

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-16/0276 vom 4. November 2020

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

SPIT TAPCON 6 SPIT TAPCON XTREM 8, 10, 12, 14 mm

Mechanische Dübel zur Verwendung im Beton

SPIT Route de Lyon 26500 BOURG-LÉS-VALENCE FRANKREICH

Plant 1

22 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330232-00-0601, Edition 10/2016

ETA-16/0276 vom 23. September 2016

Europäische Technische Bewertung ETA-16/0276

Seite 2 von 22 | 4. November 2020

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-16/0276

Seite 3 von 22 | 4. November 2020

Besonderer Teil

1 Technische Beschreibung des Produkts

Die Betonschraube SPIT TAPCON bzw. SPIT TAPCON XTREM ist ein Dübel in den Größen 6, 8, 10, 12 und 14 mm aus galvanisch verzinktem Stahl, aus nichtrostendem oder hochkorrosionsbeständigem Stahl. Der Dübel wird in ein vorgebohrtes, zylindrisches Bohrloch eingeschraubt. Das Spezialgewinde des Dübels schneidet beim Einschrauben ein Innengewinde in den Verankerungsgrund. Die Verankerung erfolgt durch Formschluss des Spezialgewindes.

Die Produktbeschreibung ist in Anhang A dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang B 4, Anhang C 1 und C 2
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi- statische Einwirkungen)	Siehe Anhang C 1 und C 2
Verschiebungen und Dauerhaftigkeit	Siehe Anhang C 7 und Anhang B 1
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorien C1 und C2	Siehe Anhang C 3, C 4, C 5 und C 8

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Siehe Anhang C 6

Europäische Technische Bewertung ETA-16/0276

Seite 4 von 22 | 4. November 2020

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

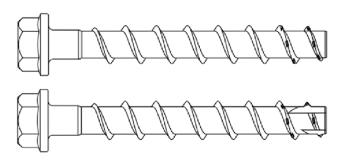
Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330232-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

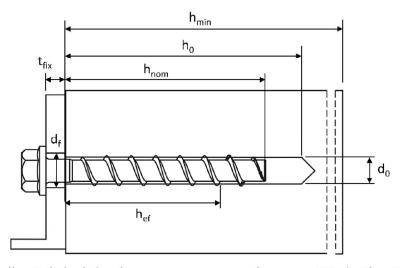
Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 4. November 2020 vom Deutschen Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt


Produkt und Einbauzustand

SPIT TAPCON XTREM


- Kohlenstoffstahl galvanisch verzinkt

- Edelstahl A4
- korrosionsbeständiger Stahl HCR

z.B. SPIT TAPCON XTREM Betonschraube, Ausführung mit Sechskantkopf und Anbauteil

d₀ = Nomineller Bohrlochdurchmesser

t_{fix} = Dicke des Anbauteils

d_f = Durchgangsloch im anzuschließenden

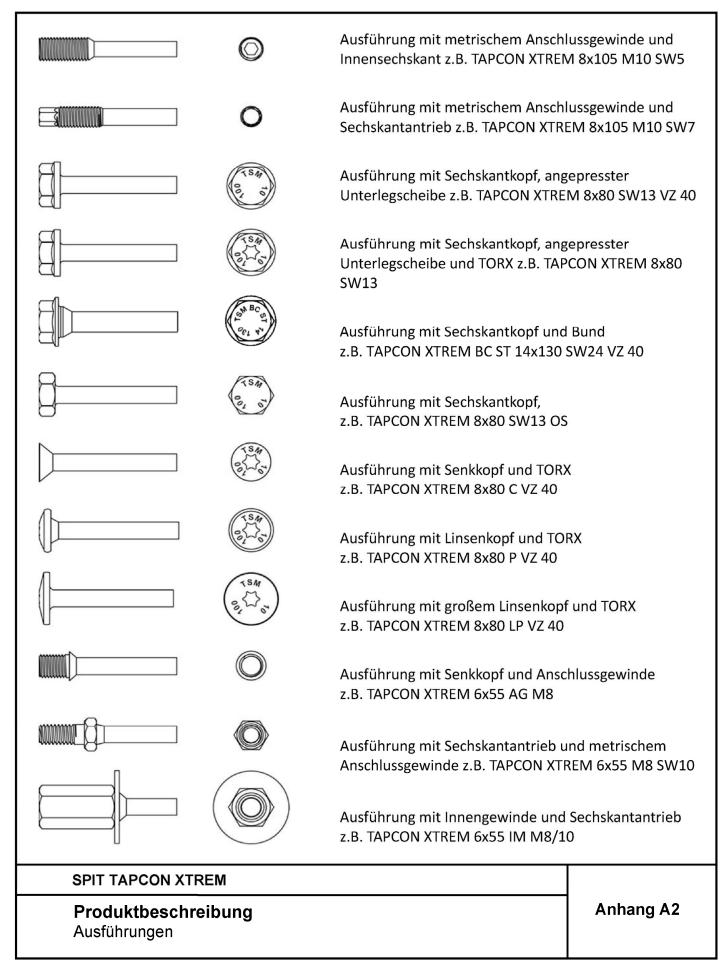
Anbauteil

= Mindestbauteildicke h_{min}

= Nominelle Einschraubtiefe h_{nom}

 h_0 = Bohrlochtiefe

= Effektive Verankerungstiefe h_{ef}


SPIT TAPCON XTREM

Produktbeschreibung

Produkt und Einbauzustand

Anhang A1

Tabelle 1: Werkstoffe

Teil	Bezeichnung	Werkstoff
A II a	TAPCON XTREM	Stahl EN 10263-4:2017 galvanisch verzinkt nach EN ISO 4042:2018
Alle Ausführungen	TAPCON XTREM A4	1.4401; 1.4404; 1.4571; 1.4578
, tastam angen	TAPCON XTREM HCR	1.4529

		nominelle ch	Drughdohnung		
Teil	Bezeichnung	Streckgrenze f _{yk} [N/mm²]	Zugfestigkeit f _{uk} [N/mm²]	Bruchdehnung A₅ [%]	
TAPCON XTREM Alle Ausführungen TAPCON XTREM A4					
		560	700	≤ 8	
, tastarii arigeri	TAPCON XTREM HCR				

