

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0340 of 17 June 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	fischer RM II
Product family to which the construction product belongs	Bonded fastener for use in concrete
Manufacturer	fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND
Manufacturing plant	fischerwerke
This European Technical Assessment contains	20 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330499-01-0601
This version replaces	ETA-16/0340 issued on 6 October 2017

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-16/0340 English translation prepared by DIBt

Page 2 of 20 | 17 June 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 20 | 17 June 2020

European Technical Assessment ETA-16/0340 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The fischer capsule system RM II is a bonded anchor for use in concrete consisting of a capsule RM II and a steel element according to Annex A2.

The capsule RM II is placed in the hole and the steel element is driven by machine with simultaneous hammering and turning.

The anchor rod is anchored via the bond between steel element, chemical mortar and concrete. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3 and B 4, C 1 to C 5
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 to C 4
Displacements under short-term and long-term loading	See Annex C 6
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-16/0340

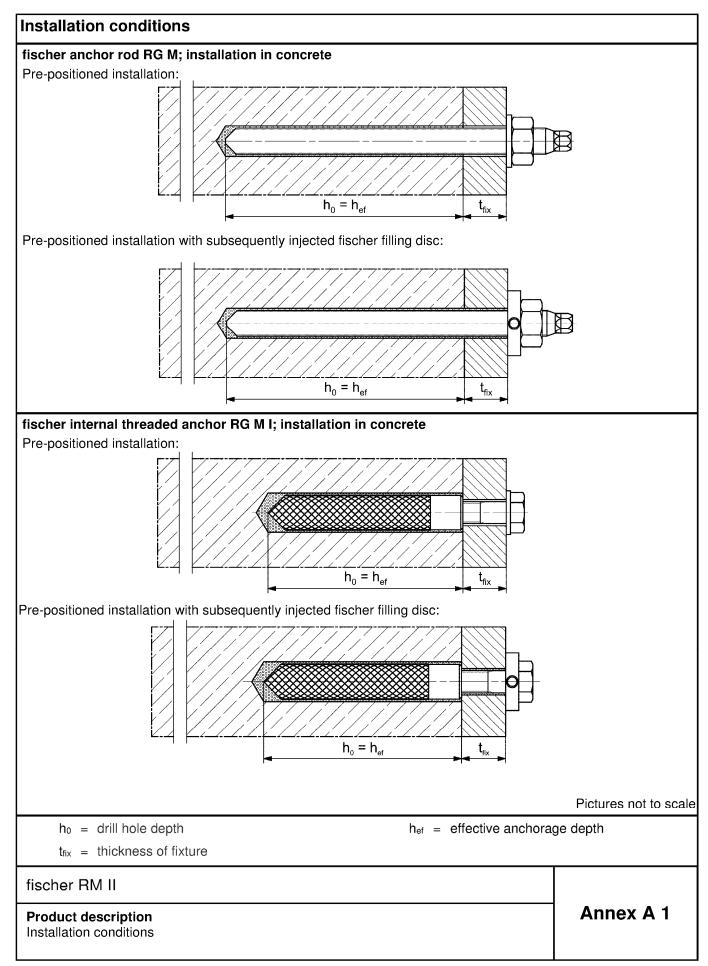
Page 4 of 20 | 17 June 2020

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 17 June 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider

Overview product components	
Capsule RM II	
Size: 8, 10, 12, 16, 16E, 20/22, 24	
RM II	
fischer anchor rod RG M	
Size: M8, M10, M12, M16, M20, M24	
fischer internal threaded anchor RG M I	
Size: M8, M10, M12, M16, M20	
Screw / threaded rod / washer / hexagon nut	
fischer filling disc with injection adapter	
	Pictures not to scale
fischer RM II	
Product description Overview product components	Annex A 2

