

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-16/0018 vom 6. Oktober 2020

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Chemofast Injektionssystem UM-H für Beton

Verbunddübel zur Verankerung im Beton

CHEMOFAST Anchoring GmbH Hanns-Martin-Schleyer-Straße 23 47877 Willich DEUTSCHLAND

CHEMOFAST Anchoring GmbH

35 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-01-0601 Edition 04/2020

ETA-16/0018 vom 18. Juli 2019

Europäische Technische Bewertung ETA-16/0018

Seite 2 von 35 | 6. Oktober 2020

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-16/0018

Seite 3 von 35 | 6. Oktober 2020

Besonderer Teil

1 Technische Beschreibung des Produkts

Das "Chemofast Injektionssystem UM-H für Beton" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel UM-H und einem Stahlteil gemäß Anhang A1 besteht.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 und/oder 100 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1 bis C 4, C 6 bis C 7, C 9 bis C 10, B3
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1, C 5, C 8, C 11
Verschiebungen unter Kurzzeit- und Langzeitbelastung	Siehe Anhang C 12 bis C 14
Charakteristischer Widerstand für seismische Leistungskategorie C1und C2	Siehe Anhang 15 bis C 18

3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Europäische Technische Bewertung ETA-16/0018

Seite 4 von 35 | 6. Oktober 2020

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330499-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

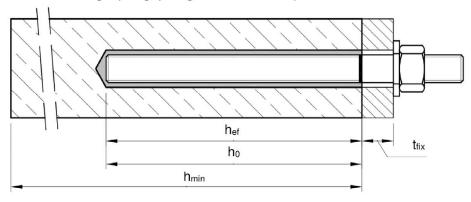
Folgendes System ist anzuwenden: 1

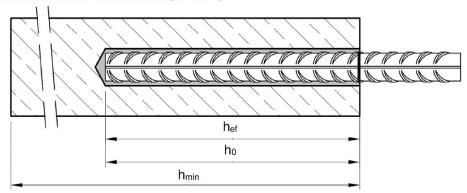
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

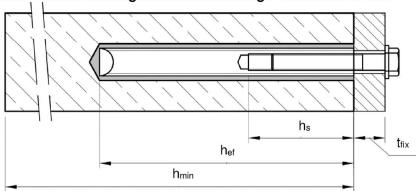
Ausgestellt in Berlin am 6. Oktober 2020 vom Deutschen Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter


Beglaubigt Lange


Einbauzustand Gewindestange M8 bis M30

Vorsteckmontage oder


Durchsteckmontage (Ringspalt gefüllt mit Mörtel)

Einbauzustand Betonstahl Ø8 bis Ø32

Einbauzustand Innengewindeankerstange IG-M6 bis IG-M20

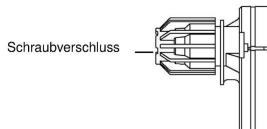
 t_{fix} = Dicke des Anbauteils

h_{ef} = Wirksame Verankerungstiefe

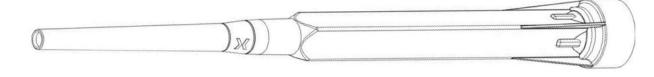
h₀ = Bohrlochtiefe

 h_{min} = Mindestbauteildicke

Chemofast Injektionssystem UM-H für Beton	
Produktbeschreibung Einbauzustand	Anhang A 1


Kartusche: Chemofast UM-H

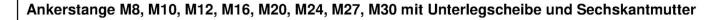
150 ml, 280 ml, 300 ml bis 333 ml und 380 ml bis 420 ml Kartusche (Typ: Koaxial)

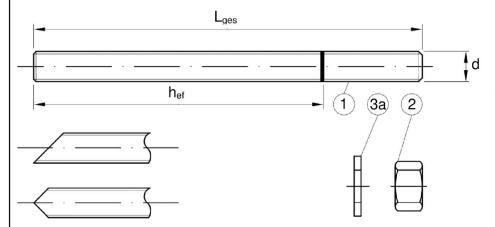

Aufdruck: Chemofast UM-H, Verarbeitungshinweise, Chargennummer, Haltbarkeit, Lagertemperatur, Gefahrennummern, Aushärtezeit und Verarbeitungszeit (abhängig von der Temperatur), Lagertemperatur, Optional mit Kolbenwegskala

235 ml, 345 ml bis 360 ml und 825 ml Kartusche (Typ: "side-by-side")

Aufdruck: Chemofast UM-H, Verarbeitungshinweise, Chargennummer, Haltbarkeit, Lagertemperatur, Gefahrennummern, Aushärtezeit und Verarbeitungszeit (abhängig von der Temperatur), Lagertemperatur, Optional mit Kolbenwegskala

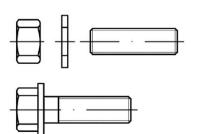
Statikmischer

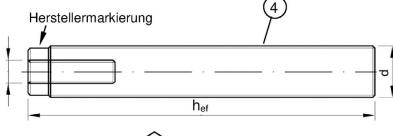

Verfüllstutzen und Mischerverlängerung



Chemofast Injektionssystem UM-H für Beton

Produktbeschreibung Injektionssystem Anhang A 2




Handelsübliche Gewindestange mit:

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1
- Abnahmeprüfzeugnis 3.1 gemäß EN 10204:2004
- Markierung der Setztiefe

Innengewindeankerstange IG-M6, IG-M8, IG-M10, IG-M12, IG-M16, IG-M20

Ankerstange oder Schraube

Markierung: z.B.

Kennzeichnung Innengewinde
Werkszeichen


M8 Gewindegröße (Innengewinde)

A4 zusätzliche Kennung für nichtrostenden Stahl

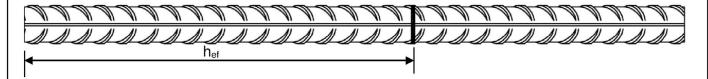
HCR zusätzliche Kennung für hochkorrosionsbeständigen Stahl

Verfüllscheibe und Mischerreduzierstück zum Verfüllen des Ringspalts zwischen Anker und Anbauteil