Tabelle 2: Abmessungen

Schraubengröße			6 8 10 12						14							
Nominelle		h _{nom}	1	2	1	2	3	1	2	3	1	2	3	1	2	3
Einschraubtiefe		[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Schraubenlänge	≤L	[mm]		500												
Kerndurchmesser	dĸ	[mm]	5,	5,1 7,1 9,1 11,1 13,1												
Gewindeaußen- durchmesser	d _s	[mm]	7,	,5		10,6			12,6 14,6				16,6			

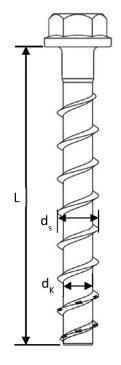
Prägung: TAPCON XTREM

Schraubentyp: TSM Schraubendurchmesser: 10 Schraubenlänge: 100

TAPCON XTREM BC ST

Schraubentyp: TSM BC ST Schraubendurchmesser: 14 Schraubenlänge: 130

TAPCON XTREM A4


Schraubentyp: TSM
Schraubendurchmesser: 10
Schraubenlänge: 100
Werkstoff: A4

TAPCON XTREM HCR

Schraubentyp: TSM
Schraubendurchmesser: 10
Schraubenlänge: 100
Werkstoff: HCR

SPIT TAPCON XTREM

Produktbeschreibung

Werkstoffe, Abmessungen und Prägungen

Anhang A3

Spezifizierung des Verwendungszwecks

Tabelle 3: Beanspruchung der Verankerung

Schraubengröße		(5	8		10		12		14					
		h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominelle Einschraubtiefe	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Statische und quasi-statische	Lasten	n Alle Größen und alle Einschraubtiefen													
Brandbeanspruchung					А	ne Gro	oisen u	ind all	ie Eins	cnrau	buere	en			
C1 – Seismische Beanspruch	ung	ok	ok				ok								
C2 – Seismische Beanspruch (A4 und HCR: keine Leistung bewertet)	ung	x		,	(ok	х	x	ok	,	(ok	,	(ok

Verankerungsgrund:

- Verdichteter bewehrter und unbewehrter Normalbeton ohne Fasern gemäß EN 206:2013
- Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013
- gerissener und ungerissener Beton

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume: Alle Schraubentypen
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen: Schrauben aus Edelstahl mit der Prägung A4
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen: Schrauben aus korrosionsbeständigem Stahl mit der Prägung HCR

Anmerkung: Besonders aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas- Entschwefelungsanlage oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

SPIT TAPCON XTREM

Verwendungszweck

Spezifikation

Anhang B1

Spezifizierung des Verwendungszwecks - Fortsetzung

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern, usw.) anzugeben.
- Die Bemessung der Verankerung erfolgt gemäß EN 1992-4:2018 und EOTA Technical Report TR 055.

Die Bemessung von Verankerungen unter Querlast in Übereinstimmung mit EN 1992-4:2018, Abschnitt 6.2.2. gilt für alle in Anhang B3, Tabelle 4 angegebenen Durchgangslochdurchmesser d_f im Anbauteil.

Einbau:

- in hammergebohrte oder hohlgebohrte (sauggebohrte) Löcher;
 Hohlbohrer (Saugbohrer) nur für die Größen 8-14
- der Verankerung durch entsprechend geschultes Personal und unter der Aufsicht des Bauleiters.
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder geringerem Abstand, wenn die Fehlbohrung mit hochfesten Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt.
- Nach der Montage ist ein leichtes Weiterdrehen des Dübels nicht möglich. Der Dübelkopf muss am Anbauteil anliegen und darf nicht beschädigt sein.
- Das Bohrloch darf mit Injektionsmörtel EPCON C8 XTREM oder VIPER XTREM verfüllt werden
- Adjustierung nach Anhang B6: für Größen 8-14, alle Verankerungstiefen
- Bohrlochreinigung ist nicht notwendig, wenn ein Hohlbohrer (Saugbohrer) verwendet wird.

SPIT TAPCON XTREM

Verwendungszweck

Spezifikation - Fortsetzung

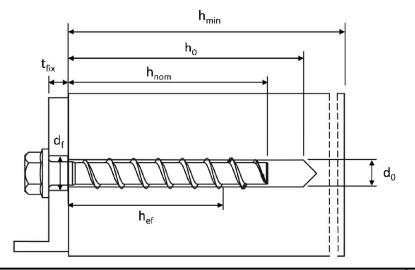

Anhang B2

Tabelle	e 4: N	lontage	parameter
---------	--------	---------	-----------

TAPCON XTREM Betonschraubengröße			(6		8			10		
Nominelle Einschraubtiefe		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominelle Linschlaubtiele		[mm]	40	55	45	55	65	55	75	85	
Nomineller Bohrlochdurchmesser	do	[mm]	(õ		8			10		
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]	6,40		8,45			10,45			
Bohrlochtiefe	h ₀ ≥	[mm]	45	60	55	65	75	65	85	95	
Durchgangsloch im anzuschließenden Anbauteil	d _f ≤	[mm]	8		12			14			
Installationsmoment für Version Anschlussgewinde	T _{inst}	[Nm]	10			20			40		
Tanantialaskia sakusukan		[Mm]	Max	. Nenno	drehmoment gemäß der Herstellerangab				gabe		
Tangentialschlagschrauber		[Nm]	16	50	300			400			