Page 7 of European Technical Assessment ETA-16/0340 of 17 June 2020

English translation prepared by DIBt

Part	Designation	Material							
1	Capsule RM II	Mortar, hardener, filler							
		Steel	Stainless steel R	High corrosion resistant steel HCR					
	Steel grade	zinc plated	acc. to EN 10088-1:2014 Corrosion resistance class CRC III	acc. to EN 10088-1:2014 Corrosion resistance class CRC V					
2 Anchor rod		Property class 4.8, 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004 f _{uk} ≤ 1000 N/mm ²	acc. to EN 1993-1-4:2015 Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 f _{uk} ≤ 1000 N/mm ²	acc. to EN 1993-1-4:201 Property class 50 or 80 EN ISO 3506-1:2009 or property class 70 with f _{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 f _{uk} ≤ 1000 N/mm ²					
		F	racture elongation $A_5 > 8 \%$,					
3	Washer ISO 7089:2000								
4	Hexagon nut	Property class 4, 5 or 8; EN ISO 898-2:2012 zinc plated \geq 5 µm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised \geq 40 µm EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014					
5	fischer internal threaded anchor RG M I	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K)	Property class 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014					
6	Commercial standard screw or threaded rod for fischer internal threaded anchor RG M I	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated \geq 5 µm, ISO 4042:2018/Zn5/An(A2K) fracture elongation $A_5 > 8 \%$	$\begin{array}{c} \mbox{Property class} \\ 70 \\ \mbox{EN ISO 3506-1:2009} \\ 1.4401; 1.4404; 1.4578; \\ 1.4571; 1.4439; 1.4362 \\ \mbox{EN 10088-1:2014} \\ \mbox{fracture elongation} \\ \mbox{A}_5 > 8 \% \end{array}$	$\begin{tabular}{ c c c c c c c } \hline Property class & 70 & \\ \hline & 1.4565; 1.4529 & \\ \hline & 1.4565; 1.4565 & \\ \hline & 1.4565; 1.4565 & \\ \hline & 1.4$					
7	fischer filling disc similar to DIN 6319-G	zinc plated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014					

Product description Materials

Annex A 3

Electronic copy of the ETA by DIBt: ETA-16/0340

	fischer ar RG all si all si (d₀) 12 mm	zes bit diameter	RG all s	ihreaded anchor M I		
	Nominal drill	zes		izes		
	Nominal drill	bit diameter		izes		
uncracked concrete		STOPPARTS SUBSCIENTING IN INCOME.	alls			
uncracked concrete				izes		
	all sizes					
cracked concrete	M10, M12, M16, M20, M24	Tables:	all sizes	Tables:		
dry or wet concrete	all sizes	C4.1, C6.1	all sizes	C2.1, C3.1, C5.1, C6.2		
flooded hole	M12, M16, M20, M24		M8, M10, M16			
	D3 (downward and horizontal and upwards (e.g. overhead) installation)					
		T _{i,min} =-15 °C to	$T_{i,max} = +40 \ ^{\circ}C$			
Temperature range I	e (max. short term temperature +40 °C I -40 °C to +40 °C (max. short term temperature +24 °C)					
Temperature range II	-40 °C to +80 °C					
Temperature range III	-40 °C to +120 °					
	dry or wet concrete flooded hole Femperature range I Femperature range II	M20, M24 dry or wet concrete all sizes flooded hole M12, M16, M20, M24 D3 (downwa Comperature range -40 °C to +40 °C I -40 °C to +80 °C Femperature range -40 °C to +80 °C I -40 °C to +80 °C	M20, M24 Match M20, M24 C1.1, C3.1, C4.1, C6.1 flooded hole M12, M16, M20, M24 M12, M16, M20, M24 D3 (downward and horizontal installation of the state of the stat	M20, M24Hadressdry or wet concreteall sizes $C1.1, C3.1, C4.1, C6.1$ all sizesflooded holeM12, M16, M20, M24M8, M10, M16M8, M10, M16D3 (downward and horizontal and upwards (e.g. installation)D3 (downward and horizontal and upwards (e.g. installation)Temperature range-40 °C to +40 °C(max. short term temperature +40 °CTemperature range-40 °C to +80 °C(max. short term temperature +5Temperature range-40 °C to +80 °C(max. short term temperature +5Temperature range-40 °C to +120 °C(max. short term temperature +5		

Specifications of intended use (part 2)

Base materials:

