

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0204 of 19 May 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Concrete screw BSZ

Mechanical fasteners for use in concrete

MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach DEUTSCHLAND

MKT Werk 5, D

19 pages including 3 annexes which form an integral part of this assessment

EAD 330011-00-0601 and EAD 330232-00-0601

ETA-16/0204 issued on 19 September 2019

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-16/0204 English translation prepared by DIBt

Page 2 of 19 | 19 May 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 19 | 19 May 2020

European Technical Assessment ETA-16/0204 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Screwbolt BSZ is an anchor in size 6, 8, 10, 12 and 14 mm made of galvanised steel respectively steel with zinc flake coating, made of stainless or high corrosion resistant steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B2 and C1
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1
Displacements (static and quasi-static loading)	See Annex C6
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex A3, C2, C3, C4 and C7
Durability	See Annex B1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C5

European Technical Assessment ETA-16/0204

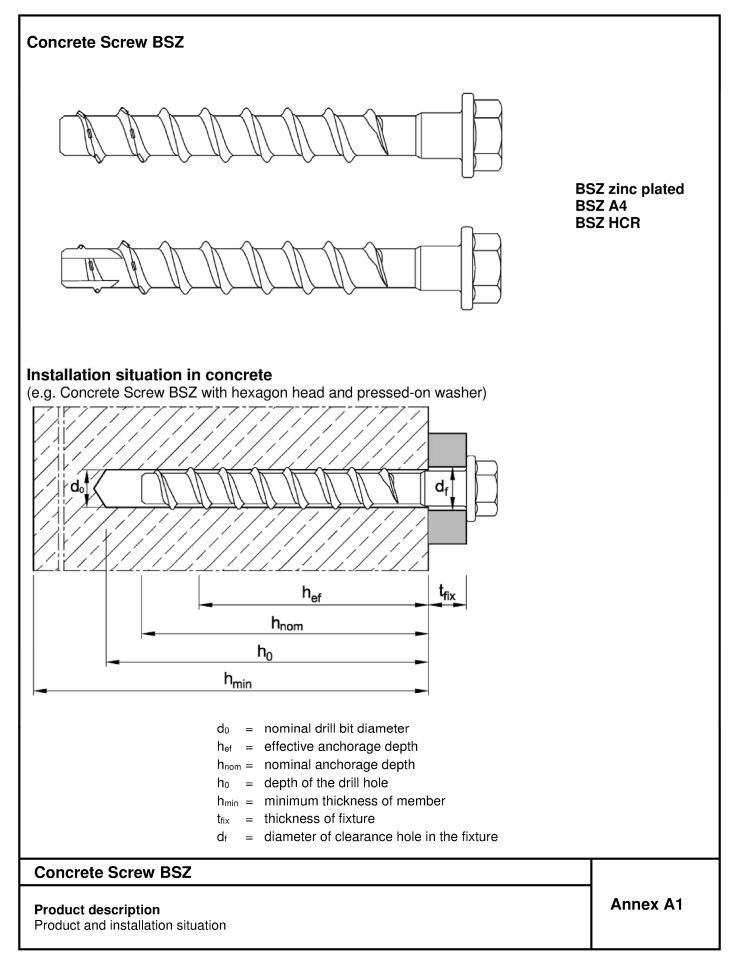
Page 4 of 19 | 19 May 2020

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Documents EAD No. 330011-00-0601 and EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

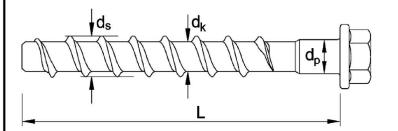

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 19 May 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Baderschneider

Electronic copy of the ETA by DIBt: ETA-16/0204


	Anchor types		BSZ -	Description
1		0	BI	Anchor version with metric connection thread and hexagon socked
2		0	В	Anchor version with metric connection thread and hexagon drive
3		0	SUTX	Anchor version with hexagon head, pressed-on washer and TORX drive
4		8 9)	SU	Anchor version with hexagon head and pressed-on washer
5		\$8\$	S	Anchor version with hexagon head
6		and the second s	SK	Anchor version with countersunk head and TORX drive
7		(LK	Anchor version with pan head and TORX drive
8		(GLK	Anchor version with large pan head and TORX drive
9		0	BSK	Anchor version with countersunk head and metric connection thread
10			BS	Anchor version with hexagon drive and metric connection thread
11			М	Anchor version with internal thread and hexagon drive

