

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0929 of 19 May 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product Anchor channels (PEC-TA) with channel bolts (HBC) Product family Anchor channels to which the construction product belongs Manufacturer PEC Europe GmbH Obere Kaiserswerther Straße 56 47249 Duisburg DEUTSCHLAND Manufacturing plant Hilti Werke This European Technical Assessment 27 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is EAD 330008-03-0601 issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces ETA-16/0929 issued on 9 August 2018

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-16/0929 English translation prepared by DIBt

Page 2 of 27 | 19 May 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 27 | 19 May 2020

European Technical Assessment ETA-16/0929 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The anchor channels (PEC-TA) with channel bolts (HBC) are a system consisting of C-shaped channel profile of carbon steel or stainless steel and at least two metal anchors non-detachably fixed to the channel back and channel bolts.

The anchor channel is embedded surface-flush in the concrete. Channel bolts (HBC) with appropriate hexagon nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under tension load (static and quasi-static loading)	See Annex A4, B3 and B5, C1 to C4 and C8
Characteristic resistance under shear load (static and quasi-static loading)	See Annex C6 to C9
Characteristic resistance under combined tension and shear (static and quasi-static loading)	See Annex C7
Characteristic resistance under cyclic fatigue tension load	No performance assessed
Displacements (static and quasi-static loading)	See Annex C5 and C7
Durability	See Annex B1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Characteristic resistance to fire	See Annex C10

European Technical Assessment ETA-16/0929

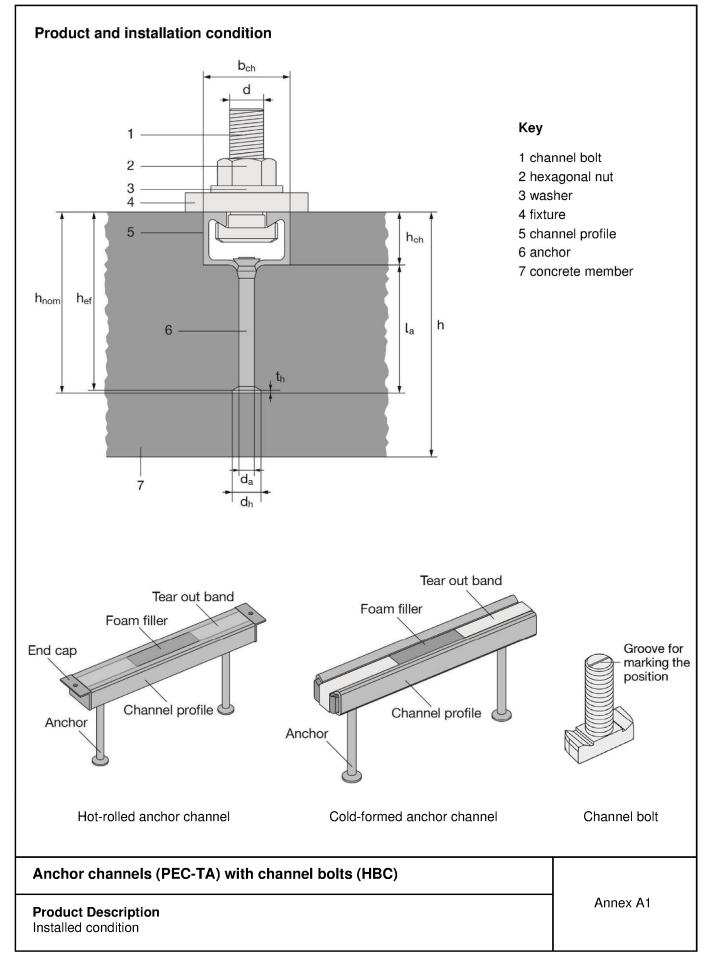
Page 4 of 27 | 19 May 2020

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330008-03-0601, the applicable European legal act is: [2000/273/EC].

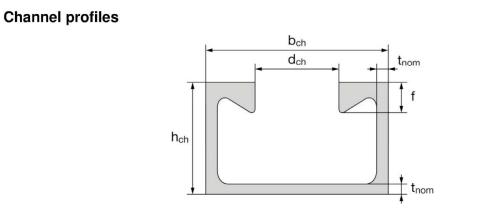
The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

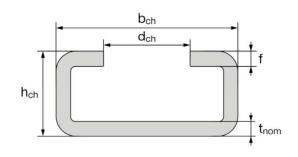
Issued in Berlin on 19 May 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Müller


Page 6 of European Technical Assessment ETA-16/0929 of 19 May 2020

English translation prepared by DIBt

Cold-formed anchor channel	Hot-rolled	anchor channel					
			Key 1 hexagonal nut 2 washer 3 channel bolt 4 channel profile 5 anchor				
5	5	5					
Round anchor	I-anchor	Round anchor					
Marking of the anchor chan PEC-TA(-I) XZ (P)	nels:	PEC-TA 40/2	22F				
PEC-TA = Identifying mar manufacturer	k of the	(e.g. PEC-TA 40/22 F)					
I = Additional mark (no marking in X = Size of the cha Z = Corrosion class F = Hot-dip ga	P= Additional marking for premium lineI= Additional marking for I-anchors (no marking in the case of round anchors)X= Size of the channel40/2240/22= Anchor channel						
Marking of the channel bolt: HBC-X YZ		HBC-40 8.8F					
HBC = Identifying mark of the manufacturer X = Channel bolt		e.g. HBC-40/22 8.8F) 40 = Channel bolt in com PEC-TA 40/22F	bination with				
Y = Steel grade (4.6, 8 Z = Corrosion class / M F = Hot-dip galvani R = Stainless steel	laterial I zed	B.8 = Steel grade F = Hot-dip galvanized					
Anchor channols (DEC TA) with channel bolts (H	BC)					
Anchor channels (FEC-TA	,	•					