Chemofast Injektionssystem UM-H für Beton

Produktbeschreibung

Ankerstange, Innengewindeankerstange und Verfüllscheibe


Anhang A 3

	Benennung	Werkstoff					
tal	Ilteile aus verzinktem Stahl (Stah		98 ode	er EN 10263:2001)			
- fe	uerverzinkt ≥ 40 µm gem	näß EN ISO 4042:1999 näß EN ISO 1461:2009 näß EN ISO 17668:2016	und E	EN ISO 10684:2004	+AC:2009 c	oder	
		Festigkeitsklasse		Charakteristische Zugfestigkeit	Charakteris Streckgren		Bruchdehnung
			4.6	f _{uk} = 400 N/mm ²	f _{yk} = 240 N	/mm²	A ₅ > 8%
1	Gewindestange		4.8	f _{uk} = 400 N/mm ²	f _{vk} = 320 N	/mm²	A ₅ > 8%
	- Gowing of the first of the fi	gemäß EN ISO 898-1:2013	_		f _{vk} = 300 N	/mm²	A ₅ > 8%
		EN 130 696-1.2013	5.8	f _{uk} = 500 N/mm ²	f _{vk} = 400 N	/mm²	A ₅ > 8%
				f _{uk} = 800 N/mm ²	•		$A_5 \ge 12\%^{3)}$
			4	für Gewindestange			der 4.8
2	Sechskantmutter	gemäß EN ISO 898-2:2012	5	für Gewindestange			
		EN 130 090-2.2012	8	für Gewindestang	en der Klass	se 8.8	
3a	Unterlegscheibe	Stahl, galvanisch verz (z.B.: EN ISO 887:20 EN ISO 7094:2000)					oder
3b	Verfüllscheibe	Stahl, galvanisch verz	zinkt,	feuerverzinkt oder	diffusionsve	rzinkt	
		Festigkeitsklasse		Charakteristische Zugfestigkeit	Charakteris Streckgren		Bruchdehnung
4	Innengewindeankerstange	gemäß	5.8	$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 400 \text{ N}$	/mm²	A ₅ > 8%
		EN ISO 898-1:2013	8.8	f _{uk} = 800 N/mm ²	f _{vk} = 640 N	/mm²	A ₅ > 8%
licl	itrostender Stahl A2 (Werkstoff 1 itrostender Stahl A4 (Werkstoff 1	.4401 / 1.4404 / 1.4571	/ 1.43	362 oder 1.4578, ge	emäß EN 10	088-1:2	2014)
10C	TIKOTOSIOTISDESIATIQIYET Statit (V		.4565	, gemäß EN 10088 Charakteristische		stische	,
10C	TROTTOSIOTISDESIATIQUE SIATIT (V	Festigkeitsklasse		Charakteristische Zugfestigkeit	Charakteris Streckgren	ze	Bruchdehnung
1	Gewindestange 1)4)	Festigkeitsklasse	50	Charakteristische Zugfestigkeit f _{uk} = 500 N/mm²	Charakteris Streckgren: f _{yk} = 210 N	ze /mm²	Bruchdehnung A ₅ ≥ 8%
				Charakteristische Zugfestigkeit f _{uk} = 500 N/mm² f _{uk} = 700 N/mm²	Charakteris Streckgren: f _{yk} = 210 N f _{yk} = 450 N	ze /mm² /mm²	Bruchdehnung $A_5 \ge 8\%$ $A_5 \ge 12\%^{3)}$
		Festigkeitsklasse gemäß	50	Charakteristische Zugfestigkeit $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$	Charakteris Streckgren: $f_{yk} = 210 \text{ N/}$ $f_{yk} = 450 \text{ N/}$ $f_{yk} = 600 \text{ N/}$	ze /mm² /mm² /mm²	Bruchdehnung A ₅ ≥ 8%
1	Gewindestange 1)4)	Festigkeitsklasse gemäß EN ISO 3506-1:2009	50 70 80 50	Charakteristische Zugfestigkeit f _{uk} = 500 N/mm² f _{uk} = 700 N/mm² f _{uk} = 800 N/mm² für Gewindestang	Charakteris Streckgren: $f_{yk} = 210 \text{ N}_{yk}$ $f_{yk} = 450 \text{ N}_{yk}$ $f_{yk} = 600 \text{ N}_{yk}$ en der Klass	ze /mm² /mm² /mm² se 50	Bruchdehnung $A_5 \ge 8\%$ $A_5 \ge 12\%^{3)}$
		Festigkeitsklasse gemäß	50 70 80 50 70	Charakteristische Zugfestigkeit f _{uk} = 500 N/mm² f _{uk} = 700 N/mm² f _{uk} = 800 N/mm² für Gewindestang für Gewindestang	Charakteris Streckgren: $f_{yk} = 210 \text{ N}$, $f_{yk} = 450 \text{ N}$, $f_{yk} = 600 \text{ N}$, en der Klassen der Klass	ze /mm² /mm² /mm² se 50 se 70	Bruchdehnung $A_5 \ge 8\%$ $A_5 \ge 12\%^{3)}$
2	Gewindestange 1)4)	Festigkeitsklasse gemäß EN ISO 3506-1:2009 gemäß	50 70 80 50 70 80 / 1.43 / 1.44 29 odd	Charakteristische Zugfestigkeit f _{uk} = 500 N/mm² f _{uk} = 700 N/mm² f _{uk} = 800 N/mm² für Gewindestang für G	Charakteris Streckgren: $f_{yk} = 210 \text{ N}$ $f_{yk} = 450 \text{ N}$ $f_{yk} = 600 \text{ N}$ en der Klass en der Klass of oder 1.45 52 oder 1.45 18-1: 2014	ze //mm² //mm² //mm² //mm² se 50 se 70 se 80 441, EN 78, EN	Bruchdehnung $A_5 \ge 8\%$ $A_5 \ge 12\%^{3)}$ $A_5 \ge 12\%^{3)}$ $10088-1:2014$ $10088-1:2014$
1 2 3a	Gewindestange 1)4) Sechskantmutter1)4)	Festigkeitsklasse gemäß EN ISO 3506-1:2009 gemäß EN ISO 3506-1:2009 A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:20)	50 70 80 50 70 80 / 1.43 / 1.44 29 ode 06, Ef	Charakteristische Zugfestigkeit f _{uk} = 500 N/mm² f _{uk} = 700 N/mm² f _{uk} = 800 N/mm² für Gewindestang für Gewindestang für Gewindestang s07 / 1.4311 / 1.4564 / 1.4565, EN 1008 N ISO 7089:2000, E	Charakteris Streckgren: $f_{yk} = 210 \text{ N}$ $f_{yk} = 450 \text{ N}$ $f_{yk} = 600 \text{ N}$ en der Klass en der Klass en der Klass 7 oder 1.45 8-1: 2014 EN ISO 7093	ze //mm² //mm² //mm² //mm² se 50 se 70 se 80 //41, EN 678, EN 3:2000 //ml	Bruchdehnung $A_5 \ge 8\%$ $A_5 \ge 12\%^{3}$ $A_5 \ge 12\%^{3}$ $10088-1:2014$ $10088-1:2014$
1 2 3a	Gewindestange 1)4) Sechskantmutter1)4) Unterlegscheibe Verfüllscheibe	Festigkeitsklasse gemäß EN ISO 3506-1:2009 gemäß EN ISO 3506-1:2009 A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:200 EN ISO 7094:2000)	50 70 80 50 70 80 / 1.43 / 1.44 29 ode 06, El	Charakteristische Zugfestigkeit f _{uk} = 500 N/mm² f _{uk} = 700 N/mm² f _{uk} = 800 N/mm² für Gewindestang für Gewindestang für Gewindestang sor / 1.4311 / 1.456 to 4 / 1.4571 / 1.436 er 1.4565, EN 1008 N ISO 7089:2000, E ochkorrosionsbestä Charakteristische Zugfestigkeit	Charakteris Streckgren: $f_{yk} = 210 \text{ N}$. $f_{yk} = 450 \text{ N}$. $f_{yk} = 600 \text{ N}$. en der Klassen der Klassen der Klassen der Klassen der Lassen Lassen der L	ze /mm² /mm² /mm² se 50 se 70 se 80 441, EN 3:2000 nl	Bruchdehnung $A_5 \ge 8\%$ $A_5 \ge 12\%^{3)}$ $A_5 \ge 12\%^{3)}$ $10088-1:2014$ $10088-1:2014$ oder Bruchdehnung
1 2 3a	Gewindestange 1)4) Sechskantmutter1)4) Unterlegscheibe	gemäß EN ISO 3506-1:2009 gemäß EN ISO 3506-1:2009 A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:20) EN ISO 7094:2000) Nichtrostender Stahl Festigkeitsklasse gemäß	50 70 80 50 70 80 / 1.43 / 1.44 29 ode 06, EI A4, H	Charakteristische Zugfestigkeit f _{uk} = 500 N/mm² f _{uk} = 700 N/mm² f _{uk} = 800 N/mm² für Gewindestange für Gewindestange für Gewindestange 807 / 1.4311 / 1.456 804 / 1.4571 / 1.436 807 / 1.4565, EN 1008 80 ISO 7089:2000, E ochkorrosionsbestä Charakteristische Zugfestigkeit f _{uk} = 500 N/mm²	Charakteris Streckgren: fyk = 210 N fyk = 450 N fyk = 600 N en der Klass en der Klass en der Klass 37 oder 1.45 32 oder 1.45 38-1: 2014 EN ISO 7093 andiger Stah Charakteris Streckgren: fyk = 210 N	ze //mm² //mm² //mm² se 50 se 70 se 80 41, EN 678, EN 3:2000 nl stische ze //mm²	Bruchdehnung $A_5 \ge 8\%$ $A_5 \ge 12\%^{3)}$ $A_5 \ge 12\%^{3)}$ $10088-1:2014$ $10088-1:2014$ oder Bruchdehnung $A_5 > 8\%$
1 2 3a	Gewindestange 1)4) Sechskantmutter1)4) Unterlegscheibe Verfüllscheibe	gemäß EN ISO 3506-1:2009 gemäß EN ISO 3506-1:2009 A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:200 EN ISO 7094:2000) Nichtrostender Stahl Festigkeitsklasse	50 70 80 50 70 80 / 1.43 / 1.44 29 ode 06, EI A4, H	Charakteristische Zugfestigkeit f _{uk} = 500 N/mm² f _{uk} = 700 N/mm² f _{uk} = 800 N/mm² für Gewindestange für Gewindestange für Gewindestange 807 / 1.4311 / 1.456 804 / 1.4571 / 1.436 807 / 1.4565, EN 1008 80 ISO 7089:2000, E ochkorrosionsbestä Charakteristische Zugfestigkeit f _{uk} = 500 N/mm²	Charakteris Streckgren: $f_{yk} = 210 \text{ N}$. $f_{yk} = 450 \text{ N}$. $f_{yk} = 600 \text{ N}$. en der Klassen der Klassen der Klassen der Klassen der Lassen Lassen der L	ze //mm² //mm² //mm² se 50 se 70 se 80 41, EN 678, EN 3:2000 nl stische ze //mm²	Bruchdehnung $A_5 \ge 8\%$ $A_5 \ge 12\%^{3)}$ $A_5 \ge 12\%^{3)}$ $10088-1:2014$ $10088-1:2014$ oder Bruchdehnung
1 2 3a 3b 4 1) 2) 3)	Gewindestange 1)4) Sechskantmutter1)4) Unterlegscheibe Verfüllscheibe	gemäß EN ISO 3506-1:2009 gemäß EN ISO 3506-1:2009 A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:200 EN ISO 7094:2000) Nichtrostender Stahl Festigkeitsklasse gemäß EN ISO 3506-1:2009 windestangen und Mutter	50 70 80 50 70 80 / 1.43 / 1.42 29 ode 06, El A4, H	Charakteristische Zugfestigkeit f _{uk} = 500 N/mm² f _{uk} = 700 N/mm² f _{uk} = 800 N/mm² für Gewindestangtür Justall Just	Charakteris Streckgren: fyk = 210 N fyk = 450 N en der Klass en der Klass en der Klass oder 1.45 62 oder 1.45 63 oder 1.45 63 oder 1.45 63 oder 1.45 64 oder 1.45 65 oder 1.45 65 oder 1.45 65 oder 1.45 66 oder 1.45 67 oder 1.45 68 oder 1.45 69 oder 1.45 60 oder 1	ze //mm² //mm² //mm² se 50 se 70 se 80 41, EN 78, EN 3:2000 nl stische ze //mm²	Bruchdehnung $A_5 \ge 8\%$ $A_5 \ge 12\%^{3)}$ $A_5 \ge 12\%^{3)}$ $10088-1:2014$ $10088-1:2014$ oder Bruchdehnung $A_5 > 8\%$ $A_5 > 8\%$
1 2 3a 3b 4 1) 2) 3) 4)	Gewindestange 1)4) Sechskantmutter1)4) Unterlegscheibe Verfüllscheibe Innengewindeankerstange1)2) Festigkeitsklasse 70 oder 80 für Gerfür IG-M20 nur Festigkeitsklasse 50 A5 > 8% Bruchdehnung, wenn keine	gemäß EN ISO 3506-1:2009 gemäß EN ISO 3506-1:2009 A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:20) EN ISO 7094:2000) Nichtrostender Stahl Festigkeitsklasse gemäß EN ISO 3506-1:2009 windestangen und Mutter Verwendung für seismistenden Stahl A4 und hoch	50 70 80 50 70 80 / 1.43 / 1.42 29 ode 06, El A4, H	Charakteristische Zugfestigkeit f _{uk} = 500 N/mm² f _{uk} = 700 N/mm² f _{uk} = 800 N/mm² für Gewindestangtür Justall Just	Charakteris Streckgren: fyk = 210 N fyk = 450 N en der Klass en der Klass en der Klass oder 1.45 62 oder 1.45 63 oder 1.45 63 oder 1.45 63 oder 1.45 64 oder 1.45 65 oder 1.45 65 oder 1.45 65 oder 1.45 66 oder 1.45 67 oder 1.45 68 oder 1.45 69 oder 1.45 60 oder 1	ze //mm² //mm² //mm² se 50 se 70 se 80 41, EN 78, EN 3:2000 nl stische ze //mm²	Bruchdehnung $A_5 \ge 8\%$ $A_5 \ge 12\%^{3)}$ $A_5 \ge 12\%^{3)}$ $10088-1:2014$ $10088-1:2014$ oder Bruchdehnung $A_5 > 8\%$ $A_5 > 8\%$