Concrete Screw BSZ

Product description Anchor types and description Annex A2

Anchor size			BSZ 6		BSZ 8			BSZ 10			BSZ 12			BSZ 14		
Nominal anchorage depth	h _{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Length of the anchor	L≤	[mm]							500)						
Core diameter	dĸ	[mm]	5	,1	7,1		9,1		11,1			13,				
Outside diameter	ds	[mm]	7	,5		10,6		12,6					16,6			
Shaft diameter	dp	[mm]	5	5,7		7,9		9,9		11,7			13,7			

Marking

e.g.: ◇ BSZ 10 100 or TSM 10 100

Trade name (optional with manufacturer identification \diamondsuit)

Anchor size

100 Length of anchor

A4 additional marking of stainless steel

HCR additional marking of high corrosion resistant steel

Table A3: Materials

Version	Steel, zinc plated BSZ	Stainless steel BSZ A4	High corrosion resistant steel BSZ HCR						
Material	Steel EN 10263-4:2017 galvanized acc. to EN ISO 4042:2018 or zinc flake coating acc. to EN ISO 10683:2018 (≥ 5µm)	1.4401, 1.4404, 1.4571, 1.4578	1.4529						
Nominal characteristic steel yield strength fyk		560 N/mm ²							
Nominal characteristic steel ultimate strength fuk		700 N/mm ²							
Elongation at fracture A_s		≤ 8%							

Concrete Screw BSZ

Product description Dimensions, marking and materials Annex A3

Dimensions, marking and n

Spec	ifications of Intended use													
Conce	rete screw BSZ	BS	Z 6	BSZ 8			В	SZ 1	0	В	SZ 1	12	В	SZ 14
Nomir	nal anchorage depth hnom [mm]	40	55	45	55	65	55	75	85	65	85	100	75	100 115
~	Static or quasi-static loading							v	(
Anchorages subject to	Fire exposure							v	/					
uncho subje	Seismic action C1	¥	/	-		~	✓	-	~		-	<	-	. 🗸
4	Seismic action C2 (concrete screw BSZ, zinc plated)		•	-	•	~	-	-	~		-	~	-	. 🗸
erial	Cracked or uncracked concrete	\checkmark												
Base material	Reinforced or unreinforced concrete (without fibres) acc. to EN 206:2013							v	/					
Base	Strength classes according to EN 206:2013: C20/25 to C50/60							v	/					

Use conditions (Environmental conditions):

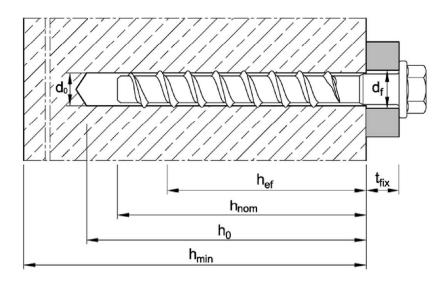
- Structures subject to dry internal conditions
- (zinc plated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel) Note: Particular aggressive conditions are e.g. permanent, alternation immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055.

Installation:

- Making of drill hole by hammer drilling (all sizes) or vacuum drill bit (BSZ 8 BSZ 14).
 When using a vacuum drill bit no drill hole cleaning is required.
- Anchor installation carried out by appropriately qualified personal and under the responsibility of the person responsible for technical matters on site.
- After installation further turning of the anchor is not possible. The head of the anchor is supported on the fixture and is not damaged.
- The borehole may be filled with the Injection Systems VME or VME plus.
- Adjustment according to Annex B4: for concrete bolts BSZ 8 to BSZ 14, all anchorage depths


Concrete Screw BSZ

Intended use Specifications Annex B1

Deutsches Institut) für Bautechnik

Table B1: Installation	param	eters															
Anchor size			BS	BSZ 6		BSZ 8			BSZ 10			BSZ 12			BSZ 14		
Nominal embedment depth	h _{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115	
Nominal drill bit diameter	d₀	[mm]	(6	8				10			12					
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,	40	8,45 10,45		12,50			14,50)					
Effective anchorage depth	h _{ef}	[mm]	31	44	35	43	52	43	60	68	50	67	80	58	79	92	
Depth of drill hole	h₀≥	[mm]	45	60	55	65	75	65	85	95	75	95	110	85	110	125	
Diameter of clearance hole in the fixture	d _f ≤	[mm]	8		12		14			16			18				
Max. installation torque for screws with metric connection thread	T _{inst} ≤	[Nm]	10			20			40		60			80			
Tangential impact screw driver 1)	T _{imp,max}	[Nm]	16	60		300		400			650			650			