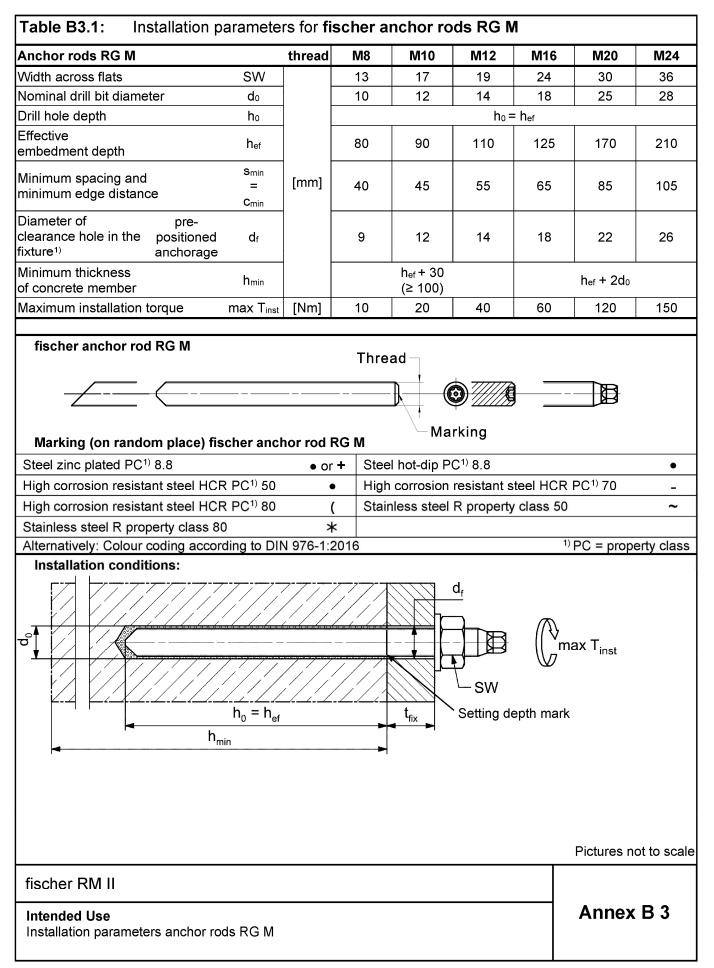
 Compacted reinforced or unreinforced normal weight concrete without fibres strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- For all other conditions according to EN1993-1-4:2015 corresponding to corrosion resistance classes to Annex A 3 table A3.1.

Design:

- · Anchorages have to designed by a responsible engineer with experience of concrete anchor design.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages are designed in accordance with: EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.


Installation:

- Anchor installation has to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- Anchorage depth should be marked and adhered to on installation
- Overhead installation is allowed

fischer RM II

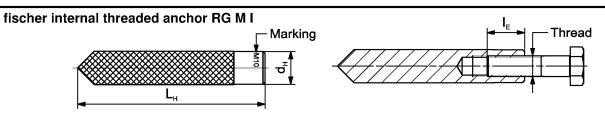
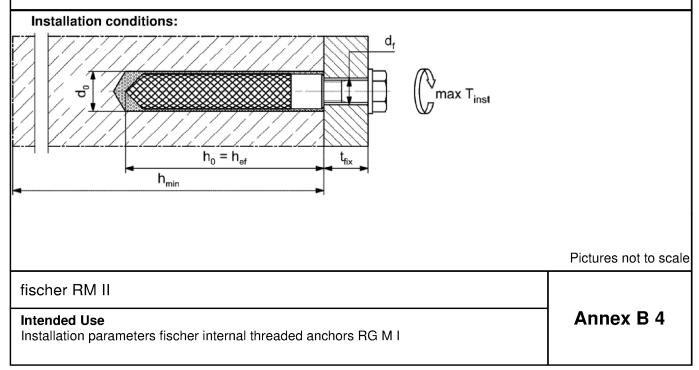

Intended Use Specifications (part 2)

Table B4.1:Installation parameters for fischer internal threaded anchors RG M I								
Internal threaded anchors R	nternal threaded anchors RG M I the theory of theory of the theory of th				M12	M16	M20	
Diameter of anchor	$d = d_H$		12	16	18	22	28	
Nominal drill bit diameter	do		14	18	20	24	32	
Drill hole depth	h ₀] [$h_0 = h_{\text{ef}} = L_{\text{H}}$		•	
Effective embedment depth $(h_{ef} = L_H)$	h _{ef}		90	90	125	160	200	
Minimum spacing and minimum edge distance	Smin = Cmin	[mm]	55	65	75	95	125	
Diameter of clearance hole in the fixture ¹⁾	df		9	12	14	18	22	
Minimum thickness of concrete member	h_{\min}		120	125	165	205	260	
Maximum screw-in depth	I _{E,max}] [18	23	26	35	45	
Minimum screw-in depth	I _{E,min}		8	10	12	16	20	
Maximum installation torque	max T _{inst}	[Nm]	10	20	40	80	120	

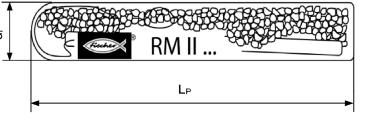


Marking: Anchor size e. g.: M10

Stainless steel \rightarrow additional **R**; e.g.: **M10 R**

High corrosion resistant steel → additional HCR; e.g.: M10 HCR

Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 3, Table A3.1.