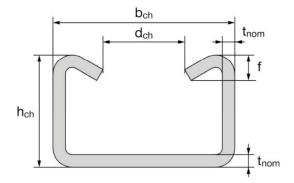

PEC-TA 40/22 (P), PEC-TA 50/30 (P), PEC-TA 52/34

Table 1: Dimensions of hot-rolled channel profile

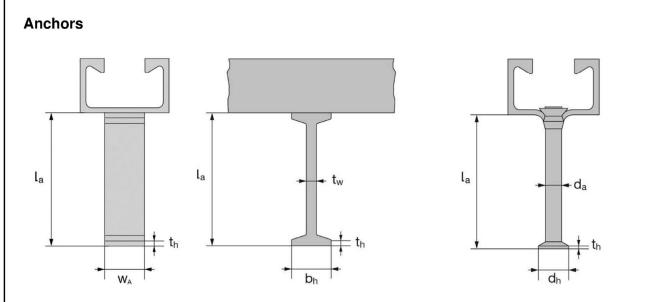
Anchor channel	b _{ch}	h _{ch}	t _{nom}	d	f	ly
Anchor channel		[mm ⁴]				
PEC-TA 40/22 (P)	40,1	23,0	2,7	18,0	6,0	21504
PEC-TA 50/30 (P)	49,6	30,0	3,2	22,5	8,1	57781
PEC-TA 52/34	52,5	34,0	4,0	22,5	11,5	97606

PEC-TA 28/15, PEC-TA 38/17

PEC-TA 40/25, PEC-TA 49/30, PEC-TA 54/33

Table 2: Dimensions of cold-formed channel profile

Anchor	b _{ch}	h _{ch}	t _{nom}	d	f	l _y		
channel		[mm]						
PEC-TA 28/15	28,0	15,5	2,3	12,0	2,3	4277		
PEC-TA 38/17	38,0	17,3	3,0	18,0	3,0	8224		
PEC-TA 40/25	40,0	25,0	2,75	18,0	5,6	20122		
PEC-TA 49/30	50,0	30,0	3,25	22,0	7,4	43105		
PEC-TA 54/33	53,5	33,0	5,0	21,5	8,0	74706		


Anchor channels (PEC-TA) with channel bolts (HBC)

Product Description	
Channel profiles (PEC-TA)	

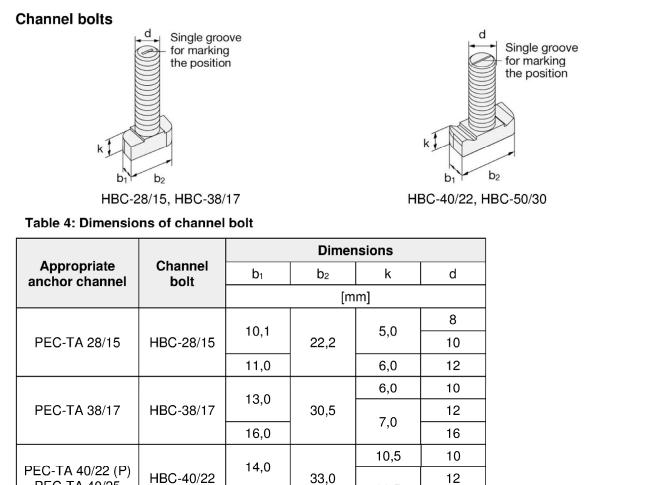
Page 8 of European Technical Assessment ETA-16/0929 of 19 May 2020

English translation prepared by DIBt

Table 3: Dimensions of anchor (welded I-anchor or round anchor)

		I-anchor						Ro	und anc	hor	
Anchor channel	min l _a	tw	bh	th	WA	Ah	min la	da	dh	th	Ah
		[mm] [mm ²]					[mm]				
PEC-TA 28/15				1)			31,0	6,0	12,0	1,3	85
PEC-TA 38/17		1)									
PEC-TA 40/25		1)				_	56,0	8,0 16,0		2,0	151
PEC-TA 40/22	62,0	5,0	20,0	5,0	20,0	300	58,0				
PEC-TA 40/22 P	62,0	5,0	20,0	5,0	20,0	300	70,0	10,0	21,5	2,2	285
PEC-TA 49/30				1)			66,0	10.0	20,0	2,2	236
PEC-TA 50/30	69,0	5,0	20,0	5,0	25,0	375	66,0	10,0	20,0	2,2	230
PEC-TA 50/30 P	69,0	5,0	20,0	5,0	25,0	375	78,0	11,0	26,0	2,5	436
PEC-TA 54/33		1)					124,5	11,0	24,3	2,5	369
PEC-TA 52/34	125,0	6,0	25,0	5,0	40,0	760	123,5	11,0	24,3	2,5	309

¹⁾ Product not available


Anchor channels (PEC-TA) with channel bolts (HBC)

Product Description Anchors

Page 9 of European Technical Assessment ETA-16/0929 of 19 May 2020

English translation prepared by DIBt

		110			
PEC-TA 40/22 (P) PEC-TA 40/25	HBC-40/22	14,0	33,0	11,5	12
		17,0		11,5	16
PEC-TA 49/30		17.0		14,5	12
PEC-TA 50/30 (P) PEC-TA 52/34	HBC-50/30	17,0	42,0	15,5	16
PEC-TA 54/33		21,0		15,5	20

Table 5: Steel grade and corrosion class

Channel Bolt	Carbon	steel ¹⁾	Stainless steel 1)		
Steel grade	4.6	8.8	A4-50	A4-70	
f _{uk} [N/mm²]	400	800 / 830 ²⁾	500	700	
f _{yk} [N/mm²]	240	640 / 660 ²⁾	210	450	
Corrosion class		3) 4)	R	5)	

¹⁾ Material properties according to Annex A6

²⁾ Material properties according to EN ISO 898-1: 2013

³⁾ Electroplated

⁴⁾ Hot-dip galvanized

⁵⁾ Stainless steel

Anchor channels (PEC-TA) with channel bolts (HBC)