TAPCON XTREM Betonschrau	röße		12		14				
Nominelle Einschraubtiefe		h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nonlinene Emschraubtiele		[mm]	65	85	100	75	100	115	
Nomineller Bohrlochdurchmesser	d ₀	[mm]		12			14		
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]		12,50		14,50			
Bohrlochtiefe	h ₀ ≥	[mm]	75	95	110	85	110	125	
Durchgangsloch im anzuschließenden Anbauteil	d _f ≤	[mm]		16		18			
Installationsmoment für Version Anschlussgewinde	T _{inst}	[Nm]] 60 80						
Tangantialschlagschrauber		[Mm]	Max. N	Nenndre	nmoment ge	emäß der Herstellerangabe			
Tangentialschlagschrauber		[Nm]		650		650			

SPIT TAPCON XTREM

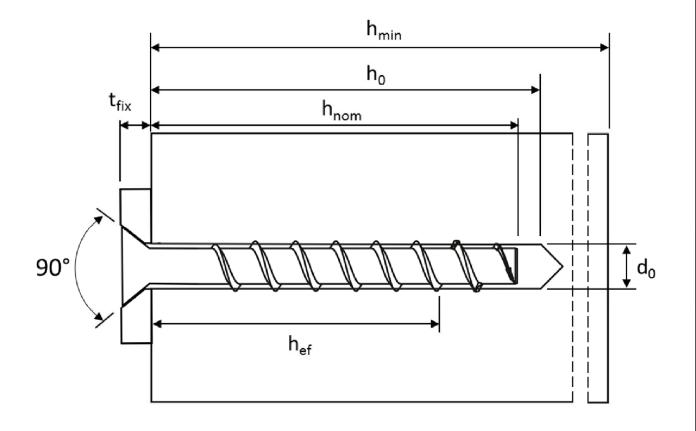
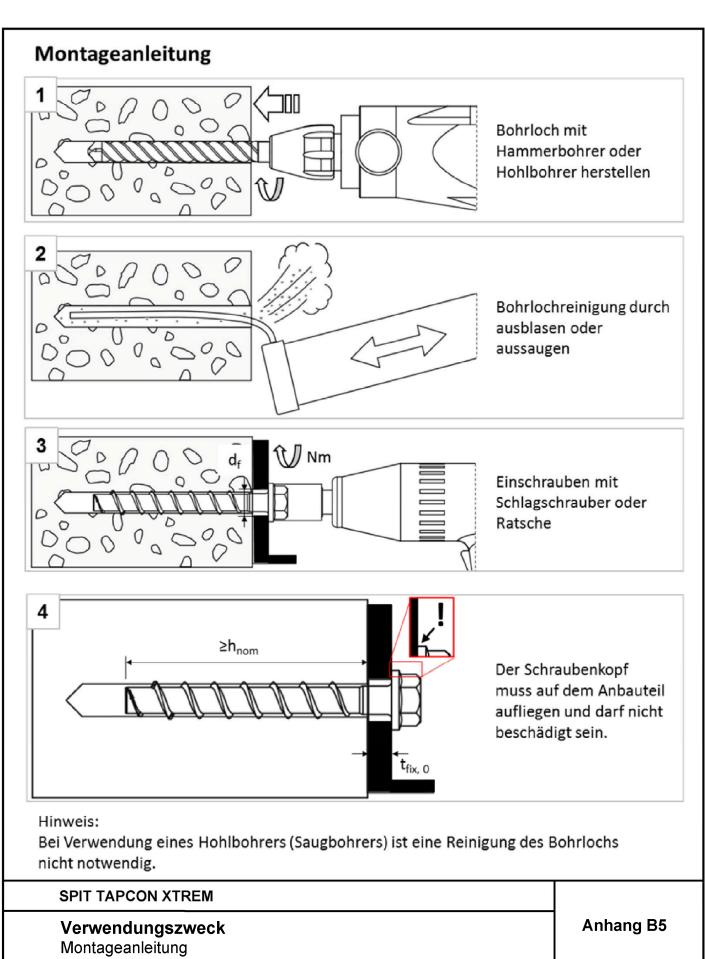

Verwendungszweck Montageparameter **Anhang B3**

Tabelle 5: Minimale Bauteildicke, i	minimale A	Achs- und	Randabstände
-------------------------------------	------------	-----------	--------------

TAPCON XTREM Betonschraubengröße			(5		8		10			
Naminalla Einschrauhtiafa		h_{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominelle Ellischraubtiele	Nominelle Einschraubtiefe		40	55	45	55	65	55	75	85	
Mindestbauteildicke	h _{min}	[mm]			80				90	102	
Minimaler Randabstand	C _{min}	[mm]	4	0	40	5	0		50		
Minimaler Achsabstand	Smin	[mm]	4	0	40	5	0		50		