¹⁾ Installation with tangential impact screw driver, with maximum power output T_{imp,max} acc. to manufacturer's instructions is possible

Table B2: Minimum thickness of member, minimum edge distance and minimum spacing

Anchor size			BSZ 6		BSZ 8		BSZ 10			В	SZ 1	2	BSZ 14				
Nominal embedment depth	h _{nom}	[mm]	40 55		45	55	65	55	75	85	65	85	100	75	100	115	
Minimum thickness of member	\mathbf{h}_{min}	[mm]	8	80		80		80	90	102	80	101	120	87	119	138	
Minimum spacing	Smin	[mm]	4	40		40 50		50		50 50		50 70		70	50	7	0
Minimum edge distance	Cmin	[mm]	4	40		5	0	50		50		50		50	7	0	

Concrete Screw BSZ

Intended use

Installation parameters / Minimum thickness of concrete member, minimum spacing and edge distance

Annex B2

Installation instructions	
Drill hole preparation and cleaning	
Drill hole perpendicular to concrete sur Using a suction drill, continue with step	face. 3.
2 Blow out dust or alternatively vacuum of the hole.	clean down to the bottom of
Installation concrete screw	
3 Screw in, e.g. with tangential impact sc	rew driver or torque wrench.
4 After installation, the head of the anchor and must be undamaged.	or is supported on the fixture
Concrete Screw BSZ	
Intended use Installation instructions	Annex B3

Inst	allation instructions - fil	ling of annular gap	
Dri	Il hole preparation and clean	ing	
1		Drill hole perpendicular to concrete surface. Using a suction drill, continue with step 3.	
2		Blow out dust or alternatively vacuum clean down to the bo	ttom of the hole.
Ins	tallation concrete screw with	filling washer	
3		Fit the filling washer to the concrete screw. The thickness of the filling washer must be taken into accou	unt with t _{fix} .
4	T _{inst}	Screw in, e.g. with tangential impact screw driver or torque	wrench.
5		Fill the annular gap between concrete screw and fixture wit (compressive strength ≥ 40 N/mm², e.g. Injection mortar VN VMU plus). Use enclosed reducing adapter. Observe information on pro- mortar! The annular gap is completely filled, when excess mortar se	IH, VMZ or
For	seismic loading, the applicatio	n <u>with</u> and <u>without</u> filling of annular gap is permitted (Annex (C3-C4).
Filli		pter for filling the annular gap between concrete screw and fi ess of filling washer hm	xture
Со	ncrete Screw BSZ		
	ended use allation instructions with filling (of annular gap	Annex B4

nst	allation instructions - A	djustment	
Dri	Il hole preparation and clean	ing: Annex B3, Picture 1 and 2 / Installation: Annex B3, F	Picture 3 and 4
1. /	Adjustment		
5	max. 10mm	Screw may be untightened maximum 10mm.	
6	Tinst	After adjustment, screw in the concrete screw with tangenti driver or torque wrench.	al impact screw
7		After installation, the head of the anchor is supported on the undamaged.	e fixture must be
2. <i>I</i>	Adjustment		
8	max. 10mm	Screw may be untightened maximum 10mm.	
9	max. 10mm Tinst	After adjustment, screw in the concrete screw with tangenti driver or torque wrench.	al impact screw
10	≥ hnom	After installation, the head of the anchor is supported on the be undamaged.	e fixture and must
_	the fastener may be adjusted case. The relining carried out	xings with concrete screws size BSZ 8 - BSZ 14, all anchorage I max. 2x. The fastener must not be screwed back by more the t during adjustment must not exceed 10 mm in total.	
Со	ncrete Screw BSZ		
	allation instructions - Adjustme	nt	Annex B5