Betonstahl \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 24, \varnothing 25, \varnothing 28, \varnothing 32

- Mindestwerte der bezogenen Rippenfläche f_{R,min} gemäß EN 1992-1-1:2004+AC:2010
- Die Rippenhöhe muss 0,05d ≤ h ≤ 0,07d betragen (d: Nenndurchmesser des Stabes; h: Rippenhöhe des Stabes)

Tabelle A2: Werkstoffe

Teil	Benennung	Werkstoff
Beto	nstahl	
1	Betonstahl gemäß EN 1992-1-1:2004+AC:2010, Anhang C	Stäbe und Betonstabstahl vom Ring Klasse B oder C fyk und k gemäß NDP oder NCL gemäß EN 1992-1-1/NA fuk = ftk = k•fyk

Chemofast Injektionssystem UM-H für Beton

Produktbeschreibung
Werkstoffe Betonstahl

Anhang A 5

Spezifizierung des Verwendungszwecks Beanspruchung der Verankerung bei statischen und quasi-statischen Lasten:								
	für eine Nutzungsda	auer von 50 Jahren						
Verankerungsgrund	ungerissener Beton	gerissener Beton	ungerissener Beton	gerissener Beton				
Hammerbohren (HD), Hammerbohren mit Hohlbohrer (HDB), oder Pressluftbohren (CD)	M8 bis Ø8 bis IG-M6 bis	ø32,	M8 bis M30, Ø8 bis Ø32, IG-M6 bis IG-M20					
Temperaturbereich:	I: - 40 °C II: - 40 °C III: - 40 °C IV: - 40 °C	bis $+80 ^{\circ}C^{2)}$ bis $+120 ^{\circ}C^{3)}$		bis +40 °C¹) bis +80 °C²)				
Beanspruchung der Verankeru	ıng bei seismischer	Einwirkung:						
	für Leistungs	kategorie C1	für Leistungs	kategorie C2				
Verankerungsgrund		ungerissener und	gerissener Beton					
Hammerbohren (HD), Hammerbohren mit Hohlbohrer (HDB), oder Pressluftbohren (CD)	M8 bis Ø8 bis		M12 b	is M24				
Temperaturbereich:	I: - 40 °C II: - 40 °C III: - 40 °C IV: - 40 °C	bis $+80 ^{\circ}C^{2)}$ bis $+120 ^{\circ}C^{3)}$	I: - 40 °C II: - 40 °C III: - 40 °C IV: - 40 °C	bis $+80 ^{\circ}C^{2)}$ bis $+120 ^{\circ}C^{3)}$				

¹⁾ max. Langzeit-Temperatur +24 °C und max. Kurzzeit-Temperatur +40 °C

Verankerungsgrund:

- Verdichteter, bewehrter oder unbewehrter Normalbeton ohne Fasern gemäß EN 206:2013 + A1:2016.
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206:2013 + A1:2016.

Anwendungsbedingungen (Umweltbedingungen):

- · Bauteile unter den Bedingungen trockener Innenräume (alle Materialien).
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2006+A1:2015 entsprechend der Korrosionsbeständigkeitsklassen:
 - Nichtrostender Stahl A2 nach Anhang A 4, Tabelle A1: CRC II
 - Nichtrostender Stahl A4 nach Anhang A 4, Tabelle A1: CRC III
 - Hochkorrosionsbeständiger Stahl HCR nach Anhang A 4, Tabelle A1: CRC V

Chemofast Injektionssystem UM-H für Beton	Anhone D.d
Verwendungszweck Spezifikationen	Anhang B 1

²⁾ max. Langzeit-Temperatur +50 °C und max. Kurzzeit-Temperatur +80 °C

³⁾ max. Langzeit-Temperatur +72 °C und max. Kurzzeit-Temperatur +120 °C

⁴⁾ max. Langzeit-Temperatur +100 °C und max. Kurzzeit-Temperatur +160 °C

Bemessung:

- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.).
- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Die Bemessung der Verankerungen erfolgt nach EN 1992-4:2018 und Technical Report TR 055, Fassung Februar 2018.

Einbau:

- · Trockener, nasser Beton oder Wassergefüllte Bohrlöcher (nicht Seewasser).
- · Bohrlochherstellung durch Hammer- (HD), Hohl- (HDB) oder Pressluftbohren (CD).
- Überkopfmontage erlaubt.
- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.