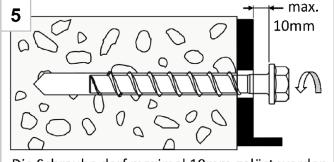
TAPCON XTREM Betonschraubengröße				12		14			
Nominelle Einschraubtiefe		h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominelle Linschlaubtiele		[mm]	65	85	100	75	100	115	
Mindestbauteildicke	h _{min}	[mm]	80	101	120	87	119	138	
Minimaler Randabstand	C _{min}	[mm]	50		70	50	70		
Minimaler Achsabstand	Smin	[mm]] 50 70 50 70			70			

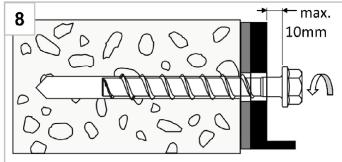


SPIT TAPCON XTREM

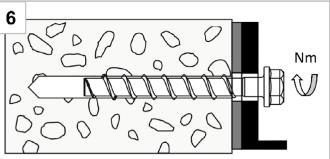
Verwendungszweck
Minimaler Bauteildicke, minimale Achs- und Randabstände

Anhang B4

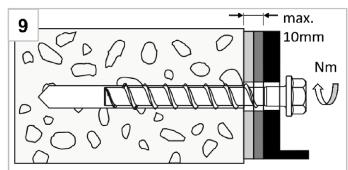


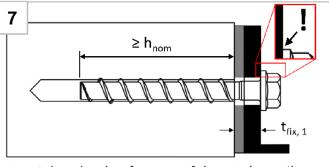

Montageanleitung - Adjustierung

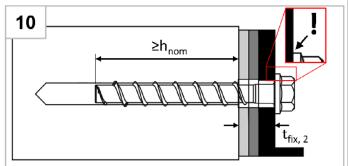
1. Adjustierung



Die Schraube darf maximal 10mm gelöst werden.


2. Adjustierung


Die Schraube darf maximal 10mm gelöst werden.


Nach Adjustierung muss die Schraube mit Schlagschrauber oder Ratsche eingeschraubt werden.

Nach Adjustierung muss die Schraube mit Schlagschrauber oder Ratsche eingeschraubt werden

Der Schraubenkopf muss auf dem Anbauteil aufliegen und darf nicht beschädigt sein.

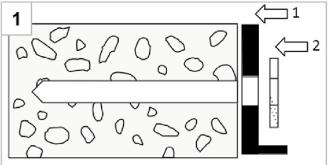
Der Schraubenkopf muss auf dem Anbauteil aufliegen und darf nicht beschädigt sein.

Hinweis:

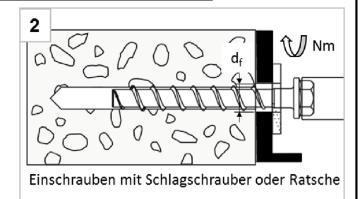
Der Dübel darf maximal zweimal adjustiert werden. Dabei darf der Dübel jeweils maximal um 10mm zurückgeschraubt werden. Die bei der Adjustierung erfolgte Unterfütterung darf insgesamt maximal 10mm betragen. Die erforderliche Setztiefe h_{nom} muss nach der Adjustierung noch eingehalten sein.

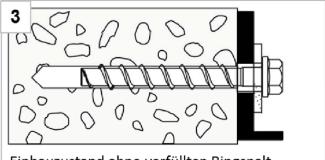
SPIT TAPCON XTREM

Verwendungszweck


Montageanleitung - Adjustierung

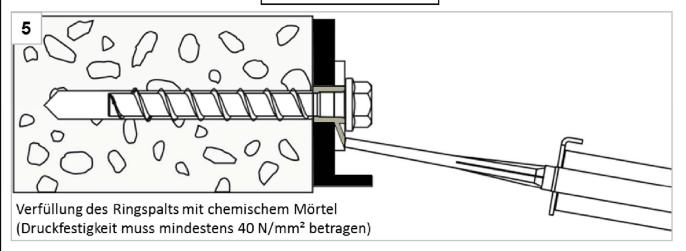
Anhang B6




Montageanleitung – Ringspaltverfüllung

Positionierung der Verfüllscheibe und Anbauteil

Nach Bohrlochherstellung (Anhang B5), zuerst das Anbauteil (1), dann die Verfüllscheibe (2) positionieren



Einbauzustand ohne verfüllten Ringspalt

Ringspaltverfüllung

Hinweis:

Für seismische Auslegung ist die Anwendung mit Ringspaltverfüllung und ohne Ringspaltverfüllung zugelassen. Leistungsunterschiede können dem Anhang C5 - C7 entnommen werden.