Deutsches Institut für Bautechnik

Table C1: Charac					-						•	_	074	•		074	
Anchor size					Z 6		BSZ 8	-		SZ 1			SZ 1			SZ 14	
Nominal embedment	depth	h_{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Installation factor		γinst	[-]							1,	0						
Tension load																	
Steel failure																	
Characteristic resista	nce	N _{Rk,s}	[kN]	1	4		27			45			67			94	
Partial factor		γMs,N	[-]							1,	5						
Pull-out													-				
Characteristic	cracked	N _{Rk,p}	[kN]	2,0	4,0	5,0	9,0	12	9,0	≥ N ⁰ r	Rk,c ¹⁾	12		1)		N10	1)
resistance in	uncracked	N _{Rk,p}	[kN]	4,0	9,0	7,5	12	16	12	20	26	16	≥ N ⁰	Rk,c' [/]	2	N ⁰ Rk,c	')
Increasing factor for I	Nrk,p	Ψc	[-]							$\left(\frac{f_{ck}}{20}\right)$.)0,5						
Concrete cone failu	re																
Effective anchorage	depth	h _{ef}	[mm]	31	44	35	43	52	43	60	68	50	67	80	58	79	92
Spacing		S cr,N								3 ł	-						
Edge distance		Ccr,N	[mm]							1,5							
Factor k ₁ —	cracked	k _{cr,N}	[-]							7,							
	uncracked	[-]							11	,0							
Splitting		N 10								FN 10							
Characteristic resista	ince	$N^{0}_{Rk,sp}$	[kN]		100					[N ⁰ RI		_					
Spacing			[mm]	120		120				180						240	
Edge distance		Ccr,sp	[mm]	60	80	60	70	75	70	90	105	75	105	120	90	120	140
Shear load																	
Steel failure without								1									
Characteristic resista	nce	V^0 Rk,s	[kN]	7	,0	13	8,5	17,0	22,5	34	,0	33,5	42	2,0		56,0	
Partial factor		γMs,V	[-]							1,2	25						
Ductility factor		k 7	[-]							0,	8						
Steel failure with leve	ver arm			_		_			_						_		
Characteristic bendin resistance	Ig	M ⁰ Rk.s	[Nm]	10),9		26			56			113			185	
Concrete pry-out fa	ilure																
Pry-out factor		k ₈	[-]	1	,0		1,0		1,0	2,	0	1,0	2,	0	1,0	2,0)
Concrete edge failu	re																
Effective length of an	chor	$I_{\rm f} = h_{\rm ef}$	[mm]	31	44	35	43	52	43	60	68	50	67	80	58	79	92
Outside diameter of a	[mm]	6	5		8	•		10			12	•		14			
Nº _{Rk,c} according to EN 1992-4:2018																	
Concrete Screw	Concrete Screw BSZ																
Performance Characteristic values	erformance haracteristic values for static or quasi-static loads																

Anchor size		BSZ 6		BSZ 8	BSZ	Z 10	BSZ 12	BSZ 14		
Nominal embedment depth	[mm]	40	55	65	55	85	100	115		
Installation factor	γinst	[-]				1	,0			
Tension load										
Steel failure										
Characteristic resistance	N _{Rk,s,eq}	[kN]	1	4	27	4	5	67	94	
Partial factor	γMs	[-]				1	,5			
Pull-out										
Characteristic resistance	N _{Rk,p,eq}	[kN]	2,0	4,0	12	9,0		≥ N ⁰ _{Rk,c (C20/25)} 1)		
Concrete cone failure										
Effective anchorage depth	h _{ef}	[mm]	31	44	52	43	68	80	92	
Spacing	[mm]	3h _{ef}								
Edge distance	[mm]				1,5	h _{ef}				
Shear load										
Steel failure <u>without</u> lever a	rm									
Characteristic resistance V _{Rk,s,eq}			4,7	5,5	8,5	13,5	15,3	21,0	22,4	
Partial factor	γMs	[-]	1,25							
Concrete pry-out failure										
Pry-out factor	[-]	1,0 2,0								
Concrete edge failure						_				
Effective length of anchor	$I_{f} = h_{ef}$	[mm]	31	44	52	43	68	80	92	
Outside diameter of anchor	d_{nom}	[mm]	(6	8	1	0	12	14	
Factor forfilling of annula	<u>with</u> ar gap α _{gap}	[-]				1	1,0			
annular gap <u>w</u> filling of annula	i <u>thout</u> ar gap ^{α_{gap}}	[-]	0,5							