Product Description

Channel bolts (HBC)

		Stainless steel			
Component	Mechanical properties		Coating		
1	2a	2b	2c	3	
Channel Profile	1.0038, 1.0044, 1.0045 according to EN 10025: 2005 1.0976, 1.0979 according to EN 10149: 2013		alvanized ≥ 50 μm coording to	1.4362, 1.4401 1.4404, 1.4571, 1.4578	
Anchor	1.0038, 1.0213, 1.0214 according to EN 10025: 2005 1.5523, 1.5535 according to EN 10263: 2002-02	EN ISO 106	1.4578 according to EN 10088: 2005		
Channel bolt	Steel grade 4.6 and 8.8 according to EN ISO 898-1: 2013	Electroplated according to EN ISO 4042: 1999	Hot dip galvanized ≥ 50 μm according to EN ISO 10684: 2004/ AC: 2009	Grade 50 or 70 according to EN ISO 3506: 200	
Plain washer ¹⁾ according to ISO 7089: 2000 and ISO 7093-1: 2000	Hardness class A ≥ 200 HV	Electroplated according to EN ISO 4042: 1999	Electroplated according to EN ISO EN ISO EN ISO EN ISO 10684: 2004/		
Hexagonal nut according to ISO 4032: 2012 or DIN 934: 1987-10 ²⁾	Property class 5 or 8 according to EN ISO 898-2: 2012	Electroplated according to EN ISO 4042: 1999	Hot dip galvanized ≥ 50 μm according to EN ISO 10684: 2004/ AC: 2009	Property class 50, 70 or 80 according to EN ISO 3506: 200	

¹⁾ Not in the scope of delivery

²⁾ Hexagonal nuts according to DIN 934: 1987-10 for channel bolts made from carbon steel (4.6) and stainless steel

Anchor channels (PEC-TA) with channel bolts (HBC)

Product Description Materials

Specifications of intended use

Anchor channels and channel bolts subject to:

- Static and guasi-static loads in tension and shear perpendicular to the longitudinal axis of the channel.
- Fire exposure: only for concrete class C20/25 to C50/60.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1: 2000.
- Strength classes C12/15 to C90/105 according to EN 206-1: 2000.
- Cracked or uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (e.g. accommodations, bureaus, schools, hospitals, shops, exceptional internal conditions with usual humidity)
 - (anchor channels and channel bolts according to Annex A6, Table 6, column 2 and 3).
- Structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional permanent damp conditions and application under water) (anchor channels and channel bolts according to Annex A6, Table 6, column 2c and 3).
- The stainless steel anchor channels (PEC-TA (P)) and channel bolts (HBC), washers and nuts may be used in structures subject to external atmospheric conditions (including industrial and marine environment) or exposure in permanently damp internal conditions, if no particular aggressive conditions (e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution e.g. desulphurization plants or road tunnels where de-icing materials are used) exist

(anchor channels and channel bolts according to Annex A6, Table 6, column 3).

Design:

- Anchor channels are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading as well as fire exposure the anchor channels are designed in accordance with EOTA TR 047 "Calculation Method for the Performance of Anchor Channels", March 2018 or EN 1992-4: 2018.
- The characteristic resistances are calculated with the minimum effective embedment depth.

Anchor channels (PEC-TA) with channel bolts (HBC)

Intended Use

Specifications

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex B3, Table 7and Table 8 are generated including end spacing and minimum channel length and in case of hot-dip galvanised anchor channels only to be used in dry internal conditions.
- Installation in accordance with the manufacturer's specifications given in Annexes B5 and B6
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no movement of the channels will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- The concrete around the head of the anchors are properly compacted. The channels are protected from penetration of concrete into the internal space of the channels.
- Washer may be chosen according to Annex A6 and provided separately by the user.
- Orientating the channel bolt (groove according to Annex B6) rectangular to the channel axis.
- The required installation torques given in Annex B4 must be applied and must not be exceeded.

Intended Use Specifications

Anchor channel			PEC-TA 40/22	PEC-TA 40/22 P	PEC-TA 50/30	PEC-TA 50/30 P	PEC-TA 52/34
Minimum effective embedment depth	h _{ef,min}		79	91	94	106	155
Minimum spacing	Smin		100	50	100	50	100
Maximum spacing	Smax						
End spacing	х	[mm]		25	1)		35 ²⁾
Minimum channel length	I _{min}		150	100	150	100	170 ³⁾
Minimum edge distance	Cmin		5	50	7	100	
Minimum thickness of concrete member	h _{min}		10	00 12		20	180

¹⁾ The end spacing may be increased from 25 mm to 35 mm

²⁾ x = 25 mm for welded I-anchors

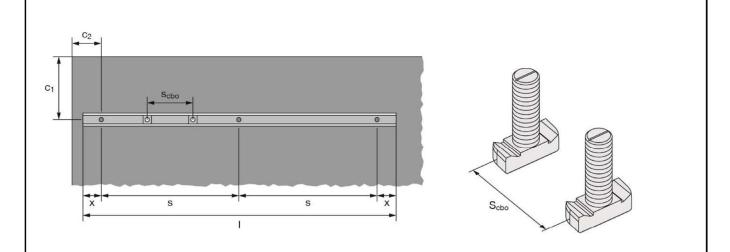
 $^{3)}$ I_{min} = 150 mm for welded I-anchors

Table 8: Installation parameters for cold-formed anchor channel

Anchor channel			PEC-TA 28/15	PEC-TA 38/17	PEC-TA 40/25	PEC-TA 49/30	PEC-TA 54/33
Minimum effective embedment depth	h _{ef,min}		45	76	79	94	155
Minimum spacing	Smin		50		1(00	
Maximum spacing	Smax		200		250		
End spacing	x	[mm]			25 ¹⁾		
Minimum channel length	I _{min}		100		15	50	
Minimum edge distance	Cmin		40	5	0	75	100
Minimum thickness of concrete member	h _{min}		70	1(00	120	180