Chemofast Injektionssystem UM-H für Beton

Verwendungszweck
Spezifikationen

Anhang B 2

Tabelle B1: Montagekennwerte für Gewindestangen											
Dübelgröße Gewind	lestange			M8	M10	M12	M16	M20	M24	M27	M30
Durchmesser Gewind	destange	d = d _{nom}	[mm]	8	10	12	16	20	24	27	30
Bohrernenndurchmes	sser	d ₀	[mm]	10	12	14	18	22	28	30	35
Effoltive Verenkerun	antinfo	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Effektive Verankerun	gstiere	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Durchgangsloch im	Vorstec	kmontage d _f ≤	[mm]	9	12	14	18	22	26	30	33
anzuschließenden Bauteil 1)	Durchste	eckmontage d _f	[mm]	12	14	16	20	24	30	33	40
Maximales Montagedrehmoment		max T _{inst} ≤	[Nm]	10	20	402)	60	100	170	250	300
Mindestbauteildicke	h _{min}	[mm]	h _{ef} + 30	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d ₀							
Minimaler Achsabstand s _{min}			[mm]	40	50	60	75	95	115	125	140
Minimaler Randabsta	ınd	c _{min}	[mm]	35	40	45	50	60	65	75	80

¹⁾ für Anwendungen unter Seismischer Einwirkung darf das Durchgangsloch im Anbauteil maximal d₁ + 1mm betragen oder alternativ ist der Ringspalt zwischen Gewindestange und Anbauteil mit Mörtel kraftschlüssig zu verfüllen.

Tabelle B2: Montagekennwerte für Betonstahl

Größe Betonstahl				Ø 10 ¹⁾	Ø 12 ¹⁾	Ø 14	Ø 16	Ø 20	Ø 24 ¹⁾	Ø 25 ¹⁾	Ø 28	Ø 32
Durchmesser Betonstahl	$d = d_{nom}$	[mm]	8	10	12	14	16	20	24	25	28	32
Bohrernenndurchmesser	d_0	[mm]	10 12	12 14	14 16	18	20	25	30 32	30 32	35	40
Effektive Verenkerungstiefe	h _{ef,min}	[mm]	60	60	70	75	80	90	96	100	112	128
Effektive Verankerungstiefe	h _{ef,max}	[mm]	160	200	240	280	320	400	480	500	560	640
Mindestbauteildicke	h _{min}	[mm]		h _{ef} + 30 mm ≥ 100 mm			$h_{\text{ef}} + 2d_0$					
Minimaler Achsabstand	s _{min}	[mm]	40	50	60	70	75	95	120	120	130	150
Minimaler Randabstand	c _{min}	[mm]	35	40	45	50	50	60	70	70	75	85

¹⁾ beide Bohrernenndurchmesser können verwendet werden

Tabelle B3: Montagekennwerte für Innengewindeankerstangen

Größe Innengewindeankerstang	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Innendurchmesser der Hülse	d ₂	[mm]	6	8	10	12	16	20
Außendurchmesser der Hülse 1)	$d = d_{nom}$	[mm]	10	12	16	20	24	30
Bohrernenndurchmesser	d ₀	[mm]	12	14	18	22	28	35
Effektive Verankerungstiefe	h _{ef,min}	[mm]	60	70	80	90	96	120
Ellektive veralikerungstiele	h _{ef,max}	[mm]	200	240	320	400	480	600
Durchgangsloch im anzuschließenden Bauteil	d _f ≤	[mm]	7	9	12	14	18	22
Maximales Montagedrehmoment	max T _{inst} ≤	[Nm]	10	10	20	40	60	100
Einschraublänge min/max	l _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40
Mindestbauteildicke	h _{min}	[mm]		h _{ef} + 30 mm ≥ 100 mm				
Minimaler Achsabstand	s _{min}	[mm]	50	60	75	95	115	140
Minimaler Randabstand	c _{min}	[mm]	40	45	50	60	65	80

¹⁾ Mit metrischem Gewinde gemäß EN 1993-1-8:2005+AC:2009

Chemofast Injektionssystem UM-H für Beton

Verwendungszweck

Montagekennwerte

Anhang B 3

²⁾ Maximales Drehmoment für M12 mit Festigkeitsklasse 4.6 ist 35 Nm

Tabelle B4: Parameter für Reinigungs- und Setzzubehör Installationsrichtung und Innen $d_{b,min}$ Verfüll-Gewinde d_b min. Betonstahl gewinde-Anwendung von Bohrer - Ø Bürsten - Ø stutzen stangen Bürsten - Ø hülse HD, HDB, CD Verfüllstutzen [mm] [mm] [mm] [mm] [mm] [mm] M8 8 10 RB10 11,5 10,5 8/10 IG-M6 M10 12 RB12 13,5 12,5 Kein Verfüllstutzen notwendig 10 / 12 IG-M8 M12 14 RB14 14,5 15,5 12 16 RB16 17,5 16,5 VS18 M16 14 IG-M10 18 RB18 20,0 18,5 16 VS20 20 RB20 22,0 20,5 22 M20 IG-M12 RB22 24,0 22,5 VS22 20 25 RB25 27,0 25,5 VS25

24 / 25

24 / 25

28

32

IG-M16

IG-M20

28

30

32

35

40

RB28

RB30

RB32

RB35

RB40

30.0

31,8

34,0

37,0

43,5

28,5

30,5

32,5

35,5

40,5

VS28

VS30

VS32

VS35

VS40

MAC - Handpumpe (Volumen 750 ml) Bohrerdurchmesser (d₀): 10 mm bis 20 mm

Bohrlochtiefe (h₀): < 10 d_s Nur im ungerissenen Beton

M24

M27

M30

CAC - Empfohlene Druckluftpistole (min 6 bar)

 $h_{ef} >$

250 mm

 $h_{ef} >$

250 mm

all

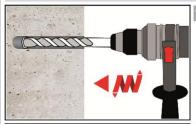
Bohrerdurchmesser (d₀): alle Durchmesser

Bohrerdurchmesser (d₀): alle Durchmesser

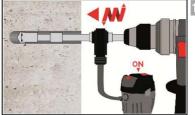
Das Hohlbohrersystem besteht aus dem Heller Duster Expert Hohlbohrer und einem Klasse M Staubsauger mit einem minimalen Unterdruck von 253 hPa und einer minimalen Durchflussmenge von 150 m³/h (42 l/s).

Chemofast Injektionssystem UM-H für Beton

Verwendungszweck


Reinigungs- und Installationszubehör

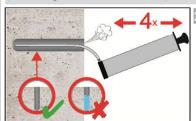
Anhang B 4


Setzanweisung

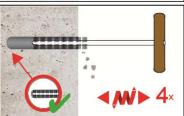
Bohrloch erstellen

1a. Hammer (HD) oder Druckluftbohren (CD)

Bohrloch drehschlagend mit vorgeschriebenem Bohrerdurchmesser (Tabelle B1, B2 oder B3) und gewählter Bohrlochtiefe erstellen. Weiter mit Schritt 2. Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

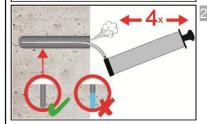


1b. Hohlbohrersystem (HDB) (siehe Anhang B 3)


Bohrloch drehschlagend mit vorgeschriebenem Bohrerdurchmesser (Tabelle B1, B2 oder B3) und gewählter Bohrlochtiefe erstellen. Das Hohlbohrersystem entfernt den Bohrstaub und reinigt das Bohrloch während des Bohrens (Alle Konditionen). Weiter mit Schritt 3. Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

Achtung! Vor der Reinigung muss im Bohrloch stehendes Wasser entfernt werden.

MAC: Reinigung in trockenen und feuchten für Durchmesser $d_0 \le 20$ mm und Bohrlochtiefe $h_0 \le 10d_{nom}$ (nur ungerissener Beton!)



2a. Das Bohrloch vom Bohrlochgrund her 4x vollständig mit einer Handpumpe (Anhang B 4) ausblasen, bis die ausströmende Luft staubfrei ist.

2b. Bürstendurchmesser prüfen (Tabelle B4). Das Bohrloch ist mit geeigneter Drahtbürste > d_{b,min} (Tabelle B4) minimum 4x mit Drehbewegungen auszubürsten.

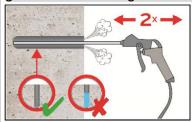
Wird der Bohrlochgrund mit der Bürste nicht erreicht, muss eine Bürstenverlängerung verwendet werden.

Abschließend das Bohrloch erneut vom Bohrlochgrund her 4x vollständig mit einer Handpumpe (Anhang B 4) ausblasen, bis die ausströmende Luft staubfrei ist.

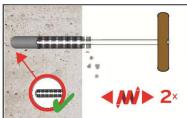
Nach der Reinigung ist das Bohrloch bis zum Injizieren des Mörtels vor erneutem Verschmutzen in einer geeigneten Weise zu schützen. Ggf. ist die Reinigung unmittelbar vor dem Injizieren des Mörtels zu wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrloches führen.

