0}}$	[mm]	1,0	1,1		1,	2		0,9	1,2		0,8
	G. G. F. G. G. F. F. G. F. G. F. G. F.	$\delta_{N^{\infty}}$	[mm]	1,0	1,2		1,	2		0,9	1,2		1,0
able 13: Dis	placements un	ider sta	atic and	d quasi-	static s	he	ar lo	ad					
TSM concre	ete screw size			(5			8				10	
Nominal em	bedment depth		h _{nom}	h _{nom1}	h _{nom2}	h	nom1	h _{nor}	m2	h _{nom3}	h _{nom1}	h _{nom2}	h _{nor}
	beament depth		[mm]	40	55		45	55	<u>; </u>	65	55	75	85
Cracked	shear load	V	[kN]	3	,3			8,6	6			16,2	
and uncracked	dianla como est	δ_{V0}	[mm]	1,	55			2,7	7			2,7	
concrete	displacement	δν∞	[mm]	3	,1			4,3	1			4,3	
TSM concre	ete screw size				12						14		
Nominal em	bedment depth		h _{nom}	h _{nom1}	h _{nom2}	2	h _{no}	m3	h	nom1	h _{nom2}	2	1 _{nom3}
TVOITIIII CITI	scament depth		[mm]	65	85		10	0		75	100		115
Cracked	shear load	V	[kN]		20,0)					30,5	5	
and		$\delta_{ m V0}$	[mm]		4,0	1					3,1		

TOGE concrete screw TSM high Performance	
Performances Displacements under static and quasi-static loads	Annex C7

6,0

[mm]

 $\delta_{\text{V}^{\infty}}$

TSM concrete screw size			8	10	12	14
Name in all amales discount dentle		h _{nom}		h _n	om3	
Nominal embedment depth		[mm]	65	85	100	115
Displacements under tension	n loads (hexa	gon hea	d type)			
Displacement DLS	$\delta_{N,eq(DLS)}$	[mm]	0,66	0,32	0,57	1,16
Displacement ULS	$\delta_{\text{N,eq(ULS)}}$	[mm]	1,74	1,36	2,36	4,39
Displacements under shear	oads (hexago	n head	type with h	ole clearan	ce)	
Displacement DLS	$\delta_{V,eq(DLS)}$	[mm]	1,68	2,91	1,88	2,42
Displacement ULS	$\delta_{V,eq(ULS)}$	[mm]	5,19	6,72	5,37	9,27
		h _{nom}	O		om3	14
TSM concrete screw size			8	10	12	14
		I II		n		
Nominal embedment depth		 	65		1	115
· 		[mm]	65	85	100	115
Nominal embedment depth Displacements under tension	n loads (hexa	[mm] gon hea			1	115
· 	n loads (hexa δ _{N,eq(DLS)}	[mm]			1	1,16
Displacements under tension Displacement DLS Displacement ULS	$\delta_{\text{N,eq(DLS)}}$ $\delta_{\text{N,eq(ULS)}}$	[mm] gon hea [mm] [mm]	d type) 0,66 1,74	0,32 1,36	100	
Displacements under tension	$\delta_{\text{N,eq(DLS)}}$ $\delta_{\text{N,eq(ULS)}}$	[mm] gon hea [mm] [mm]	d type) 0,66 1,74	0,32 1,36	0,57	1,16
Displacements under tension Displacement DLS Displacement ULS	$\delta_{\text{N,eq(DLS)}}$ $\delta_{\text{N,eq(ULS)}}$	[mm] gon hea [mm] [mm]	d type) 0,66 1,74	0,32 1,36	0,57 2,36	1,16 4,39
Displacements under tension Displacement DLS Displacement ULS Displacements under tension	$\delta_{N,eq(DLS)}$ $\delta_{N,eq(ULS)}$ n loads (coun	[mm] gon hea [mm] [mm] tersunk	d type) 0,66 1,74 head type)	0,32 1,36	0,57	1,16 4,39
Displacements under tension Displacement DLS Displacement ULS Displacements under tension Displacement DLS	$\begin{array}{c c} \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \text{n loads (coun} \\ \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \end{array}$	[mm] gon hea [mm] [mm] tersunk [mm] [mm]	d type) 0,66 1,74 head type) 0,66 1,74	0,32 1,36 0,32 1,36	0,57 2,36 no performa	1,16 4,39
Displacements under tension Displacement DLS Displacement ULS Displacements under tension Displacement DLS Displacement ULS	$\begin{array}{c c} \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \text{n loads (coun} \\ \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \end{array}$	[mm] gon hea [mm] [mm] tersunk [mm] [mm]	d type) 0,66 1,74 head type) 0,66 1,74	0,32 1,36 0,32 1,36	0,57 2,36 no performa	1,16 4,39
Displacements under tension Displacement DLS Displacement ULS Displacements under tension Displacement DLS Displacement ULS Displacement ULS Displacements under shear	$\delta_{N,eq(DLS)}$ $\delta_{N,eq(ULS)}$ n loads (coun $\delta_{N,eq(DLS)}$ $\delta_{N,eq(ULS)}$ loads (hexago	[mm] gon hea [mm] [mm] tersunk [mm] [mm] on head	d type) 0,66 1,74 head type) 0,66 1,74 type with h	0,32 1,36 0,32 1,36	0,57 2,36 no performa	1,16 4,39 nce assessed
Displacements under tension Displacement DLS Displacement ULS Displacements under tension Displacement DLS Displacement ULS Displacement ULS Displacement ULS Displacements under shear Displacement DLS	$\begin{array}{c c} \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \text{n loads (coun} \\ \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \\ loads (hexagon of the bound of the bound$	[mm] gon hea [mm] tersunk [mm] [mm] [mm] [mm] [mm]	d type) 0,66 1,74 head type) 0,66 1,74 type with h 4,21 7,13	0,32 1,36 0,32 1,36 ole clearan 4,71 8,83	0,57 2,36 no performa ce) 4,42 6,95	1,16 4,39 nce assessed 5,60
Displacements under tension Displacement DLS Displacement ULS Displacements under tension Displacement DLS Displacement ULS Displacement ULS Displacements under shear Displacement DLS Displacement DLS Displacement ULS	$\begin{array}{c c} \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \text{n loads (coun} \\ \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \\ loads (hexagon of the bound of the bound$	[mm] gon hea [mm] tersunk [mm] [mm] [mm] [mm] [mm]	d type) 0,66 1,74 head type) 0,66 1,74 type with h 4,21 7,13	0,32 1,36 0,32 1,36 ole clearan 4,71 8,83	0,57 2,36 no performa ce) 4,42 6,95	1,16 4,39 nce assessed 5,60 12,63

1) A4	and	HCR	not	suitable

TOGE concrete screw TSM high Performance

Performances

Displacements under seismic loads

Annex C8