¹⁾ The end spacing may be increased from 25 mm to 35 mm

Anchor channels (PEC-TA) with channel bolts (HBC)


Intended Use

Installation parameters for anchor channels (PEC-TA)

Page 14 of European Technical Assessment ETA-16/0929 of 19 May 2020

English translation prepared by DIBt

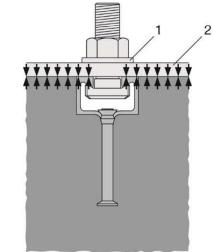
Table 9: Minimum spacing for channel bolts

Channel bolt			M8	M10	M12	M16	M20
Minimum spacing between channel bolts	Scbo,min	[mm]	40	50	60	80	100

 $s_{cbo} =$ spacing between channel bolts

Intended Use

Installation parameters for anchor channels (PEC-TA)

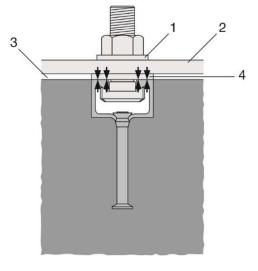

			T _{inst} ¹⁾ [Nm]				
Chann	el bolt	General	General Steel - steel contac					
		4.6, 8.8, A4-50, A4-70	4.6	8.8	A4-50	A4-70		
	M8	7		20	7	15		
28/15	M10	10	2)	40		30		
	M12	13		60]	50		
	M10	15	13	2)		22		
38/17	M12	25	2)	45		50		
	M16	40	-,	100		90		
	M10	15	13	2)	2)	22		
40/22	M12	25		45		50		
	M16	30		100		90		
	M12	25	2)	45	1	50		
50/30	M16	55		100	1	130		
	M20	55		360	1	250		

¹⁾ T_{inst} must not be exceeded

²⁾ Product not available

<u>General</u>: The fixture is in contact with the channel profile and the concrete surface

<u>Steel-steel contact</u>: Fixture is not in contact with the concrete surface. The fixture is fastened to the anchor channel by suitable steel part (e.g. washer)



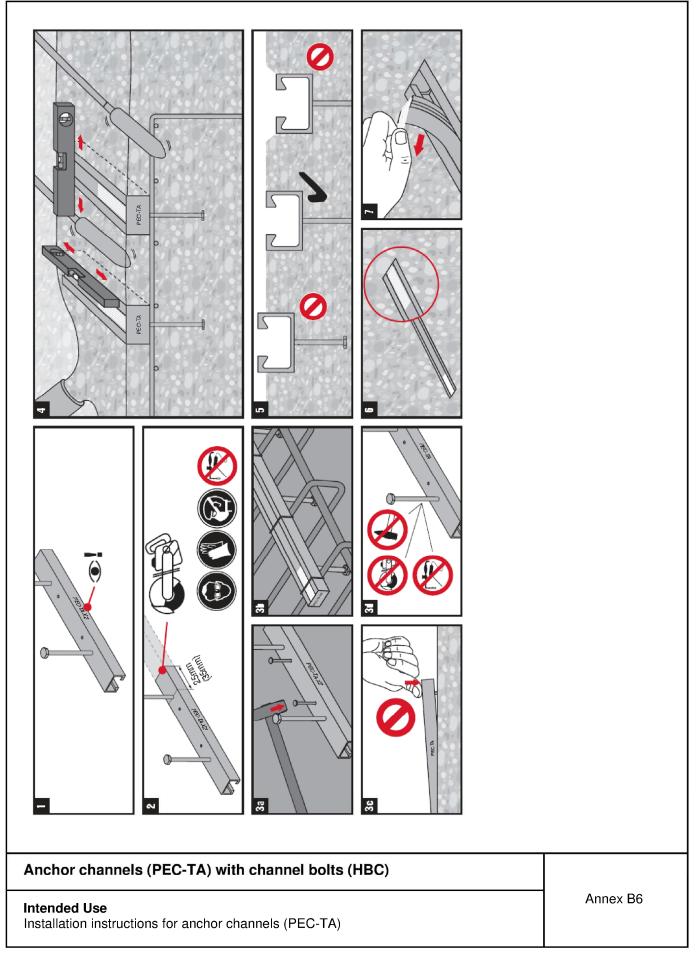
1 washer

2 fixture

3 gap

4 suitable steel part

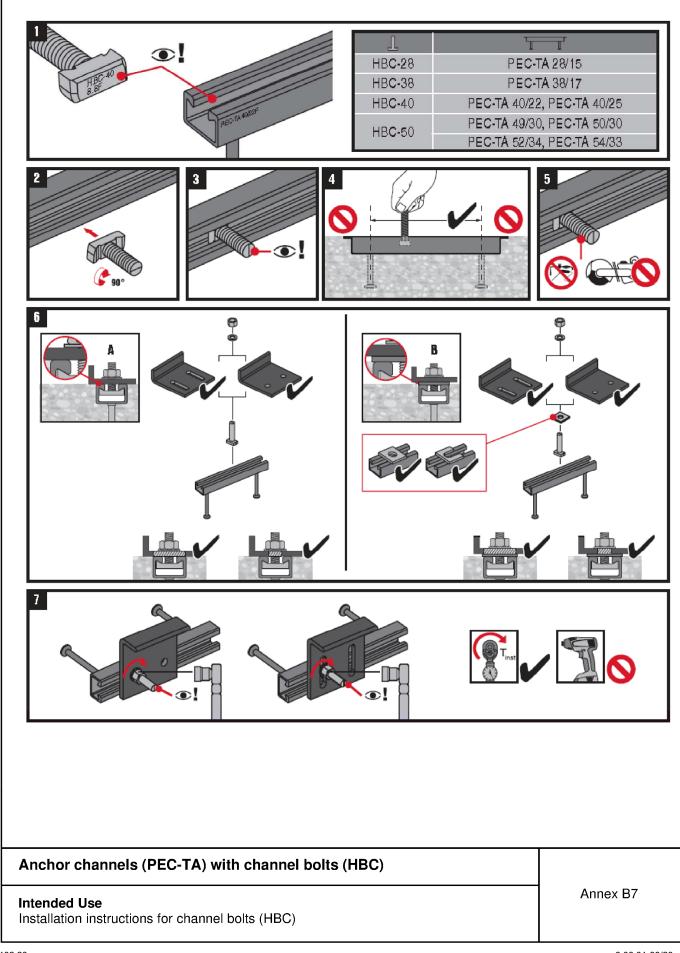
Anchor channels (PEC-TA) with channel bolts (HBC)