Concrete Screw BSZ

Performance

Characteristic resistance for seismic loading, performance category C1

Table C3: Characteristic resistance for seismic loading, performance category C2, with filling of annular gap, concrete screw BSZ zinc plated Anchor size BSZ 8 **BSZ 10 BSZ 12 BSZ 14** Nominal embedment depth [mm] 65 85 100 115 hnom Installation factor [-] 1.0 γinst **Tension** load Steel failure Characteristic resistance [kN] 27 45 67 94 N_{Rk,s.eq} Partial factor 1,5 [-] γMs Pull-out Characteristic resistance N_{Rk,p,eq} [kN] 2,4 5,4 7,1 10,5 Concrete cone failure Effective anchorage depth h_{ef} [mm] 52 68 80 92 3h_{ef} Spacing [mm] Scr,N Edge distance [mm] 1,5h_{ef} Ccr,N Shear load Steel failure without lever arm V_{Rk,s.eq} Characteristic resistance [kN] 9,9 18,5 31,6 40,7 Partial factor 1,25 [-] γMs Concrete pry-out failure Pry-out factor k₈ [-] 1,0 2,0 Concrete edge failure Effective length of anchor $I_f = h_{ef}$ [mm] 52 68 80 92 Outside diameter of anchor dnom [mm] 8 10 12 14 Factor for annular gap 1,0 [-] $lpha_{ ext{gap}}$ with filling of annular gap

Concrete Screw BSZ

Performance

Characteristic resistance for **seismic loading**, performance category **C2** <u>with</u> filling of annular gap

Ancho	r size			BSZ 8	BSZ 10	BSZ 12	BSZ 14			
Nomina	al embedment depth	h _{nom}	[mm]	65	85	100	115			
Installa	tion factor	γinst	[-]		1	,0				
Tensio	on loads									
	Steel failure									
Б ^т	Characteristic resistance	N _{Rk,s.eq}	[kN]	27	45	67	94			
Hexagon head	Partial factor	γMs	[-]	1,5						
Че	Pull-out									
	Characteristic resistance	N _{Rk,p,eq}	[kN]	2,4	5,4	7,1	10,5			
×	Steel failure									
sun d	Characteristic resistance	N _{Rk,s.eq}	[kN]	27	45	No performar	nce assessed			
nter nea	Partial factor	γMs	[-]	1	,5	No performar	No performance assessed			
Countersunk head	Pull-out									
	Characteristic resistance	$N_{Rk,p,eq}$	[kN]	2,4	5,4	No performa	nce assessed			
	ete cone failure				1	1				
	ve anchorage depth	h _{ef}	[mm]	52	68	80	92			
Spacin		S _{cr,N}	[mm]			h _{ef}				
Shear	listance	Ccr,N	[mm]		1,5	5 h _{ef}				
	ailure <u>without</u> lever arm									
Sleerin	andre <u>without</u> lever ann									
Hexagon head	Characteristic resistance	$V_{Rk,s.eq}$	[kN]	10,3	21,9	24,4	23,3			
Т	Partial factor	γMs	[-]		1,	,25				
Counter- sunk head	Characteristic resistance	$V_{Rk,s.eq}$	[kN]	3,6	13,7	No performa	nce assessed			
Cou st he	Partial factor	γMs	[-]	1,	1,25 No performance asses					
Concre	ete pry-out failure									
Pry-out	t factor	k ₈	[-]	1,0		2,0				
Concre	ete edge failure									
	e length of anchor	$I_{f} = h_{ef}$	[mm]	52	68	80	92			
	e diameter of anchor	d _{nom}	[mm]	8	10	12	14			
	for annular gap I <u>t</u> filling of annular gap	$lpha_{ ext{gap}}$	[-]	0,5						

Concrete Screw BSZ

Performance

Characteristic resistance for **seismic loading**, performance category **C2** <u>without</u> filling of annular gap