Page 12 of European Technical Assessment ETA-16/0340 of 17 June 2020

English translation prepared by DIBt

Table B5.1: Dimensions of resin capsule RM II									
Capsule RM II			8	10	12	16	16 E	20/22	24
Capsule diameter	d٩	[mm]	9,0	10,5	12,5	16	6,5	23	3,0
Capsule length	LP	[mm]	85	90	97	95	123	160	190
length	Lp		85	90	97	95	123	160	

Table B5.2:Assignment of resin capsule RM II to fischer anchor rod RG M

Anchor rod RG M			M8	M10	M12	M16	M20	M24
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210
Related capsule RM II		[-]	8	10	12	16	20/22	24

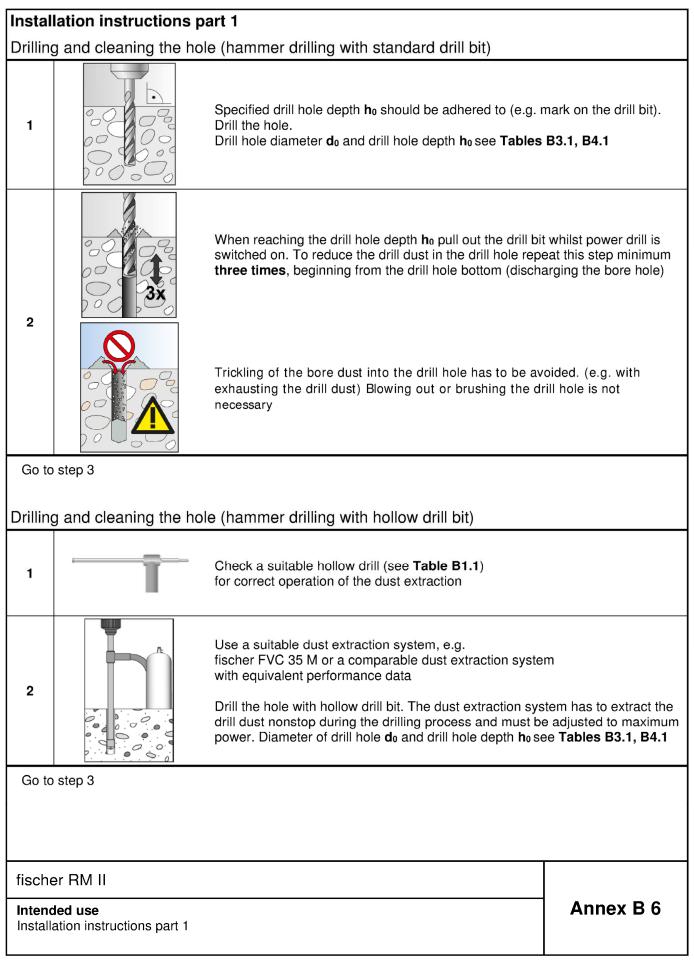
Table B5.3:Assignment of resin capsule RM II to the fischer internal threaded anchorRG M I

Internal threaded anchor	M8	M10	M12	M16	M20	
Effective anchorage depth	n _{ef} [mm]	90	90	125	160	200
Related capsule RM II	[-]	10	12	16	16E	24