Intended Use

Installation parameters for channel bolts (HBC)

Page 16 of European Technical Assessment ETA-16/0929 of 19 May 2020

English translation prepared by DIBt



Page 17 of European Technical Assessment ETA-16/0929 of 19 May 2020

English translation prepared by DIBt

Anchor channel			PEC 40/	-та /22	PEC-TA 40/22 P		PEC-TA 50/30		PEC-TA 50/30 P		PEC-TA 52/34	
Type of anchor			I	R	I	R	I	R	I	R	I	R
Steel failure: Anchor												
Characteristic resistance	N _{Rk,s,a}	[kN]	2	0	31	32	3	1	39	55	5	5
Partial factor	γ _{Ms} ¹⁾	[-]					1	,8				
Steel failure: Connection	betwee	n anch	or and	l chan	nel							
Characteristic resistance	N _{Rk,s,c}	[kN]	2	0	3	2	3	1	4	3	5	5
Partial factor	γ _{Ms,ca} 1)	[-]					1	,8				
Steel failure: Local flexu	re of cha	nnel lip	os									
Characteristic spacing of the channel bolts for N _{Rk,s,I}	SI,N	[mm]	7	9	7	9	9	8	9	8	1()5
Characteristic resistance	N ⁰ Rk,s,I	[kN]	4	0	4	0	4	5	4	5	6	5
Partial factor	γ _{Ms,I} ¹⁾	[-]					1	,8				

¹⁾ In absence of other national regulations

Table 12: Characteristic resistances under tension load – steel failure of cold-formed anchor channels

Anchor channel			PEC-TA 28/15	PEC-TA 38/17	PEC-TA 40/25	РЕС-ТА 49/30	PEC-TA 54/33
Type of anchor			R	R	R	R	R
Steel failure: Anchor					•	•	
Characteristic resistance	N _{Rk,s,a}	[kN]	9	18	20	31	55
Partial factor	γMs ¹⁾	[-]			1,8	•	
Steel failure: Connection	betwee	n anch	nor and chan	nel			
Characteristic resistance	N _{Rk,s,c}	[kN]	9	18	20	31	55
Partial factor	γMs,ca ¹⁾	[-]			1,8		
Steel failure: Local flexu	re of cha	annel li	ips				
Characteristic spacing of the channel bolts for N _{Rk,s,I}	Si,N	[mm]	56	76	80	100	107
Characteristic resistance	N ⁰ Rk,s,I	[kN]	9	18	20	31	55
Partial factor	γ _{Ms,I} 1)	[-]		•	1,8	•	•

Anchor channels (PEC-TA) with channel bolts (HBC)

Performance Data

Characteristic resistances of anchor channels under tension load

Anchor channel			PEC-TA 40/22	PEC-TA 40/22 P	РЕС-ТА 50/30	PEC-TA 50/30 P	PEC-TA 52/34
Steel failure: Flexure of ch	annel						
Characteristic flexural resistance of channel	MRk,s,flex	[Nm]	1013	1828	2084	3885	3435
Partial factor	γMs,flex ¹⁾	[-]			1,15		

¹⁾ In absence of other national regulations

Table 14: Characteristic flexural resistance of cold-formed anchor channels under tension load

Anchor channe	I			PEC-TA 28/15	PEC-TA 38/17	PEC-TA 40/25	PEC-TA 49/30	PEC-TA 54/33
Steel failure: Fle	exure of cha	nnel						
Characteristic flexural	carbon steel	M _{Rk,s,flex}	[Nm]	316	538	979	1669	2929
resistance of channel	stainless steel	IVIRk,s,flex		510	527	979	1702	2832
Partial factor		γMs,flex ¹⁾	[-]			1,15		

¹⁾ In absence of other national regulations

Anchor channels (PEC-TA) with channel bolts (HBC)

Performance Data Characteristic resistances of anchor channels under tension load

Anchor cha	annel			PEC 40/		PEC 40/2		PEC 50/			-та 30 Р	PEC 52/	
Type of an	chor			I	R	1	R	I	R		R		R
Concrete fa	ailure: Pul	l-out failur	е										
Characteris resistance i concrete C1	n cracked			27,0	13,6	27,0	25,6	33,8	21,2	33,8	39,2	68,4	33,2
Characteris resistance i uncracked o C12/15	n	N _{Rk,p}	[kN]	37,8	19,0	37,8	35,8	47,3	29,7	47,3	54,9	95,8	46,5
		C16/20							1,33				
		C20/25							1,67				
		C25/30							2,08				
		C30/37							2,50				
Factor for N	I	C35/45	[]	2,92									
Factor for IN	IRk,p	C40/50	ψc [-]		3								
		C45/55			3				3,75				
		C50/60		4,17									
		C55/67							4,58				
		<u>></u> C60/75							5,00				
Partial facto	or	$\gamma_{Mp} = \gamma_{Mc} {}^{1)}$	[-]						1,5				
Concrete fa	ailure: Coi	ncrete con	e failu	re									
	cracked concrete	k _{cr,N}	[-]	7,	,9	8	,0	8	3,1	8	3,2	8,	7
	uncracked concrete	k _{ucr,N}	[-]	11	,2	11	,5	1	1,6	1	1,7	12	,4
Partial facto	or	γMc ¹⁾	[-]						1,5				
Concrete fa	ailure: Spl	itting											
Characteris distance	tic edge	C _{cr,sp}	[mm]	237 273 282 318 465						65			
Partial facto	or	γMsp = γMc ¹⁾	[-]	1,5									