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Anchor size	BS	BSZ 6 BSZ 8		BSZ 10			BSZ 12			BSZ 14								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Nominal anchora	40	55	45	55	65	55	75	85	65	85	100	75	100	115				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Steel failure (ten	sion and	shear res	istance)														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		R30	_		0	,9		2,4			4,4			7,3			10,3		
ResistanceR90 R120VRks,fi0.61,12,34,25,9R1200,40,71,73,44,8Steel failure with lever armCharacteristic bending resistanceR60 R90 R120M° _{Bk,s,fi} M° _{Bk,s,fi} 0,72,45,912,320,40,61,84,59,715,90,51,23,07,011,60,30,92,35,79,4Edge distancecor,fi[mm]2 hefIn case of fire attack from more than one side, the minimum edge distance shall be ≥ 300 mmSpacingsor,fi[mm]4 hefThe characteristic resistance for pull-out, concrete cone failure, concrete pry-out and concrete edge failure shale be calculated according to EN 1992-4:2018.	Characteristic	R60	N _{Rk,s,fi}	[LN]]	0	,8		1,7			3,3			5,8			8,2		
Steel failure with lever armCharacteristic bending resistanceR30 R90 R120 $0,7$ $2,4$ $5,9$ $12,3$ $20,4$ 0,61,84,59,715,90,61,84,59,715,90,51,23,07,011,60,30,92,35,79,4Edge distance $c_{cr,fi}$ [mm] $2 h_{ef}$ In case of fire attack from more than one side, the minimum edge distance shall be \geq 300 mmSpacing $s_{cr,fi}$ [mm] $4 h_{ef}$ The characteristic resistance for pull-out, concrete cone failure, concrete pry-out and concrete edge failure shallbe calculated according to EN 1992-4:2018.	resistance	R90	− = V _{Rk,s,fi}	נגואן	0	,6		1,1			2,3			4,2		5,9			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		R120	_		0	,4	0,7			1,7			3,4		4,8				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Steel failure <u>with</u>	lever arm	1																
bending resistance $\frac{1}{R90}$ $M^{0}_{Rk,s,fi}$ $[Nm]$ $0,5$ $1,2$ $3,0$ $7,0$ $11,6$ 0,3 $0,9$ $2,3$ $5,7$ $9,4Edge distance c_{cr,fi} [mm] 2 h_{ef}In case of fire attack from more than one side, the minimum edge distance shall be \ge 300 \text{ mm}Spacing s_{cr,fi} [mm] 4 h_{ef}The characteristic resistance for pull-out, concrete cone failure, concrete pry-out and concrete edge failure shall be calculated according to EN 1992-4:2018.$	bending	R30	- - M ⁰ Rk,s,fi	[Nm]	0	,7		2,4			5,9			12,3			20,4		
resistance $R90$ $R120$ $0,5$ $1,2$ $3,0$ $7,0$ $11,6$ Edge distance $c_{cr,fi}$ $[mm]$ $0,3$ $0,9$ $2,3$ $5,7$ $9,4$ Edge distance $c_{cr,fi}$ $[mm]$ $2 h_{ef}$ $2 h_{ef}$ In case of fire attack from more than one side, the minimum edge distance shall be $\geq 300 mm$ Spacing $s_{cr,fi}$ $[mm]$ $4 h_{ef}$ The characteristic resistance for pull-out, concrete cone failure, concrete pry-out and concrete edge failure shall be calculated according to EN 1992-4:2018.		R60			0,6		1,8			4,5			9,7			15,9			
Edge distance $c_{cr,fi}$ $[mm]$ $2 h_{ef}$ In case of fire attack from more than one side, the minimum edge distance shall be $\geq 300 mm$ Spacing $s_{cr,fi}$ $[mm]$ $4 h_{ef}$ The characteristic resistance for pull-out, concrete cone failure, concrete pry-out and concrete edge failure shall be calculated according to EN 1992-4:2018.		R90			0,5		1,2		3,0		7,0		11,6						
In case of fire attack from more than one side, the minimum edge distance shall be \geq 300 mm Spacing $s_{cr,fi}$ [mm] $4 h_{ef}$ The characteristic resistance for pull-out, concrete cone failure, concrete pry-out and concrete edge failure shall be calculated according to EN 1992-4:2018.		R120			0	,3	0,9		2,3			5,7		9,4					
Spacing scr,fi [mm] 4 hef The characteristic resistance for pull-out, concrete cone failure, concrete pry-out and concrete edge failure sha be calculated according to EN 1992-4:2018. End of the state of th	Edge distance	2 h _{ef}																	
The characteristic resistance for pull-out, concrete cone failure, concrete pry-out and concrete edge failure sha be calculated according to EN 1992-4:2018.	In case of fire atta	ack from m	ore than c	one side	, the	minir	num	edge	dista	ance	shall	be ≥	300	mm					
be calculated according to EN 1992-4:2018.	Spacing		Scr,fi	[mm]							4	h _{ef}							
The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given values	The characteristic resistance for pull-out, concrete cone failure, concrete pry-out and concrete edge failure shall be calculated according to EN 1992-4:2018.																		