Chemofast Injektionssystem UM-H für Beton

Verwendungszweck

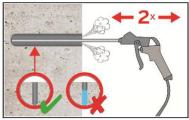

Setzanweisung

Anhang B 5

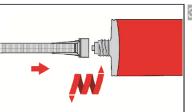


Setzanweisung (Fortsetzung)

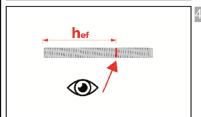
CAC: Reinigung in trockenen, feuchten und wassergefüllten Bohrlöchern für alle Durchmesser in gerissenem und ungerissenem Beton

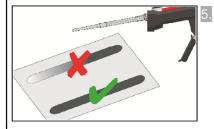


2a. Das Bohrloch vom Bohrlochgrund her 2x vollständig mit Druckluft (min. 6 bar) (Anhang B 4) ausblasen, bis die ausströmende Luft staubfrei ist. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.



Bürstendurchmesser prüfen (Tabelle B4). Das Bohrloch ist mit geeigneter Drahtbürste > d_{b,min} (Tabelle B4) minimum 2x mit Drehbewegungen auszubürsten.


Wird der Bohrlochgrund mit der Bürste nicht erreicht, muss eine Bürstenverlängerung verwendet werden.


Abschließend das Bohrloch erneut vom Bohrlochgrund her 2x vollständig mit Druckluft (min. 6 bar) (Anhang B 4) ausblasen, bis die ausströmende Luft staubfrei ist. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.

Den mitgelieferten Statikmischer fest auf die Kartusche aufschrauben und Kartusche in eine geeignete Auspresspistole einlegen. Bei jeder Arbeitsunterbrechung länger als die maximale Verarbeitungszeit (Tabelle B5) und bei jeder neuen Kartusche ist der Statikmischer zu erneuern.

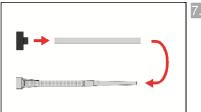
Vor dem Injizieren des Mörtels die geforderte Setztiefe auf der Ankerstange markieren.

Vor dem Injizieren in das Bohrloch, den Vorlauf solange verwerfen, bis sich eine gleichmäßig graue Mischfarbe eingestellt hat, jedoch min. 3 volle Hübe.

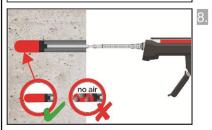
Chemofast Injektionssystem UM-H für Beton

Verwendungszweck

Setzanweisung (Fortsetzung)


Anhang B 6

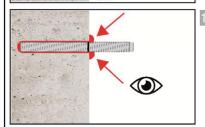
Setzanweisung (Fortsetzung)



Gereinigtes Bohrloch vom Bohrlochgrund her ca. zu 2/3 mit Verbundmörtel befüllen. Langsames Zurückziehen des Statikmischers aus dem Bohrloch verhindert die Bildung von Lufteinschlüssen. Wird der Bohrlochgrund nicht erreicht, muss eine passende Mischerverlängerung verwendet werden. Die temperaturrelevanten Verarbeitungszeiten (Tabelle B5) sind zu beachten.

Verfüllstutzen und Mischerverlängerung sind gem. Tabelle B4 für die folgenden Anwendungen zu verwenden:

- Horizontalmontage (horizontal Richtung) und Bodenmontage (vertikal Richtung nach unten): Bohrer-Ø d₀ ≥ 18 mm und Setztiefe hef > 250mm
- Überkopfmontage (vertikale Richtung nach oben): Bohrer-Ø d₀ ≥ 18 mm
 Den Mischer, die Mischerverlängerung und den Verfüllstutzen vor den Injizieren zusammenstecken

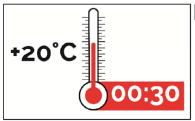

Den Verfüllstutzen bis zum Bohrlochgrund einführen und den Mörtel injizieren. Wird der Bohrlochgrund nicht erreicht, muss eine passende Mischerverlängerung verwendet werden.

Während des Initilerens wird der Verfüllstutzen durch den Staudruck des Mörtels auf natürliche Weise aus dem Bohrloch gedrückt. Die temperaturrelevanten Verarbeitungszeiten (Tabelle B4) sind zu beachten.

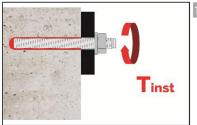
Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Setztiefe einführen.

Die Ankerstange muss frei von Schmutz-, Fett, Öl und anderen Fremdmaterialien sein.

10. Nach der Installation des Ankers muss der Ringspalt zwischen Ankerstange und Beton, bei Durchsteckmontage zusätzlich auch im Anbauteil, komplett mit Mörtel ausgefüllt sein. Tritt keine Masse nach Erreichen der Verankerungstiefe heraus, ist diese Voraussetzung nicht erfüllt und die Anwendung muss vor Beendigung der Verarbeitungszeit wiederholt werden.


11. Bei Überkopfmontage ist die Ankerstange bis zum Start der Aushärtung zu fixieren (z.B. Holzkeile).

Chemofast Injektionssystem UM-H für Beton


Verwendungszweck Setzanweisung (Fortsetzung) Anhang B 7

Setzanweisung (Fortsetzung)

Die angegebene Aushärtezeit muss eingehalten werden. Anker während der Aushärtezeit nicht bewegen oder belasten. (siehe Tabelle B5).

Nach vollständiger Aushärtung kann das Anbauteil mit bis zu dem maximalen Drehmoment (Tabelle B1 oder B3) montiert werden. Die Mutter muss mit einem kalibriertem Drehmomentschlüssel festgezogen werden. Bei der Vorsteckmontage kann optional der Ringspalt zwischen Ankerstange und Anbauteil nachträglich mit Mörtel verfüllt werden. Dafür Unterlegscheibe durch Verfüllscheibe ersetzen und Mischerreduzierung auf den Mischer stecken. Der Ringspalt ist verfüllt, wenn Mörtel austritt.

Tabelle B5: Maximale Verarbeitungszeiten und minimale Aushärtezeiten

Beton ⁻	Tempe	eratur	Verarbeitungszeit	Mindest-Aushärtezeit in trockenem Beton	Mindest-Aushärtezeit in feuchtem Beton		
- 5 °C	bis	- 1 °C	50 min	5 h	10 h		
0 °C	bis	+ 4 °C	25 min	3,5 h	7 h		
+ 5 °C	bis	+ 9 °C	15 min	2 h	4 h		
+ 10 °C	bis	+ 14 °C	10 min	1 h	2 h		
+ 15 °C	bis	+ 19 °C	6 min	40 min	80 min		
+ 20 °C	bis	+ 29 °C	3 min	30 min	60 min		
+ 30 °C	bis	+ 40 °C	2 min	30 min	60 min		
Kartusch	entem	peratur	eratur +5°C bis +40°C				

Chemofast Injektionssystem UM-H für Beton	
Verwendungszweck Setzanweisung (Fortsetzung) Aushärtezeit	Anhang B 8