Anchor channels (PEC-TA) with channel bolts (HBC)

Performance Data

Characteristic resistances of anchor channels under tension load

Anchor ch	nannel			PEC-TA 28/15	РЕС-ТА 38/17	РЕС-ТА 40/25	РЕС-ТА 49/30	PEC-TA 54/33		
Type of ar	nchor			R	R	R	R	R		
Concrete	failure: Pul	l-out failur	е							
Characteri resistance concrete C	in cracked			7,6	13,6	13,6	21,2	33,2		
Characteri resistance uncracked C12/15	in	N _{Rk,p}	[kN]	10,7	19,0	19,0	29,7	46,5		
		C16/20				1,33				
		C20/25								
		C25/30				2,08				
		C30/37				2,50				
E t f l		C35/45		2,92						
Factor for	INRk,p	C40/50	ψc [-]	3,33						
		C45/55		3,75						
		C50/60				4,17				
		C55/67				4,58				
		<u>></u> C60/75				5,00				
Partial fact	or	$\gamma_{Mp} = \gamma_{Mc} ^{1)}$	[-]			1,5				
Concrete	failure: Co	ncrete con	e failu	re 🛛						
Product	cracked concrete	k _{cr,N}	[-]	7,2	7,8	7,9	8,1	8,7		
factor k1	uncracked concrete	k _{ucr,N}	[-]	10,3	11,2	11,2	11,6	12,4		
Partial fact	or	γмс ¹⁾	[-]			1,5				
Concrete	failure: Spl	itting								
Characteri distance	stic edge	C _{cr,sp}	[mm]	ı] 135 228 237 282 465						
Partial fact	or	γMsp = γ _{Mc} ¹⁾	[-]	1,5						

¹⁾ In absence of other national regulations

Anchor channels (PEC-TA) with channel bolts (HBC)

Performance Data

Characteristic resistances of anchor channels under tension load

Table 17: Displacements	of hot-	rolled ar	nchor chann	els under te	ension load		
Anchor channel			PEC-TA 40/22	PEC-TA 40/22 P	PEC-TA 50/30	PEC-TA 50/30 P	PEC-TA 52/34
Tension load	Ν	[kN]	13,9	15,3	14,3	28,4	25,8
Short-term displacement 1)	δ _{N0}	[mm]	2,3	1,1	2,2	1,8	1,4
Long-term displacement 1)	δ _{N∞}	[mm]	4,6	2,2	4,4	3,6	2,8

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips, bending of the channel and slip of the anchor channel in concrete

Table 18: Displacements of cold-formed anchor channels under tension load

Anchor channel			PEC-TA 28/15	PEC-TA 38/17	PEC-TA 40/25	PEC-TA 49/30	PEC-TA 54/33
Tension load	Ν	[kN]	3,6	7,1	7,9	12,3	21,8
Short-term displacement 1)	δ _{N0}	[mm]	0,6	1,3	1,4	1,4	1,6
Long-term displacement 1)	δ _{N∞}	[mm]	1,2	2,6	2,8	2,8	3,2

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips, bending of the channel and slip of the anchor channel in concrete

Anchor channels (PEC-TA) with channel bolts (HBC)

Performance Data Displacements under tension load

Anchor channel			PEC-TA 40/22	PEC-TA 40/22 P	PEC-TA 50/30	PEC-TA 50/30 P	РЕС-ТА 52/34
Steel failure: Anchor							
Characteristic resistance	V _{Rk,s,a,y}	[kN]	26,0	38,0	40,3	60,0	71,5
Partial factor	γ _{Ms} ¹⁾	[-]			1,5		
Steel failure: Connection	ı betwee	n anch	or and chan	nel			
Characteristic resistance	V _{Rk,s,c,y}	[kN]	26,0	38,0	40,3	60,0	71,5
Partial factor	γMs,ca ¹⁾	[-]			1,8		
Steel failure: Local flexu of the char		nnel li	ps under sh	ear load per	pendicular to	o the longitu	ıdinal axis
Characteristic spacing of channel bolts for V _{Rk,s,I}	SI,V	[mm]	80	80	99	99	105
Characteristic resistance	V ⁰ Rk,s,l,y	[kN]	38,0	38,0	60,0	60,0	71,5
Partial factor	γ _{Ms,I} ¹⁾	[-]		-	1,8	<u>.</u>	•

¹⁾ In absence of other national regulations

Table 20: Characteristic resistances under shear load – steel failure of cold-formed anchor channel

Anchor channel			PEC-TA 28/15	PEC-TA 38/17	PEC-TA 40/25	PEC-TA 49/30	PEC-TA 54/33				
Steel failure: Anchor											
Characteristic resistance	$V_{Rk,s,a,y}$	[kN]	9,0	18,0	20,0	31,0	55,0				
Partial factor	γ Ms $^{1)}$	[-]			1,5						
Steel failure: Connection between anchor and channel											
Characteristic resistance	$V_{Rk,s,c,y}$	[kN]	9,0	18,0	20,0	31,0	55,0				
Partial factor	γMs,ca ¹⁾	[-]	1,8								
Steel failure: Local flexu of the chan		nnel li	ps under sh	ear load per	pendicular to	o the longitu	idinal axis				
Characteristic spacing of channel bolts for V _{Rk,s,I}	SI,V	[mm]	56	76	80	100	107				
Characteristic resistance	V ⁰ Rk,s,l,y	[kN]	9,0	18,0	20,0	31,0	55,0				
Partial factor	γMs,I ¹⁾	[-]			1,8						