SPIT TAPCON XTREM

Verwendungszweck

Montageanleitung - Ringspaltverfüllung

Anhang B7

TAPCON X	TRE	M Betonschi	 rauben	øröße	(6		8			10	
			4420			I .	h 1		h 2	h ,	l .	<u>ا</u>
Nominelle	Eins	chraubtiefe		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom}
				[mm]	40	55	45	55	65	55	75	85
		n für Zug- und	d Querb	eanspi	ruchun	g						
Charakteris Widerstand			N _{Rk,s}	[kN]	14	1,0		27,0			45,0	
Teilsicherhe			γ _{Ms,N}	[-]				1,	,5			
Charakteris Widerstand			V ⁰ _{Rk,s}	[kN]	7	,0	13	3,5	17,0	22,5	1,0	
Teilsicherhe			γ _{Ms,V}	[-]					25			
Faktor für D			k ₇	[-]				0,	,8	,		
Charakteris Biegemome		hes	M ⁰ _{Rk,s}	[Nm]	10),9		26,0			56,0	
Herauszieł	nen											
Char.		gerissen	N _{Rk,p}	[kN]	2,0	9,0	≥ N ⁰	Rk,c ¹⁾				
Widerstand bei Zuglast C20/25		ungerissen	N _{Rk,p}	[kN]	4,0	9,0	7,5	12,0	16,0	12,0	20,0	26,
Erhöhungs-		C25/30							12			
faktoren fü		C30/37	Ψ_{c}	[-]					22			
N _{Rk,p}		C40/50 C50/60	-	L					41 58			
Betonvers	age	n und Spalte	n; Beto	nausbr	uch au	f der la	stabge\		n Seite	(Pryou	t)	
Effektive Ve	eran	kerungstiefe	h _{ef}	[mm]	31	44	35	43	52	43	60	68
k-Faktor	gε	erissen	k _{cr}	[-]				7,	,7			
K-raktui	ur	ngerissen	k _{ucr}	[-]				11	l,0			
Beton-	Ac	chsabstand	S _{cr,N}	[mm]				3 x	h _{ef}			
versagen	+	andabstand	C _{cr,N}	[mm]					x h _{ef}			
	-	/iderstand	$N^0_{Rk,sp}$	[kN]	2,0	4,0	5,0	9,0	12,0	9,0	16,0	19,
Spalten	\vdash	chsabstand	S _{cr,Sp}	[mm]	120	160	120	140	150	140	180	210
		andabstand	C _{cr,Sp}	[mm]	60	80	60	70	75	70	90	10
		utversagen	k ₈	[-]			1,	,0			2,	,0
Montagebe	iwe	rt	γ inst	[-]				1	,0			
Betonkant	enb	ruch										
Effektive Lä		in Beton	$I_f = h_{ef}$	[mm]	31	44	35	43	52	43	60	68
Nomineller Schraubend	Nomineller Schraubendurchmesser d _{nom} [mm			[mm]	(6		8			10	
1) N ⁰ _{Rk,c} ents	prec	hend EN 1992-	4:2018									
SPIT	TA	PCON XTREI										
1 -1-		 ngsmerkma								┪ ͺ	nhang	C1

TAPCON XT	REM Betonschrau	bengröß	e		12			14			
	1 1 6		h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom} ;		
Nominelle Ei	nschraubtiefe		[mm]	65	85	100	75	100	115		
Stahlversage	en für Zug- und Q	uerbeans	spruchun	ıg							
	scher Widerstand	N _{Rk,s}	[kN]		67,0			94,0			
Teilsicherheit	tsbeiwert	γMs,N	[-]			1,	,5				
Charakteristi bei Querlast	scher Widerstand	V ⁰ Rk,s	[kN]	33,5	42	2,0	56,0				
Teilsicherheit		γMs,V	[-]			1,:	25				
Faktor für Du		k ₇	[-]			0,	.8				
Charakteristi Biegemomer		M ⁰ _{Rk,s}	[Nm]		113,0			185,0			
Herausziehe	en										
Char.	gerissen	$N_{Rk,p}$	[kN]	12,0							
Widerstand bei Zuglast ir C20/25	ungerissen	N _{Rk,p}	[kN]	16,0			≥ N ⁰ _{Rk,c} 1)				
Erhöhungs-	C25/30					1,:	12				
faktoren für	C30/37	Ψ_{c}	[-]			1,3					
N _{Rk,p}	C40/50	_ c	',			1,4					
	C50/60					1,	58				
Betonversag	gen und Spalten;	Betonaus	bruch au	ıf der las	tabgewa	andten S	eite (Pry	out)			
Effektive Ver	ankerungstiefe	h _{ef}	[mm]	50	67 80 58 79 93						
k-Faktor	gerissen	k _{cr}	[-]			7,					
K T GREOT	ungerissen	k _{ucr}	[-]				.,0				
Beton-	Achsabstand	S _{cr,N}	[mm]			3 x	h _{ef}				
versagen	Randabstand	C _{cr,N}	[mm]			1,5	x h _{ef}				
	Widerstand	N ⁰ Rk,sp	[kN]	12,0	18,5	24,5	15,0	24,0	30,0		
Spalten	Achsabstand	S _{cr,Sp}	[mm]	150	210	240	180	240	280		
	Randabstand	C _{cr,Sp}	[mm]	75	105	120	90	120	140		
Faktor für Pr	youtversagen	k ₈	[-]	1,0	2	,0	1,0	2,	,0		
Montagebeiv	wert	γinst	[-]			1,	,0				
Betonkante	nbruch										
Effektive Län	ge in Beton	$I_f = h_{ef}$	[mm]	50	67	80	58	79	92		
Nomineller Schraubendu	ırchmesser	d_{nom}	[mm]		12			14			
¹⁾ N ⁰ _{Rk,c} entspr	echend EN 1992-4:2	018									
SPIT T	APCON XTREM										
								Anhan			