Т	abelle C1: Charakteristische Werte d Stahlquertragfähigkeit vor		_	_	_	und					
Gı	röße Gewindestangen			M8	M10	M12	M16	M20	M24	M27	M30
Sp	pannungsquerschnitt	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
CI	narakteristische Zugtragfähigkeit, Stahlversager	1 ¹⁾		•	•					•	
St	ahl, Festigkeitsklasse 4.6 und 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
St	ahl, Festigkeitsklasse 5.6 und 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	ahl, Festigkeitsklasse 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
Ni	chtrostender Stahl A2, A4 und HCR, Klasse 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Ni	chtrostender Stahl A2, A4 und HCR, Klasse 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
Ni	chtrostender Stahl A4 und HCR, Klasse 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
C	narakteristische Zugtragfähigkeit, Teilsicherheit		rt ²⁾		•						
St	ahl, Festigkeitsklasse 4.6 und 5.6	γ _{Ms,N}	[-]				2,0				
Stahl, Festigkeitsklasse 4.8, 5.8 und 8.8			[-]				1,5				
Ni	chtrostender Stahl A2, A4 und HCR, Klasse 50	γ _{Ms,N}	[-]	2,86							
Ni	chtrostender Stahl A2, A4 und HCR, Klasse 70	γ _{Ms,N}	[-]				1,87	7			
Ni	chtrostender Stahl A4 und HCR, Klasse 80	γ _{Ms,N}	[-]				1,6				
Charakteristische Quertragfähigkeit, Stahlversagen 1)											
	Stahl, Festigkeitsklasse 4.6 und 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
larn	Stahl, Festigkeitsklasse 5.6 und 5.8	V° _{Rk,s}	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
ebelarm	Stahl, Festigkeitsklasse 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
e H	Nichtrostender Stahl A2, A4 und HCR, Klasse 50	V⁰ _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Ohn	Nichtrostender Stahl A2, A4 und HCR, Klasse 70	V° _{Rk.s}	[kN]	13	20	30	55	86	124	_3)	_3)
)	Nichtrostender Stahl A4 und HCR, Klasse 80	V° _{Rk,s}	[kN]	15	23	34	63	98	141	_3)	_3)
	Stahl, Festigkeitsklasse 4.6 und 4.8	Mº _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
Ш	Stahl, Festigkeitsklasse 5.6 und 5.8	M⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
Hebelarm	Stahl, Festigkeitsklasse 8.8	M⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
		M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
Mit	Nichtrostender Stahl A2, A4 und HCR, Klasse 70		[Nm]	26	52	92	232	454	784	_3)	_3)
	Nichtrostender Stahl A4 und HCR, Klasse 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	_3)	_3)
	narakteristische Quertragfähigkeit, Teilsicherhei										
St	ahl, Festigkeitsklasse 4.6 und 5.6	γ _{Ms,V}	[-]				1,67	7			
St	ahl, Festigkeitsklasse 4.8, 5.8 und 8.8	γ _{Ms,V}	[-]				1,25	5			
Ni	chtrostender Stahl A2, A4 und HCR, Klasse 50	γ _{Ms,V}	[-]				2,38	3			
Ni	chtrostender Stahl A2, A4 und HCR, Klasse 70	$\gamma_{Ms,V}$	[-]				1,56	3			

Werte sind nur gültig für den hier angegebenen Spannungsquerschnitt A_s. Die Werte in Klammern gelten für unterdimensionierte Gewindestange mit geringerem Spannungsquerschnitt A_s für feuerverzinkte Gewindestangen gemäß. EN ISO 10684:2004+AC:2009.

γ_{Ms,V}

[-]

1,33

Nichtrostender Stahl A4 und HCR, Klasse 80

³⁾ Dübelvariante nicht in ETA enthalten

Chemofast Injektionssystem UM-H für Beton	
Leistungen Charakteristische Werte der Stahlzugtragfähigkeit und Stahlquertragfähigkeit von Gewindestangen	Anhang C 1

²⁾ Sofern andere nationalen Regelungen fehlen

Tabelle C2:	Charakteristisc Belastungsarte		für Beto	onausbruch und Spalten für alle
Dübelgröße				Alle Dübelarten und -größen
Betonausbruch				
ungerissener Be	ton	k _{ucr,N}	[-]	11,0
gerissener Betor	า	k _{cr,N}	[-]	7,7
Randabstand		c _{cr,N}	[mm]	1,5 h _{ef}
Achsabstand		s _{cr,N}	[mm]	2 c _{cr,N}
Spalten				
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Randabstand	$2.0 > h/h_{ef} > 1.3$	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Achsabstand	•	s _{cr.sp}	[mm]	2 c _{cr.sp}

Chemofast Injektionssystem UM-H für Beton	
Leistungen Charakteristische Werte für Betonausbruch und Spalten für alle Belastungsarten	Anhang C 2

Dübelgröße Gewindes	stangen			М8	M10	M12	M16	M20	M24	M27	M30	
Stahlversagen		l N I	T I									
Charakteristische Zugtr	agfähigkeit	N _{Rk,s}	[kN]		•		(oder si)		
Teilsicherheitsbeiwert		γMs,N	[-]			;	siehe Ta	belle C	1			
Kombiniertes Versage												
Charakteristische Verbu	undiragianigkeii											
I: 40°C/24°C	trockener und	^τ Rk,ucr	[N/mm²]	17	17	16	15	14	13	13	13	
등 II: 80°C/50°C feuchter Betc		^τ Rk,ucr	[N/mm ²]	17	17	16	15	14	13	13	13	
Gmperatur Booc/20°C III: 120°C/72°C III: 80°C/50°C	wassergefülltes Bohrloch	^τ Rk,ucr	[N/mm²]	15	14	14	13	12	12	11	11	
IV: 160°C/100°C		^τ Rk,ucr	[N/mm²]	12	11	11	10	9,5	9,0	9,0	9,0	
Charakteristische Verbu	undtragfähigkeit	im gerisseı	nen Beton C	20/25	1		ı					
I: 40°C/24°C	trockener und	^τ Rk,cr	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0	
emperature de la	feuchter Beton, sowie	^τ Rk,cr	[N/mm²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0	
E UII: 120°C/72°C	II: 120°C/72°C wassergefülltes Bohrloch		[N/mm²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0	
IV: 160°C/100°C	Domoch	^τ Rk,cr	[N/mm²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5	
Reduktionsfaktor ${\psi^0}_{ extsf{sus}}$	im gerissenen u	nd ungeris	senen Beto	n C20/2	25							
I: 40°C/24°C							0,	90				
in: 80°C/50°C	trockener und feuchter Beton,	$ \Psi^0_{\text{sus}} $ [-]	.,				0,	87				
emperation of the state of the	sowie wassergefülltes		[-]				0,	75				
IV: 160°C/100°C	Bohrloch		0,66									
		C25/30	'				1,	02				
	_	C30/37		1,04								
Erhöhungsfaktor für Be	ton	C35/45		1,07								
Ψс		C40/50 C45/55		1,08 1,09								
		C50/60						10				
Betonausbruch		000/00						10				
Relevante Parameter						;	siehe Ta	belle C	2			
Spalten												
Relevante Parameter						;	siehe Ta	belle C	2			
Montagebeiwert												
	MAC				1	,2		Kein	ne Leistu	ıng bew	ertet	
für trockenen und feuch	nten CAC						1	,0				
Beton	HDB	^γ inst	[-]					,2				
für wassergefülltes Bohrloch CAC								,4				
Chomofost Injections	ovetom LIM LLE	ir Doton										
Chemofast Injektions	system UM-H ft	n peton								ang C	_	

Dübelgröße Gewindest	tangen			M8	M10	M12	M16	M20	M24	M27	M30	
Stahlversagen												
Charakteristische Zugtra	agfähigkeit	N _{Rk,s}	[kN]	A _s • f _{uk} (oder siehe Tabelle C1)								
Teilsicherheitsbeiwert		$\gamma_{Ms,N}$	[-]	siehe Tabelle C1								
Kombiniertes Versage	n durch Heraus			sbruch								
Charakteristische Verbu	ndtragfähigkeit	im ungerisse	enen Betor	n C20/2	5							
ਰੀ ਦੀ ਜ਼ਿਲ੍ਹਾ ਵਿੱਚ ਵਿੱਚ ਵਿੱਚ ਵਿੱਚ ਵਿੱਚ ਵਿੱਚ ਵਿੱਚ ਵਿੱਚ	rockener und euchter Beton, sowie	^τ Rk,ucr,100	[N/mm²]	17	17	16	15	14	13	13	13	
H: 80°C/50°C	wassergefülltes Bohrloch	^τ Rk,ucr,100	[N/mm²]	17	17	16	15	14	13	13	13	
Charakteristische Verbu	ndtragfähigkeit	im gerissene	en Beton C	20/25								
rutare l: 40°C/24°C f	rockener und euchter Beton,	^τ Rk,cr,100	[N/mm²]	5,5	6,0	6,5	6,5	6,5	6,5	6,5	6,5	
m d II. 80°C/50°C \	sowie wassergefülltes Bohrloch	^τ Rk,cr,100	[N/mm²]	5,5	6,0	6,5	6,5	6,5	6,5	6,5	6,5	
L	C25/30						1,	02				
		C30/37		1,04								
Erhöhungsfaktor für Beto	on	C35/45		1,07								
Ψс		C40/50		1,08								
		C45/55		1,09								
		C50/60					1,	10				
Betonausbruch												
Relevante Parameter							siehe la	belle C	2			
Spalten							· . –					
Relevante Parameter							siehe la	belle C	2			
Montagebeiwert												
£" 4 £ .	MAC				1	,2		Keir	ie Leistu	ıng bew	ertet	
für trockenen und feucht Beton	cac CAC	24	r 1				1	,0				
HDB		γ _{inst}	[-]	1,2								
für wassergefülltes Bohr				1,4								