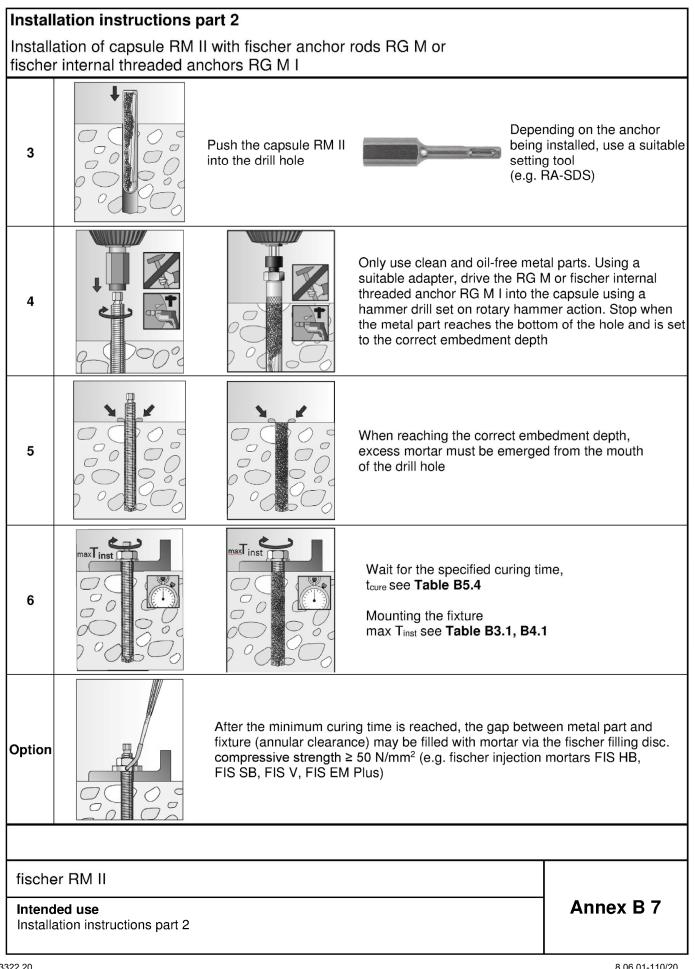
Table B5.4:Minimum curing time

(During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature; minimal capsule temperature -15 $^{\circ}$ C)

Concrete temperature [°C]	Minimum curing time t _{cure}
-15 to -10	30 h
> -10 to -5	16 h
> -5 to 0	10 h
> 0 to 5	45 min
> 5 to 10	30 min
> 10 to 20	20 min
> 20 to 30	5 min
> 30 to 40	3 min


fischer RM II

Intended Use


Dimensions of the capsules, Assignment of the capsule to the anchor rod and internal threaded anchor, Minimum curing time

Annex B 5

Page 15 of European Technical Assessment ETA-16/0340 of 17 June 2020

nchor rod RG M				M8	M10	M12	M16	M20	M24
Bearing capacity under tens	sion load	d, ste	el fai	lure ³⁾	-		-	•	-
0		4.8		15(13)	23(21)	33	63	98	141
Steel zinc plated	>	5.8	1	19(17)	29(27)	43	79	123	177
Characteristic contracteristic	ropert	8.8		29(27)	47(43)	68	126	196	282
Stainless steel R and	Property class	50	[kN]	19	29	43	79	123	177
G is high corrosion		70		26	41	59	110	172	247
Φ_{Φ} resistant steel HCR		80		30	47	68	126	196	282
Partial factors ¹⁾									
<u>_</u>		4.8				1,	50		
ਉ Steel zinc plated	Ę	5.8				1,	50		
ial fa Msv d loots scolaist9 ∑ v	Property class	8.8	[-]				50		
		50					86		
	-	_70					/ 1,87		
resistant steel HCR		80				1,	60		
Bearing capacity under she	ar load,	steel	failu	r e ³⁾					
without lever arm	1								
Steel zinc plated		4.8		9(8)	14(13)	20	38	59	85
	, t∠	5.8		11(10)	17(16)	25	47	74	106
nce nce	Property class	8.8 50	[kN]	15(13)	23(21)	34	63	98	141
Stainless steel R and	Prc 0	-		9	15	21	39	61	89
High corrosion E resistant steel HCR		70	-	13	20	30	55	86	124
		80	<u>г</u> т	15	23	34	63	98	141
Ductility factor with lever arm		k 7	[-]			I	,0		
		4.8		15(12)	30(27)	52	133	259	448
Steel zinc plated		5.9	- H	15(13) 19(16)	37(33)	65	166	324	560
	erty s			30(26)	60(53)	105	266	519	896
Stainless steel R and	Property class	50	[Nm]	19	37	65	166	324	560
- V high corrector	<u>ا</u> م	70	1	26	52	92	232	454	784
nigh corrosion ℓ resistant steel HCR		80		30	60	105	266	519	896
Partial factors ¹⁾									
		4.8				1,	25		
Steel zinc plated		5.8					25		
Steel zinc plated Steel zinc plated Stainless steel R and high corrosion	Property class	8.8				1,	25		
Transferred R and	cla	50	[-]			2,	38		
		70				1,25 ²⁾	/ 1,56		
resistant steel HCR		80				1,	33		
 In absence of other nation Only for fischer RG M ma Values in brackets are va galvanised standard threat 	de of hig lid for ur	jh co iders	rrosioı ized fi	scher anch	or rods RG			area A_s for	hot dip
fischer RM II				-					
Performances								Anne	x C 1