Tabelle 8: Leistung für seismi	ische L	.eistun	gskate	gorie	C1						
TAPCON XTREM Betonschraube	ngröße	е	(6	8	1	0	12	14		
Nominelle Einschraubtiefe	hr	nom	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom3}	h _{nc}	om3		
Nominelle Emschlaubtiele	[m	nm]	40	55	65	55	85	100	115		
Stahlversagen für Zug- und Que	rlast										
Charakteristischer Widerstand bei Zuglast	$N_{Rk,s,eq}$	[kN]	14	4,0	27,0	45	5,0	67,0	94,0		
Teilsicherheitsbeiwert	γ _{Ms,eq}	[-]				1,	5				
Charakteristischer Widerstand bei Querlast	$V_{Rk,s,eq}$	[kN]	4,7	5,5	8,5	13,5	15,3	21,0	22,4		
Teilsicherheitsbeiwert	$\gamma_{Ms,eq}$	[-]				1,2	<u>2</u> 5				
Mit verfüllten Ringspalt 1)	α_{gap}	[-]				1,0	0				
Ohne verfüllten Ringspalt	$lpha_{\sf gap}$	[-]				0,!	5	i			
Herausziehen											
Charakteristischer Widerstand bei Zuglast in gerissenem Beton C20/25	${\sf N}_{\sf Rk,p,eq}$	[kN]	2,0	4,0	12,0	9,0		≥ N ⁰ _{Rk,c} ²	:)		
Betonversagen											
Effektive Verankerungstiefe	h _{ef}	[mm]	31	44	52	43	68	80	92		
Randabstand	C _{cr,N}	[mm]				1,5 x	h _{ef}				
Achsabstand	S _{cr,N}	[mm]				3 x	h _{ef}				
Montagebeiwert	γ inst	[-]				1,0	0				
Betonausbruch auf der lastabge	wandt	en Seit	e								
Faktor für Pryoutversagen	k ₈	[-]		1	,0			2,0			
Betonkantenbruch											
Effektive Länge im Beton	$l_f = h_{ef}$	[mm]	31	44	52	43	68	80	92		
Nomineller Schraubendurchmesser	d _{nom}	[mm]	6	6	8	10	10	12	14		

 $^{^{1)}}$ Ringspaltverfüllung gemäß Anhang B7, Bild 5

SPIT TAPCON XTREM Leistungsmerkmale Seismische Leistungskategorie C1 Anhang C3

²⁾ N⁰_{Rk,c} entsprechend EN 1992-4:2018

12

14

10

TAPCON XTREM Betonschraubeng	größe		8	10	12	14		
		h _{nom}		om3	•			
Nominelle Einschraubtiefe		[mm]	65	85	100			
Stahlversagen für Zuglast								
Charakteristischer Widerstand bei Zuglast	N _{Rk,s,eq}	[kN]	27,0	45,0	67,0	94,0		
Teilsicherheitsbeiwert	γMs,eq	[-]		1,	.5			
Mit verfüllten Ringspalt	$lpha_{\sf gap}$	[-]		1,	,0			
Herausziehen								
Charakteristischer Widerstand bei Zuglast in gerissenem Beton	$N_{Rk,p,eq}$	[kN]	2,4	5,4	7,1	10,5		
Stahlversagen für Querlast	_							
Charakteristischer Widerstand bei Querlast	$V_{Rk,s,eq}$	[kN]	9,9	18,5	31,6	40,7		
Teilsicherheitsbeiwert	γMs,eq	[-]		1,2	1,25			
Mit verfüllten Ringspalt	α_{gap}	[-]		1,0				
Betonversagen								
Effektive Verankerungstiefe	h _{ef}	[mm]	52	68	80	92		
Randabstand	C _{cr,N}	[mm]		1,5	x h _{ef}			
Achsabstand	S _{cr,N}	[mm]		3 x	h _{ef}			
Montagebeiwert	γinst	[-]		1,	.0			
Betonausbruch auf der lastabgew	andten S	Seite						
Faktor für Pryoutversagen	k ₈	[-]	1,0	1,0 2,0				

 $^{^{1)}}$ gilt nicht für A4 und HCR

Nomineller Schraubendurchmesser

SPIT TAPCON XTREM	
Leistungsmerkmale Seismische Leistungskategorie C2 – Werte mit verfüllten Ringspalt	Anhang C4

[mm]

 d_{nom}

8

TAPCON XTREM Betonschraube	ngröße		8	10	12	14
		h _{nom}		h _n	om3	
Nominelle Einschraubtiefe		[mm]	65	85	100	115
 Stahlversagen für Zuglast (Ausfü	ihrung Se o	hskant	kopf)			
Char. Widerstand bei Zuglast	N _{Rk,s,eq}	[kN]	27,0	45,0	67,0	94,0
Teilsicherheitsbeiwert	γ _{Ms,eq}	[-]	, , , , , , , , , , , , , , , , , , ,		,5	· · · · · ·
Herausziehen (Ausführung Sec h		F)				
Char. Widerstand bei Zuglast in gerissenem Beton	N _{Rk,p,eq}	[kN]	2,4	5,4	7,1	10,5
- Stahlversagen für Querlast (Aus	führung S o	echskar	ntkopf)	•		•
Char. Widerstand bei Querlast	$V_{Rk,s,eq}$	[kN]	10,3	21,9	24,4	23,3
Teilsicherheitsbeiwert	$\gamma_{Ms,eq}$	[-]		1,	25	
Ohne verfüllten Ringspalt	$lpha_{\sf gap}$	[-]		0	,5	
Stahlversagen für Zuglast (Ausfü	ihrung Se i	nkkopf)				
Char. Widerstand bei Zuglast	N _{Rk,s,eq}	[kN]	27,0	45,0		
Teilsicherheitsbeiwert	γMs	[-]		.,5	keine Leistu	ng bewerte
Herausziehen (Ausführung Senl	kopf)	-			•	
Char. Widerstand bei Zuglast in gerissenem Beton	N _{Rk,p,eq}	[kN]	2,4	5,4	keine Leistu	ng bewerte
Stahlversagen für Querlast (Aus	führung S o	enkkop	f)			
Char. Widerstand bei Querlast	$V_{Rk,s,eq}$	[kN]	3,6	13,7		
Teilsicherheitsbeiwert	γMs,eq	[-]	1	25 keine Leistung bewer		
Ohne verfüllten Ringspalt	$lpha_{\sf gap}$	[-]	C),5		
Betonversagen						
Effektive Verankerungstiefe	h _{ef}	[mm]	52	68	80	92
Randabstand	C _{cr,N}	[mm]		1,5	x h _{ef}	
Achsabstand	S _{cr,N}	[mm]		3 x	h _{ef}	
Montagebeiwert	γ inst	[-]		1	,0	
Betonausbruch auf der lastabge	wandten	Seite				
Faktor für Pryoutversagen	k ₈	[-]	1,0		2,0	
Betonkantenbruch						
Effektive Länge im Beton	I _f = h _{ef}	[mm]	52	68	80	92
Nomineller						
Schraubendurchmesser	d _{nom}	[mm]	8	10	12	14
1) gilt nicht für A4 und HCR						
SPIT TAPCON XTREM						