Chemofast Injektionssystem UM-H für Beton	Anhana C 4
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 4

Dübelgröße Gewindestangen			M8	M10	M12	M16	M20	M24	M27	M30
Stahlversagen ohne Hebelarm										
Charakteristische Quertragfähigkeit Stahl, Festigkeitsklasse 4.6, 4.8, 5.6 und 5.8	V ⁰ Rk,s	[kN]	[kN] 0,6 • A _s • f _{uk} (oder siehe Tabelle C1)							
Charakteristische Quertragfähigkeit Stahl, Festigkeitsklasse 8.8 Nichtrostender Stahl A2, A4 und HCR, alle Festigkeitsklassen	V ⁰ Rk,s	[kN]	0,5 ⋅ A _s ⋅ f _{uk} (oder siehe Tabelle C1)							
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]	siehe Tabelle C1							
Duktilitätsfaktor	k ₇	[-]	[-] 1,0							
Stahlversagen mit Hebelarm										
Charakteristisches Biegemoment	M ⁰ Rk,s	[Nm]		1,	2 · W _{el}	· f _{uk} (od	er siehe	Tabelle	e C1)	
Elastisches Widerstandsmoment	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Teilsicherheitsbeiwert	γ̃Ms,V	[-]		•		siehe T	abelle C	71		
Betonausbruch auf der lastabgewandt	en Seite									
Faktor	k ₈	[-]				:	2,0			
Montagebeiwert	γ _{inst}	[-]					1,0			
Betonkantenbruch										
Effektive Dübellänge	If	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mn					300mm		
Außendurchmesser des Dübels	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Montagebeiwert	γ _{inst}	[-]	1,0							

Chemofast Injektionssystem UM-H für Beton	Anhong C 5
Leistungen Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 5

Dübelgröße Innengewindea	ınkerstangen			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Stahlversagen ¹⁾		T			1	T	ı	Γ	.		
Charakteristische Zugtragfäh	igkeit, <u>5.8</u>	N _{Rk,s}	[kN]	10	17	29	42	76	123		
Stahl, Festigkeitsklasse	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196		
Teilsicherheitsbeiwert 5.8 und	8.8 b	Y _{Ms,N}	[-]		1,5						
Charakteristische Zugtragfähigkeit, Nichtrostender Stahl A4 und HCR, Klasse 70 ²⁾			[kN]	14	14 26 41 59 110						
Teilsicherheitsbeiwert		$\gamma_{Ms,N}$	[-]		1,87 2,8						
Kombiniertes Versagen dur	rch Herausziehen	und Be	etonausbr	uch							
Charakteristische Verbundtra	gfähigkeit im unge	erissene		20/25				T			
<u> </u>	trockener und	^τ Rk,ucr	[N/mm ²]	17	16	15	14	13	13		
HI: 120°C/50°C	c/50°C feuchter Beton, sowie	^τ Rk,ucr	[N/mm ²]	17	16	15	14	13	13		
H: 40°C/24°C H: 80°C/50°C H: 120°C/72°C V: 160°C/100°C	wassergefülltes	^τ Rk,ucr	[N/mm ²]	14	14	13	12	12	11		
N: 160°C/100°C	Bohrloch	τ _{Rk,ucr}		11	11	10	9,5	9,0	9,0		
Charakteristische Verbundtra	 gfähigkeit im geris						,				
≟ I: 40°C/24°C	trockener und	τ _{Rk,cr}	[N/mm ²]	7,5	8,0	9,0	8,5	7,0	7,0		
토 년 II: 80°C/50°C	feuchter Beton,	τ _{Rk,cr}	[N/mm²]	7,5	8,0	9,0	8,5	7,0	7,0		
1: 40°C/24°C 1: 80°C/50°C	sowie		[N/mm²]	6,5	7,0	7,5	7,0	6,0	6,0		
[V: 160°C/100°C	wassergefülltes Bohrloch	^τ Rk,cr						-	· ·		
		^τ Rk,cr	[N/mm²]	5,5	6,0	6,5	6,0	5,5	5,5		
Reduktionsfaktor ψ ⁰ sus im ge	erissenen und unge	erissene	n Beton C	20/25							
占 I: 40°C/24°C	trockener und					0,	90				
## ## ## ## ## ## ## ## ## ## ## ## ##	feuchter Beton,	0				0,	87				
T: 40°C/24°C II: 80°C/50°C III: 120°C/72°C IV: 160°C/100°C	sowie wassergefülltes	Ψ^0 sus	Ψ^0 sus [-]			0,	75				
Б ПV: 160°C/100°C	Bohrloch					0.	66				
		Cź	1 25/30				02				
			30/37	1,04							
Erhöhungsfaktor für Beton		C	35/45			1,	07				
$\Psi_{\mathbf{c}}$			40/50	1,08							
			45/55	1,09							
.		C!	50/60			1,	10				
Betonausbruch Relevante Parameter						aiaba Ta	abelle C2				
Spalten						Sierie 12	abelle CZ				
Relevante Parameter						siehe Ta	abelle C2				
Montagebeiwert						0.00					
	MAC				1,2		Keine	Leistung b	ewertet		
für trockenen und feuchten B		γ_{inst}	[-]				,0				
(" ("III D	HDB	- inst	L 1				,2				
für wassergefülltes Bohrloch 1) Befestigungsschrauben ode der Innengewindeankerstan Festigkeitsklasse gelten für 2) für IG-M20 Festigkeitsklasse	gen entsprechen. I die Innengewindea	Die chara	akteristische	en Tragfäh	iigkeiten fü	destens der ir Stahlvers	sagen der				
Chemofast Injektionssyster	m IIM-H für Betor	า									

Dübelgröße Innengewind	eankerstan	gen			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Stahlversagen ¹⁾												
Charakteristische Zugtragfähigkeit, 5. Stahl, Festigkeitsklasse 8.		8 N _{Rk}	,S	[kN]	10	17	29	42	76	123		
				[kN]	16	27	46	67	121	196		
Teilsicherheitsbeiwert 5.8 und 8.8			N	[-]		•	1	,5		,		
Charakteristische Zugtragfärostender Stahl A4 und HC			,s	[kN]	14	26	41	59	110	124		
Teilsicherheitsbeiwert			N	[-]		•	1,87			2,86		
Kombiniertes Versagen d	lurch Herau	sziehen	und Be	tonausbri	uch							
Charakteristische Verbundt	tragfähigkeit	im unge	rissener	n Beton C2	20/25							
를 등 1: 40°C/24°C f	rockener un euchter Beto sowie	17-	ucr,100	[N/mm²]	17	16	15	14	13	13		
II: 80°C/50°C	wassergefülltes Bohrloch		ucr,100	[N/mm²]	17	16	15	14	13	13		
Charakteristische Verbundt	tragfähigkeit	im geris	senen E	Seton C20/2	25	I	1					
The second secon		΄ Ιτ	cr,100	[N/mm²]	6,0	6,5	6,5	6,5	6,5	6,5		
	sowie vassergefüll [.] Bohrloch	es _{τ_{Rk,},}	cr,100	[N/mm²]	6,0	6,5	6,5	6,5	6,5	6,5		
<u>'</u>			C25/	/30	1,02							
			C30/	/37			1,	04				
Erhöhungsfaktor für Beton			C35/					07				
Ψс			C40/					80				
			C45/					09				
			C50/	60			1,	10				
Betonausbruch												
Relevante Parameter							siehe Ta	abelle C2				
Spalten Relevante Parameter							-:-b- T-	-lll - 00				
Montagebeiwert							siene ra	abelle C2				
inontagebeiwert	MAC	<u> </u>				1,2		Keine	Leistung b			
für trockenen und feuchten						٦,٢	1	,0	Loistung	- November		
.soononon ana roaditon	HDB			[-]				,2				
		1										

ür wassergefülltes Bohrloch CAC 1,4

3) Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen der angegebenen Festigkeitsklasse gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel.