Page 16 of European Technical Assessment ETA-16/0340 of 17 June 2020

English translation prepared by DIBt

Internal threaded	d anch	or RG M I			M8	M10	M12	M16	M20
Bearing capacity	y unde	r tension lo	oad, ste	el fail	ure		•		-
a		Property	5.8	5.8 8.8 [kN]	19	29	43	79	123
Characteristic bearing capacity	N _{Rk,s}	class	8.8		29	47	68	108	179
with screw	INRk,s	Property	R		26	41	59	110	172
		class 70	HCR		26	41	59	110	172
Partial factors ¹⁾									
		Property	5.8				1,50		
Partial factor	2/14 . L1	class	8.8	[-]			1,50		
r artial lactor	γMs,N	Property	R	[-]			1,87		
	-	class 70	HCR				1,87		
Bearing capacity		r shear loa	d, steel	failur	e				
without lever arr	n								
Characteriatia		Property	5.8		9,2	14,5	21,1	39,2	62,0
Characteristic bearing capacity	V ⁰ Rks	class	8.8	[kN]	14,6	23,2	33,7	54,0	90,0
with screw	• 117,5	Property	R		12,8	20,3	29,5	54,8	86,0
		class 70	HCR		12,8	20,3	29,5	54,8	86,0
Ductility factor			K ₇	[-]			1,0		
with lever arm							1		
Characteristic	M ⁰ Rk,s	Property	5.8	20	39	68	173	337	
bending moment		class	8.8	- [Nm]	30	60	105	266	519
with screw		Property	R		26	52	92	232	454
		class 70	HCR		26	52	92	232	454
Partial factors ¹⁾									
		Property	5.8		1,25				
Partial factor	γMs,V	class	8.8	[-]	1,25				
	• •	Property	R		1,56				
		class 70	HCR		1,56				

Performances

Characteristic values for steel failure under tension / shear load of fischer internal threaded anchor RG MI

Annex C 2

Electronic copy of the ETA by DIBt: ETA-16/0340

Table C3.1:	Characteristic	; value	əs for	concrete	failure ur	nder tensi	on / shea	Ir load		
Size						All s	izes			
Tension load										
Installation facto	or	γinst	[-]	See annex C 4 to C 5						
Factors for the	compressive strer	igth of	i concr	rete > C20/	25					
	C25/30					1,(02			
-	C30/37					1,(04			
Increasing ⁻ factor -	C35/45)T(1,(07			
for $\tau_{\rm Rk}$ -	C40/50	Ψc	[-]			1,(08			
	C45/55		[1,(09			
-	C50/60					1,	10			
Splitting failure	e		<u> </u>							
	h / h _{ef} ≥ 2,0					1,0	h _{ef}			
Edge distance $2,0 > h / h_{ef} >$		Ccr,sp	[]	4,6 h _{ef} - 1,8 h						
	h / h _{ef} ≤ 1,3		[mm]		2,26 h _{ef}					
Spacing		Scr,sp	1!	2 C _{cr,sp}						
Concrete cone	failure		·							
Uncracked cond	orete	k ucr,N		11,0						
Cracked concrete		k cr,N	- [-]	7,7						
Edge distance		Ccr,N	[mm]	1,5 h _{ef}						
Spacing		Scr,N	[mm]	2 c _{cr,N}						
Factors for sus	stained tension loa	d								
Factor		$\Psi^{\rm 0}_{\rm sus}$	[-]		_1)					
Shear load										
Installation facto	or	γinst	[-]	1,0						
Concrete pry-o	out failure									
Factor for pry-o	ut failure	k_8	[-]		2,0					
Concrete edge										
Effective length shear loading	of fastener in	lf	[mm]	for d _{nom} ≤ 24 mm: min (h _{ef} ; 12 d _{nom})						
Calculation dia	ameters									
Size				M8	M10	M12	M16	M20	M24	
fischer anchor r	ods	d	I	8	10	12	16	20	24	
fischer internal threade	ed anchors RG M I	d_{nom}	[mm]	12	16	18	22	28	_2)	
	nance assessed he not part of the ass	essme	nt							