Concrete Screw BSZ

Performance

Characteristic values of resistance under fire exposure

Table	e C6: Displ	ace	ment	s uno	der s	tatic	or q	uasi-	stati	c loa	lds						
Anch	or size	BSZ 6		BSZ 8		BSZ 10			BSZ 12			BSZ 14					
Nomii embe	nal dment depth	h _{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Tension load																	
τθ	Tension load	Ν	[kN]	0,95	1,9	2,4	4,3	5,7	4,3	7,9	9,6	5,7	9,4	12,3	7,6	12,0	15,1
cracked	Displacement -	δησ	[mm]	0,3	0,6	0,6	0,7	0,8	0,6	0,5	0,9	0,9	0,5	1,0	0,5	0,8	0,7
0 8		δ _{N∞}	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	1,0	1,2	1,2	0,9	1,2	1,0
e ed	Tension load	Ν	[kN]	1,9	4,3	3,6	5,7	7,6	5,7	9,5	11,9	7,6	13,2	17,2	10,6	16,9	21,2
uncracked concrete	Displacement -	δησ	[mm]	0,4	0,6	0,7	0,9	0,5	0,7	1,1	1,0	1,0	1,1	1,2	0,9	1,2	0,8
un ö		δn∞	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	1,0	1,2	1,2	0,9	1,2	1,0
Shea	r load																
	Shear load	۷	[kN]	3,	3,3 8,6				16,2			20,0			30,5		
	Displacement		[mm]	1,	55		2,7			2,7			4,0			3,1	
		δν∞	[mm]	3,	,1		4,1			4,3			6,0			4,7	

Concrete Screw BSZ

Performance

Displacements under static or quasi-static loads

Table C7: Displacements under seismic loading, performance category C2 with filling of annular gap, concrete screw BSZ zinc plated

Anchor size			BSZ 8	BSZ 10	BSZ 12	BSZ 14
Nominal embedment depth	h _{nom}	[mm]	65	85	100	115
Tension load						
Displacement DLS	$\delta_{\text{N,eq}(\text{DLS})}$	[mm]	0,66	0,32	0,57	1,16
Displacement ULS	$\delta_{\text{N,eq}(\text{ULS})}$	[mm]	1,74	1,36	2,36	4,39
Shear load						
Displacement DLS	$\delta \text{V,eq(DLS)}$	[mm]	1,68	2,91	1,88	2,42
Displacement ULS	$\delta v, eq(ULS)$	[mm]	5,19	6,72	5,37	9,27

Table C8: Displacements under seismic loading, performance category C2 without filling of annular gap, concrete screw BSZ zinc plated

Anchor size		BSZ 8	BSZ 10	BSZ 12	BSZ 14							
Nominal embedment depth	h _{nom}	[mm]	65	85	100	115						
Tension load												
Type with hexagon head												
Displacement DLS	$\delta_{\text{N},\text{eq}(\text{DLS})}$	[mm]	0,66	0,32	0,57	1,16						
Displacement ULS	$\delta_{\text{N,eq}(\text{ULS})}$	[mm]	1,74	1,36	2,26	4,39						
Type with countersunk head												
Displacement DLS	placement DLS δ _{N,eq(DLS)} [mm]				No performance assessed							
Displacement ULS	$\delta_{\text{N},\text{eq}(\text{ULS})}$	[mm]	1,74	1,36	No performance assessed							
Shear load												
Type with hexagon head, with cle	arance hole in	the fixtu	ire		1							
Displacement DLS	$\delta_{\text{V,eq}(\text{DLS})}$	[mm]	4,21	4,71	4,42	5,60						
Displacement ULS	$\delta_{V,eq(\text{ULS})}$	[mm]	7,13	8,83	6,95	12,63						
Type with countersunk head, with clearance hole in the fixture												
Displacement DLS	$\delta_{V,eq(\text{DLS})}$	[mm]	2,51	2,98	No performar	No performance assessed						
Displacement ULS	$\delta_{V,eq(ULS)}$	[mm]	7,76	6,25	No performance assessed							

Concrete Screw BSZ	
Performance	Annex C7

Displacements under seismic loading, performance category C2