¹⁾ In absence of other national regulations

Anchor channels (PEC-TA) with channel bolts (HBC)

Performance Data

Characteristic resistances of anchor channels under shear load

Annex C6

Electronic copy of the ETA by DIBt: ETA-16/0929

Anchor	channel			PEC-TA 28/15	PEC-TA 38/17	PEC-TA 40/25	PEC-TA 40/22 (P)	PEC-TA 49/30	PEC-TA 50/30 (P)	PEC-TA 54/33	PEC-TA 52/34	
Concret	e failure: Pr	y out										
Product 1	factor	k ₈	[-]	1,0	2,0							
Partial fa	ctor	γMc ¹⁾	[-]		1,5							
Concret	e failure: Co	oncre	te e	edge								
Product	cracked concrete	k _{cr,V}	[-]	6,	9	7,5						
factor k12	uncracked concrete	k _{ucr,V}	[-]	9,	6	10,5						
Partial fa	ctor	γ _{Mc} ¹⁾ [-] 1,5										

¹⁾ In absence of other national regulations

Table 22: Displacements under shear load of hot-rolled anchor channel

Anchor channel		PEC-TA 40/22	PEC-TA 40/22 P	PEC-TA 50/30	PEC-TA 50/30 P	PEC-TA 52/34	
Shear load	Vy	[kN]	10,3	29,0	16,0	39,7	28,4
Short-term displacement 1)	δ _{V0,y}	[mm]	2,1	2,0	2,6	2,7	3,7
Long-term displacement 1)	δ γ∞ ,y	[mm]	3,1	3,5	3,9	4,0	5,5

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete

Table 23: Displacements under shear load of cold-formed anchor channel

Anchor channel		PEC-TA 28/15	PEC-TA 38/17	PEC-TA 40/25	PEC-TA 49/30	PEC-TA 54/33	
Shear load	Vy	[kN]	3,6	7,1	7,9	12,3	21,8
Short-term displacement 1)	δ _{V0,y}	[mm]	0,6	1,3	1,4	1,4	1,6
Long-term displacement 1)	δ γ∞ ,y	[mm]	0,9	2,0	2,1	2,1	2,4

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete

Table 24: Characteristic resistances under combined tension and shear load of anchor channel

əl								PEC-TA 54/33	PEC-TA 52/34		
ocal	flex							000	02/01		
k 13	[-]		Values according to EN 1992-4:2018, Section 7.4.3.1 or EOTA TR 047, Section B.6.3.1.3								
Steel failure: Anchor and connection between anchor and channel											
k 14	[-]		Values according to EN 1992-4:2018, Section 7.4.3.1 or EOTA TR 047, Section B.6.3.1.4								
	ocal k ₁₃ ncho	ocal flex k ₁₃ [-] nchor ar	28/15 ocal flexure of cha k13 [-] nchor and connect	el 28/15 38/17 ocal flexure of channel lips k ₁₃ [-] nchor and connection betw	el 28/15 38/17 40/25 ocal flexure of channel lips and flexur k13 [-] Values accordion or EO nchor and connection between anche Values accordion Values accordion	el 28/15 38/17 40/25 40/22 (P) ocal flexure of channel lips and flexure of channel lips and flexure of channel lips and flexure of channel lips according to EN 19 or EOTA TR 047, k ₁₃ [-] Values according to EN 19 or EOTA TR 047, nchor and connection between anchor and char k ₁₄ [1]	el 28/15 38/17 40/25 40/22 (P) 49/30 ocal flexure of channel lips and flexure of channel Values according to EN 1992-4:2018 or EOTA TR 047, Section B k ₁₃ [-] Values according to EN 1992-4:2018 or EOTA TR 047, Section B nchor and connection between anchor and channel Values according to EN 1992-4:2018 ku [1] Values according to EN 1992-4:2018	el 28/15 38/17 40/25 40/22 (P) 49/30 50/30 (P) ocal flexure of channel lips and flexure of channel Values according to EN 1992-4:2018, Section 7 or EOTA TR 047, Section B.6.3.1.3 nchor and connection between anchor and channel	28/15 38/17 40/25 40/22 (P) 49/30 50/30 (P) 54/33 ocal flexure of channel lips and flexure of channel Values according to EN 1992-4:2018, Section 7.4.3.1 or EOTA TR 047, Section B.6.3.1.3 nchor and connection between anchor and channel Values according to EN 1992-4:2018, Section 7.4.3.1 Values according to EN 1992-4:2018, Section 7.4.3.1 Values according to EN 1992-4:2018, Section 7.4.3.1 Values according to EN 1992-4:2018, Section 7.4.3.1		

Anchor channels (PEC-TA) with channel bolts (HBC)

Performance Data

Characteristic resistances and displacements of anchor channels under shear load Characteristic resistances under combined tension and shear load