TAPCON XTR	EM			(5		8			10			12			14	
Nominelle Ein	schrau	btiefe	h _{nom}	1 40	2 55	1 45	2 55	3 65	1 55	2 75	3 85	1 65	2 85	3 100	1 75	2 100	3 11
Stahlversage	n für Z	ug- und Qເ	ierlast	t	!	<u> </u>											
	R30	N _{Rk,s,fi30}	[kN]		,9		2,4			4,4			7,3		10,3		
	R60	N _{Rk,s,fi60}	[kN]	0	,8		1,7			3,3			5,8			8,2	
	R90	$N_{Rk,s,fi90}$	[kN]	0	,6		1,1			2,3			4,2			5,9	
	R120	$N_{\text{Rk,s,fi120}}$	[kN]	0	,4		0,7			1,7			3,4			4,8	
	R30	$V_{Rk,s,fi30}$	[kN]	0	,9		2,4			4,4			7,3			10,3	,
Charakterist- ischer	R60	$V_{Rk,s,fi60}$	[kN]	0	,8		1,7			3,3			5,8			8,2	
Widerstand	R90	$V_{Rk,s,fi90}$	[kN]	0	,6		1,1			2,3			4,2			5,9	
	R120	$V_{Rk,s,fi120}$	[kN]	0	,4		0,7			1,7			3,4			4,8	
	R30	M ⁰ Rk,s,fi30	[Nm]	0	,7		2,4			5,9			12,3	3		20,4	
	R60	M ⁰ Rk,s,fi60	[Nm]	0	,6		1,8			4,5			9,7			15,9	
	R90	M ⁰ Rk,s,fi90	[Nm]	0	,5		1,2			3,0			7,0	7,0		11,6	
	R120	M ⁰ Rk,s,fi120	[Nm]	0	,3		0,9			2,3			5,7			9,4	
Herauszieher	า																
Charakterist- ischer	R30- 90	$N_{Rk,p,fi}$	[kN]	0,5	1,0	1,3	2,3	3,0	2,3	4,0	4,8	3,0	4,7	6,2	3,8	6,0	7
Widerstand	R120	$N_{Rk,p,fi}$	[kN]	0,4	0,8	1,0	1,8	2,4	1,8	3,2	3,9	2,4	3,8	4,9	3,0	4,8	6
Betonversage	en																
Charakterist- ischer	R30- 90	N ⁰ Rk,c,fi	[kN]	0,9	2,2	1,2	2,1	3,4	2,1	4,8	6,6	3,0	6,3	9,9	4,4	9,6	14
Widerstand	R120	N ⁰ Rk,c,fi	[kN]	0,7	1,8	1,0	1,7	2,7	1,7	3,8	5,3	2,4	5,1	7,9	3,5	7,6	11
Randabstand																	
R30 bis R120		C _{cr,fi}	[mm]							2	x h _{ef}	;					
Mehrseitiger I	Beansp		trägt d	er R	anda	bsta	nd ≥	300	mm								
Achsabstand																	
R30 bis R120		S _{cr,fi}	[mm]							4	x h _{ef}						
Betonausbru	ch auf	der lastab	gewar	dte	n Se	ite											
R30 bis R120		k ₈	[-]			1,	,0			2,	0	1,0	2	,0	1,0	2,0	
Im nassen Bet	on ist o	lie Verankei	ungsti	iefe i	m Ve	ergle	ich n	nit d	em a	nge	zebe	nen	Wer	t um i	mind	esten	ıs