Characteristic values for concrete failure under tensile / shear load

Annex C 3

Table (C4.1	: Characte anchor re concrete	ods RG			-			ailure for fi cracked	scher	
Anchor	rod F	RG M			M8	M10	M12	M16	M20	M24	
Combine	ed pu	Illout and concr	ete cone	failure			-		-		
Calculati	on dia	ameter	d	[mm]	8	10	12	16	20	24	
Uncrack	ed co	oncrete						•			
Characte	eristi	c bond resistan	ce in un	cracked c	oncrete C	20/25					
<u>Hammer</u>	-drillir	ng with standard	drill bit o	<u>r hollow dr</u>	<u>ill bit (dry a</u>	and wet con	i <u>crete)</u>	1			
Tem-	l:	40 °C / 24 °C	_		12,5	12,5	12,5	12,5	12,5	12,5	
perature	11:	80 °C / 50 °C	τRk,ucr	[N/mm²]	12,0	12,0	12,0	12,0	12,0	12,0	
range	111:	120 °C / 72 °C			10,5	10,5	10,5	10,5	10,5	10,5	
Hammer-drilling with standard drill bit or hollow drill bit (flooded hole)											
Tem-	I:	40 °C / 24 °C			_1)	_1)	12,5	12,5	12,5	12,5	
perature	II:	80 °C / 50 °C	τ _{Rk,ucr}	[N/mm²]	_1)	_1)	12,0	12,0	12,0	12,0	
range	:	120 °C / 72 °C	-		_1)	_1)	10,5	10,5	10,5	10,5	
Installati	ion fa	actors		11		1	I	I			
Dry and wet concrete					1,2						
Flooded	hole		- γinst	[-]	- ¹⁾ - ¹⁾ 1,4						
Cracked	cone	crete									
		c bond resistan									
Hammer		ng with standard	drill bit o	<u>r hollow dr</u>		and wet con	i <u>crete)</u>				
Tem-	l:	40 °C / 24 °C	-		_1)	4,5	4,5	4,5	4,5	4,5	
perature range	!I:	80 °C / 50 °C	τRk,cr	[N/mm ²]	_1)	4,0	4,0	4,0	4,0	4,0	
lange	III:	120 °C / 72 °C			_1)	3,5	3,5	3,5	3,5	3,5	
Hammer-	-drillir	ng with standard	drill bit o	<u>r hollow dr</u>	<u>ill bit (flooc</u>	<u>led hole)</u>	Γ	I	1		
Tem-	l:	40 °C / 24 °C	_		_1)	_1)	4,5	4,5	4,5	4,5	
perature	- 11:	80 °C / 50 °C	τ _{Rk,cr}	[N/mm²]	_1)	_1)	4,0	4,0	4,0	4,0	
range	III:	120 °C / 72 °C			_1)	_1)	3,5	3,5	3,5	3,5	
Installati	ion fa	actors									
Dry and v		oncrete	- γinst	[-]	_1)		ſ	1,2			
Flooded	hole		Tillar		_1)	_1)			1,4		
'' No p	perfor	mance assessed	1								
fischer									A		
Perforn	nanc	es							Annex	(じ4	

Characteristic values for combined pull-out and concrete failure for fischer anchor rod RG M