Page 25 of European Technical Assessment ETA-16/0929 of 19 May 2020

English translation prepared by DIBt

Channel bolt					M8	M10	M12	M16	M20
Steel failure									
				4.6			1)		
				8.8	22,4	35,4	44,3	1)
			HBC-28/15	A4-50 ²⁾	17,2		. 1)	
				A4-70 ²⁾	25,6	38,9	51,3	1)
				4.6		23,2		1)	
.		[kN]	HBC-38/17	8.8		-	35,4	55,8	1)
Characteristic resistance	N _{Rk,s}			A4-70 ²⁾		20,5	47,2	53,0	1)
(tension load)				4.6		23,2	,	1)	
			HBC-40/22	8.8	1)	1)	67,4	125,6	. 1)
				A4-70 ²⁾		20,5	59,0	91,0	
				4.6		,	· · · · ·)	
			HBC-50/30	8.8			67,4	125,6	147,
				A4-70 ²⁾		1)	59,0	109,9	121,
			HBC-28/15	4.6		1	2,00	,-	,
Partial factor			HBC-28/15 HBC-38/17	8.8			1,50		
	γмs ³⁾	[-]	HBC-40/22	A4-50 ²⁾			2,86		
			HBC-50/30	A4-70 ²⁾			1,87		
				4.6			1)		
				8.8	14,6	23,2	33,7	1)
			HBC-28/15	A4-50 ²⁾	11,0	,_	,)	
				A4-70	15,4	24,4	35,4	1)
				4.6		13,9		1)	
Characteristic resistance			HBC-38/17	8.8		1)	33,7	62,8	1)
shear load)	V _{Rk,s}	[kN]		A4-70 ²⁾		24,4	35,4	65,9	.,
citodi loddy				4.6	l	13,9		1)	
			HBC-40/22	8.8	1)	23,2	33,7	62,8	1)
				A4-70 ²⁾	ļ	24,4	35,4	65,9	•,
				4.6)	
			HBC-50/30	8.8		1)	33,7	62,8	101,
				A4-70 ²⁾			35,4	65,9	102,
			HBC-28/15	4.6			1,67		
Partial factor	γMs ³⁾	[-]	HBC-38/17	8.8			1,25		
	γMs ³		HBC-40/22	A4-50 ²⁾			2,38		
			HBC-50/30	A4-70			1,56		

¹⁾ Product not available

²⁾ Materials according to Table 6, Annex A6

³⁾ In absence of other national regulations

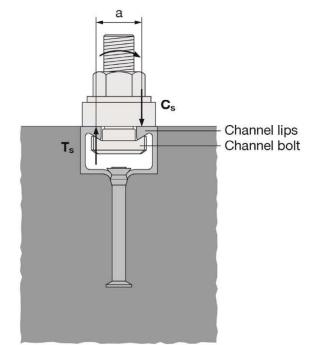
Anchor channels (PEC-TA) with channel bolts (HBC)

Performance Data

Characteristic resistances of channel bolts under tension and shear load

Annex C8

Electronic copy of the ETA by DIBt: ETA-16/0929


Channel bolt					M8	M10	M12	M16	M20	
Steel failure										
		[Nm]	HBC-28/15 HBC-38/17 HBC-40/22 HBC-50/30	4.6	4)	29,9 ³⁾		4)		
Characteristic	M ⁰ _{Rk,s} ⁵⁾			8.8	30,0	59,8	104,8	266,4	538,7	
flexural resistance	IVI*Rk,s*/			A4-50 ²⁾	18,7		4)			
				A4-70 ²⁾	26,2	52,3	91,7	233,1	454,4	
		[-]		4.6		1,67				
Deutial factor				8.8	1,25					
Partial factor	γMs ¹⁾			A4-50 ²⁾	2,38					
			HBC-50/30	A4-70 ²⁾			1,56	4) 266,4) 233,1 2		
			HBC-28/15	28/15	17,3	18,7	20,0	2	1)	
Internel layor arm		[mm]	HBC-38/17	38/17		23,0	24,3	26,3	4)	
Internal lever arm	a		HBC-40/22	40/22	4)	24,3	25,7	27,3	.,	
			HBC-50/30	50/30		4)	29,9	31,7	33,9	

¹⁾ In absence of other national regulations

²⁾ Materials according to Table 6, Annex A6

³⁾ Not applicable for HBC-28/15 and HBC-50/30

⁴⁾ Product not available

⁵⁾ The characteristic flexure resistance according to Table 26 is limited as follows:

 $M^{0}_{Rk,s} \leq 0,5 \cdot N_{Rk,s,l} \cdot a$ ($N_{Rk,s,l}$ according to Table 11 and Table 12)

 $M^{0}_{Rk,s} \leq 0,5 \cdot N_{Rk,s} \cdot a$ (N_{Rk,s} according to Table 25)

a = internal lever arm according to Table 26

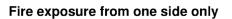
 T_s = tension force acting on the channel lip

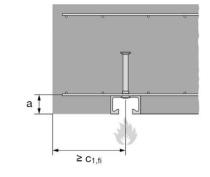
 C_s = compression force acting on the channel lip

Anchor channels (PEC-TA) with channel bolts (HBC)

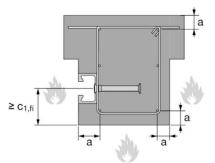
Performance Data

Characteristic flexural resistances of channel bolts under shear load with lever arm


Channel bolt					M10	M12	≥ M16
Steel failure: Anch	or, connection betw	een anc	hor and c	hannel,	local flexur	e of chann	el lip
		R60			0	,8	
Characteristic resistance in cracked concrete	PEC-TA 28/15	R90			0	2)	
		R120	NRk,s,fi		0		
		R60			2	2)	1,9
	PEC-TA 38/17	R90			2	2)	1,3
		R120		[kN]	2	2)	1,0
		R60		[[[[]]]	1,7	з	8,5
C20/25	PEC-TA 40/25 PEC-TA 40/22 (P)	R90	V _{Rk,s,fi}		1,2	²⁾ 3,5 2,2	2,2
		R120			0,9	1	,5
	PEC-TA 49/30	R60				3,8	3,9
	PEC-TA 50/30 (P)	R90	2) 2,5	2,5	2,9		
	PEC-TA 52/34	R120				1,9	2,4
Partial factor			γMs,fi ¹⁾	[-]		1,0	


¹⁾ In absence of other national regulations

²⁾ No performance assessed


Table 28: Minimum axis distance

Anchor c	hannel			PEC-TA 28/15	PEC-TA PEC-TA PEC-TA PEC-TA 28/15 38/17 40/25 40/22 (P)				PEC-TA 50/30 (P)		PEC-TA 52/34
	R60				3	35		50	50	50	50
Min. axis distance	Min. axis distance R90 a	a	[mm]		45				50	50	50
	R120						Ę	55			

Fire exposure from more than one side

Anchor channels (PEC-TA) with channel bolts (HBC)

Performance Data

Characteristic resistance of anchor channels and channel bolts under fire exposure