SPIT TAPCON XTREM

Leistungsmerkmale
Leistung unter Brandbeanspruchung

Anhang C6

TAPCON XTR	REM			6			8				10			
Nominelle Eir	acchraubtiofo		h _{nom}	h _{nom1}	h _{nom2}	h _{nom}	1 hn	om2	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom} s		
Nominene Lii	iscillaubtiele		[mm]	40	55	45	5	55	65	55	75	85		
	Zuglast	N	[kN]	0,95	1,9	2,4	4	,3	5,7	4,3	7,9	9,6		
Gerissener Beton	Verschiebung	δ_{N0}	[mm]	0,3	0,6	0,6	0	,7	0,8	0,6	0,5	0,9		
Deton	Verschiebung		[mm]	0,4	0,4	0,6	1	,0	0,9	0,4	1,2	1,2		
	Zuglast	N	[kN]	1,9	4,3	3,6	5	,7	7,6	5,7	9,5	11,9		
Ungerissener Beton	Maraabiaha	δ_{NO}	[mm]	0,4	0,6	0,7	0	,9	0,5	0,7	1,1	1,0		
Deton	Verschiebung	$\delta_{N^{\infty}}$	[mm]	0,4	0,4	0,6	1	,0	0,9	0,4	1,2	1,2		
TAPCON XTR	REM				12					14				
Naminalla Eir	nschraubtiefe		h _{nom}	h _{nom1}	h _{nom2}	ŀ	h _{nom3}		h_{nom1}	h _{nom}	₂	າ _{nom3}		
Nominene En	isciliaubtiele		[mm]	65	85		100		75	100		115		
C = wi = = = = =	Zuglast	N	[kN]	5,7	9,4		12,3		7,6	12,0	١	15,1		
Gerissener Beton	Verschiebung	δ_{N0}	[mm]	0,9	0,5		1,0		0,5	0,8		0,7		
Deton	verschiebung	δ_{N^∞}	[mm]	1,0	1,2		1,2		0,9	1,2		1,0		
I la anadana a	Zuglast	N	[kN]	7,6	13,2		17,2		10,6	16,9		21,2		
Ungerissener Beton	r Verschiebung	δ_{N0}	[mm]	1,0	1,1		1,2		0,9	1,2		0,8		
Beton		δ_{N^∞}	[mm]	1,0	1,2		1,2		0,9	1,2		1,0		

Tabelle 13: Verschiebungen unter statischer und quasi-statischer Querbelastung

TAPCON XTF	REM			6	5		8			10		
Nominelle Fi	nschraubtiefe		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nomine Er	nsemaabtiere		[mm]	40	55	45 55		65	55	75	85	
Gerissener	Querlast	٧	[kN]	3,	,3		8,6			16,2		
und		δ_{V_0}	[mm]	mm] 1,55						2,7		
ungerissener Beton	Verschiebung	$\delta_{V^{\infty}}$	[mm]	3,	.1		4,1		4,3			
TAPCON XTF	TAPCON XTREM				12			14				
Nominalla Fi	nschraubtiefe		h _{nom}	h _{nom1} h _{nom}		h _{no}	om3	h _{nom1}	h _{nom2}	<u> </u>	n _{om3}	
Nominelle El	nschraubtiele		[mm]	65	85	10	00	75	100		115	
Gerissener	Querlast	٧	[kN]		20,0)			30,5	5		
und		δ_{V0}	[mm]		4,0				3,1			
ungerissener Beton	Verschiebung	$\delta_{V^{\infty}}$	[mm]		6,0	1			4,7			

SPIT TAPCON XTREM	
Leistungsmerkmale Verschiebungen unter statischer und quasi-statischer Belastung	Anhang C7

Tabelle 14: Seismische Leistungskategorie C2 ¹⁾ – Verschiebungen **mit verfüllten Ringspalt gemäß Anhang B7, Bild 5**

TAPCON XTREM Betonschraube	engröße		8	10	12	14	
Nominelle Einschraubtiefe		h _{nom}	h _{nom3}				
Nominelle Emschraubtiele		[mm]	65	85	100	115	
Verschiebungen unter Zugbelas	tung (Aus	führur	ng Sechskan	tkopf)			
Verschiebung DLS	$\delta_{\text{N,eq(DLS)}}$	[mm]	0,66	0,32	0,57	1,16	
Verschiebung ULS	$\delta_{\text{N,eq(ULS)}}$	[mm]	1,74	1,36	2,36	4,39	
Verschiebungen unter Querbela	astung (A	usführu	ıng Sechska	ntkopf mit	Durchgangs	loch)	
Verschiebung DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	1,68	2,91	1,88	2,42	
Verschiebung ULS	$\delta_{V,eq(ULS)}$	[mm]	5,19	6,72	5,37	9,27	

Tabelle 15: Seismische Leistungskategorie C2 ¹⁾ – Verschiebungen **ohne verfüllten Ringspalt gemäß Anhang B7, Bild 3**

TAPCON XTREM Betonschraube	engröße		8	10	12	14	
Nominelle Einschraubtiefe		h _{nom}		h _n	om3		
Norminelle Emschlaubtiele		[mm]	65	85	100	115	
Verschiebungen unter Zugbelas	tung (Aus	führur	g Sechskan	tkopf)			
Verschiebung DLS	$\delta_{\text{N,eq(DLS)}}$	[mm]	0,66	0,32	0,57	1,16	
Verschiebung ULS	$\delta_{\text{N,eq(ULS)}}$	[mm]	1,74	1,36	2,36	4,39	
Verschiebungen unter Zugbelas	tung (Aus	führur	g Senkkopf	·)			
Verschiebung DLS	$\delta_{\text{N,eq(DLS)}}$	[mm]	0,66	0,32	kaina Laiatu	na hawartat	
Verschiebung ULS	$\delta_{\text{N,eq(ULS)}}$	[mm]	1,74	1,36	keine Leistung bewert		
Verschiebungen unter Querbela	astung (Au	usführu	ıng Sechska	ntkopf mit	Durchgangs	loch)	
Verschiebung DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	4,21	4,71	4,42	5,60	
Verschiebung ULS	$\delta_{\text{V,eq(ULS)}}$	[mm]	7,13	8,83	6,95	12,63	
Verschiebungen unter Querbela	stung (A	usführu	ıng Senkko r	of mit Durch	ngangsloch)		
Verschiebung DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	2,51	2,98			
Verschiebung ULS	$\delta_{\text{V,eq(ULS)}}$	[mm]	7,76	6,25	keine Leistung bewer		

¹⁾ gilt nicht für A4 und HCR

SPIT TAPCON XTREM Leistungsmerkmale Verschiebungen unter seismischer Beanspruchung Anhang C8