чшех

Table (C5.1:		hreade	ed ancho				e failure for es; uncrac	
Internal	threaded	anchors R	GMI		M8	M10	M12	M16	M20
Combine	ed pullou	t and concr	ete cone	e failure		-	<u>I</u>	<u>I</u>	-
Calculatio	on diamet	ter	d	[mm]	12	16	18	22	28
Uncrack	ed concr	ete				÷		•	•
Characte	eristic bo	nd resistan	ce in un	cracked c	oncrete C20)/25			
<u>Hammer</u>	-drilling w	ith standard	drill bit o	<u>r hollow dr</u>	<u>ill bit (dry an</u>	<u>d wet concret</u>	<u>e)</u>	1	1
Tem-	l: 40 °	°C / 24 °C	- τRk,ucr		11	11	11	11	11
perature	II: 80 °	°C / 50 °C		[N/mm ²]	10,5	10,5	10,5	10,5	10,5
range	III: 120) °C / 72 °C	-		9,5	9,5	9,5	9,5	9,5
Hammer-	-drilling w	ith standard	drill bit o	r hollow dr	ill bit (floode	d hole)	•		1
Tam	l: 40 °	°C / 24 °C			11	11	_1)	11	_1)
Tem- perature	II: 80 °	°C / 50 °C	- τRk,ucr -	[N/mm ²]	10,5	10,5	_1)	10,5	_1)
range	III: 120) °C / 72 °C			9,5	9,5	_1)	9,5	_1)
Installati	ion facto	rs		1			1		
Dry and v	wet concr	ete		[]			1,2		
Flooded	hole		· γinst	[-]	1	,4	_1)	1,4	_1)
Cracked	concrete	9						-	
Characte	eristic bo	nd resistan	ce in cra	cked con	crete C20/2	5			
Hammer-	-drilling w	ith standard	drill bit o	<u>r hollow dr</u>	ill bit (dry an	d wet concret	<u>e)</u>	1	1
Tem-	l: 40 °	°C / 24 °C	- τRk,cr -	[N/mm²]	4,5	4,5	4,5	4,5	4,5
perature	II: 80 °	°C / 50 °C			4,0	4,0	4,0	4,0	4,0
range	III: 120) °C / 72 °C			3,5	3,5	3,5	3,5	3,5
Hammer-	-drilling w	ith standard	drill bit o	<u>r hollow dr</u>	ill bit (floode	<u>d hole)</u>	-		
Tem-	l: 40 °	°C / 24 °C			4,5	4,5	_1)	4,5	_1)
perature	II: 80 °	°C / 50 °C	- τRk,cr	[N/mm ²]	4,0	4,0	_1)	4,0	_1)
range	III: 120) °C / 72 °C			3,5	3,5	_1)	3,5	_1)
Installati	ion facto	rs		-			•		
Dry and v	wet concr	ete		[-]			1,2		
Flooded	hole		- γinst	[-]	1	,4	_1)	1,4	_1)
		ice assessed							
fischer								A	

Performances Characteristic values for combined pull-out and concrete failure for fischer internal threaded anchors RG M I Annex C 5

Anchor	rod RG M	M8	M10	M12	M16	M20	M24			
Displacement-Factors for tension load ¹⁾										
Uncrack	ed or cracked	concrete; Tem	perature rang	e I, II, III						
$\delta_{\sf N0}$ -Factor	[mm/(N/mm²)]	0,07	0,08	0,09	0,10	0,11	0,12			
δN∞-Factor	_[[[[[[[]]]([[N/[[[[[]]-)]]	0,13	0,14	0,15	0,17	0,17	0,18			
Displace	ement-Factors	for shear load	2)	•		-				
Uncrack	ed or cracked	concrete; Tem	perature rang	e I, II, III						
δ V0-Factor	[mmm/[r]]	0,18	0,15	0,12	0,09	0,07	0,06			
δv∞-Factor	[mm/kN]	0,27	0,22	0,18	0,14	0,11	0,09			
¹⁾ Calcu	ulation of effecti	ve displacemer	nt:	²⁾ Calculatio	on of effective c	lisplacement:				
δ _{N0} =	δN0-Factor · τEd			$\delta v_0 = \delta v_0$ -	_{Factor} · V _{Ed}					
_										

 $\delta_{N\infty} = \delta_{N\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

Table C6.2: Displacements for fischer internal threaded anchors RG M I

Internal th anchor RG		M8	M10	M12	M16	M20				
Displacement-Factors for tension load ¹⁾										
Uncracked	d or cracked	concrete; Tempe	erature range I, II,	III						
δN0-Factor	nm/(N/mm²)]	0,09	0,10	0,10	0,11	0,19				
δ _{N∞-Factor} [Γ	1111/(IN/11111-)]	0,13	0,15	0,15	0,17	0,19				
Displacem	ent-Factors	for shear load ²⁾								
Uncracked	d or cracked	concrete; Tempe	erature range I, II,	III						
δ V0-Factor	[mm/kNI]	0,12	0,09	0,08	0,07	0,05				
δv∞-Factor	[mm/kN]	0,18	0,14	0,12	0,10	0,08				
¹⁾ Calcula	tion of effectiv	ve displacement:		²⁾ Calculation of e	effective displacem	ient:				
$\delta_{N0} = \delta_{N}$	N0-Factor · 7Ed			δ V0 = δ V0-Factor \cdot	V _{Ed}					
$\delta_{N^{\infty}} = \delta_{I}$	N∞-Factor [•] τEd			$\delta_{V\infty}=\delta_{V\infty\text{-}Factor}\cdot$	V_{Ed}					
(τ _{Ed} : De	esign value of	the applied tensil	e stress)	(V _{Ed} : Design va	alue of the applied	shear force)				

fischer RM II

Performances

Displacements for anchor rods RGM and fischer internal threaded anchors RG M I

Annex C 6