4) für IG-M20 Festigkeitsklasse 50 gültig

Chemofast Injektionssystem UM-H für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 7

Tabelle C8: Charakte statische				r Querti	ragfähig	keit unt	er statis	cher un	nd quasi-	
Dübelgröße Innengewindea	nkers	tangen		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Stahlversagen ohne Hebela	rm ¹⁾					•		•		
Charakteristische	5.8	V ⁰ Rk,s	[kN]	5	9	15	21	38	61	
Quertragfähigkeit, Stahl, Festigkeitsklasse	8.8	V ⁰ Rk,s	[kN]	8	14	23	34	60	98	
Teilsicherheitsbeiwert 5.8 und	l 8.8	γ _{Ms,V}	[-]			•	1,25			
Charakteristische Quertragfähigkeit, nicht-rostender Stahl A4 und l Festigkeitsklasse 70 ²⁾	V ⁰ Rk,s	[kN]	7	13	20	30	55	40		
Teilsicherheitsbeiwert	[-]			1,56			2,38			
Duktilitätsfaktor	[-]				1,0					
Stahlversagen mit Hebelarn										
Charakteristisches	5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325	
Biegemoment, Stahl, Festigkeitsklasse	8.8	M⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519	
Teilsicherheitsbeiwert 5.8 und	18.8	γ _{Ms,V}	[-]	1,25						
Charakteristisches Biegemom nicht-rostender Stahl A4 und I Festigkeitsklasse 70 ²⁾		M ⁰ Rk,s	[Nm]	11	26	52	92	233	456	
Teilsicherheitsbeiwert		γ _{Ms,V}	[-]	1,56						
Betonausbruch auf der lasta	abgew	andten S	eite							
Faktor		k ₈	[-]				2,0			
Montagebeiwert		γ _{inst}	[-]				1,0			
Betonkantenbruch										
Effektive Dübellänge					min	(h _{ef} ; 12 • d	nom)		min(h _{ef} ; 300mm)	
Außendurchmesser des Dübels d _{nom} [mm]			[mm]	10 12 16 20 24 30						
Montagebeiwert		γinst	[-]				1,0			

¹⁾ Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen der angegebenen Festigkeitsklasse gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel.

Chemofast Injektionssystem UM-H für Beton	Anhana C O
Leistungen Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 8

²⁾ für IG-M20 Festigkeitsklasse 50 gültig

1	elle C9: Chara statis	cher Bela													
Dübe	lgröße Betonstahl					Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahl	versagen														
Chara	kteristische Zugtra	gfähigkeit		$N_{Rk,s}$	[kN]					A _s ·	f _{uk} 1)				
Stahls	spannungsquerschi	nitt		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsid	cherheitsbeiwert			γ _{Ms,N}	[-]	1,42)									
	oiniertes Versager														
Chara	kteristische Verbur	ndtragfähigkei	it im	ungerisse			25						Г		
<u> </u>	I: 40°C/24°C	trockener un		^τ Rk,ucr	[N/mm ²]	14	14	14	14	13	13	13	13	13	13
erat eich	II: 80°C/50°C	feuchter Bet	on,	^τ Rk,ucr	[N/mm ²]	14	14	14	14	13	13	13	13	13	13
mpe	wassergefülltes			^τ Rk,ucr	[N/mm ²]	13	12	12	12	12	11	11	11	11	11
Te	IV: 160°C/100°C	Bohrloch		^τ Rk,ucr	[N/mm²]	9,5	9,5	9,5	9,0	9,0	9,0	9,0	9,0	8,5	8,5
Charakteristische Verbundtragfähigkeit im gerissenen Beton C20/25															
<u></u>	I: 40°C/24°C	trockener un	d	τ _{Rk,cr}	[N/mm ²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
aratı Sich	II: 80°C/50°C	feuchter Bet	on,	τ _{Rk,cr}	[N/mm ²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
Temperatur- bereich	III: 120°C/72°C	sowie wassergefüll	tes	τ _{Rk,cr}	[N/mm²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0
ē	Wassergeruntes $10.100 \text{C} \text{N} \text{N}$					4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0
Redul	ktionsfaktor ψ ⁰ sus i	m gerissenen	und		enen Beto	n C20	/25				•			•	
<u></u>	I: 40°C/24°C	trockener un	d							0,	90				
rat ich	II: 80°C/50°C	feuchter Bet	on,	0	[-]	0,87									
Temperatur- bereich	III: 120°C/72°C	sowie wassergefüll	toc	Ψ^0 sus		0,75									
Ter	IV: 160°C/100°C	Bohrloch	100			0,66									
				C2	5/30	1,02									
				C3	0/37					1,	04				
Erhöh	ungsfaktor für Beto	n		-	5/45						07				
Ψc					0/50						80				
					5/55						09				
Retor	nausbruch			<u> </u>	0/60					1,	10				
	ante Parameter								si	ehe Ta	abelle	C2			
Spalte															
	ante Parameter								sie	ehe Ta	abelle	C2			
Montagebeiwert															
		MA]				1,2				eine Le	eistung	g bewe	rtet
für trockenen und feuchten Beton CAC HDB Yinst [-]											<u>,0</u>				
rn.				· IIIot	"						,2				
	ssergefülltes Bohrl			_						1	,4				
1) f _{uk} ist den Spezifikationen des Betonstahls zu entnehmen 2) Sofern andere nationalen Regelungen fehlen															

Chemofast Injektionssystem UM-H für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 9

Tab		arakteristisch tischer Belast		_	_	_						d qua	asi-	
Dübe	Igröße Betonsta	nhl			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 3
	versagen				Ø 8 Ø 10 Ø 12 Ø 14 Ø 16 Ø 20 Ø 24 Ø 25 Ø 28 Ø									
Chara	akteristische Zug	tragfähigkeit	N _{Rk,s}	[kN]	$A_s \cdot f_{uk}^{1)}$									
Stahls	spannungsquers	chnitt	As	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsi	cherheitsbeiwert		γ _{Ms,N}	[-]			<u>l</u>	l	1.	4 ²⁾	I	ı		
Kombiniertes Versagen durch Herausziehen und Betor					sbruc	h								
		oundtragfähigkeit i												
eratur- eich	I: 40°C/24°C	trockener und feuchter Beton,	^τ Rk,ucr,100	[N/mm²]	14	14	14	14	13	13	13	13	13	13
Titrockener und feuchter Beton, sowie wassergefülltes Bohrloch			^τ Rk,ucr,100	[N/mm²]	14	14	14	14	13	13	13	13	13	13
Charakteristische Verbundtragfähigkeit im gerissenen Beto						i								
Temperatur- bereich	I: 40°C/24°C	trockener und feuchter Beton, sowie	^τ Rk,cr,100	[N/mm²]	4,5	4,5	4,5	4,5	4,5	4,0	4,0	4,0	4,0	4,0
Tempe	II: 80°C/50°C	wassergefülltes Bohrloch	^τ Rk,cr,100	[N/mm²]	4,5	4,5	4,5	4,5	4,5	4,0	4,0	4,0	4,0	4,0
		•	C25		1,02									
			C30		1,04									
	nungsfaktor für B	eton	C35		1,07									
Ψ_{C}			C40.							08 09				
			C50							10				
Betor	nausbruch								.,					
Relev	ante Parameter							si	ehe Ta	abelle	C2			
Spalten														
Relevante Parameter								si	ehe Ta	abelle	C2			
Mont	Montagebeiwert									1				
für trockenen und feuchten Beton MAC CAC HDB		γ _{inst}	[-]			1,2			,0 ,2	eine Le	eistung	g bewe	rtet	
für wa	assergefülltes Bo	hrloch CAC								,4				
41. 4														

¹⁾ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen²⁾ Sofern andere nationalen Regelungen fehlen

Chemofast Injektionssystem UM-H für Beton	Ambana C 10
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 10

Tabelle C11: Charakteri statischer		erte de	er Qu	ertrag	gfähi	gkeit	unter	stati	sche	r und	quas	și-
Dübelgröße Betonstahl			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen ohne Hebelarm		'				I						
Charakteristische Quertragfähigkeit	V ⁰ Rk,s	[kN]	0,50 • A _s • f _{uk} ²⁾									
Stahlspannungsquerschnitt	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]					1,	5 ²⁾				
Duktilitätsfaktor	k ₇	[-]					1	,0				
Stahlversagen mit Hebelarm												
Charakteristische Biegemoment	M ⁰ Rk,s	[Nm]					1.2 • W	el • f _{uk}	1)			
Elastisches Widerstandsmoment	W _{el}	[mm³]	50	98	170	269	402	785	1357	1534	2155	3217
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]					1,	5 ²⁾				
Betonausbruch auf der lastabge	ewandten Seit	te										
Faktor	k ₈	[-]					2	,0				
Montagebeiwert	Y _{inst}	[-]					1	,0				
Betonkantenbruch												
Effektive Dübellänge	I _f	[mm]	min(h _{ef} ; 12 • d _{nom}) min(h _{ef} ; 300mm)									
Außendurchmesser des Dübels	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Montagebeiwert	γ _{inst}	[-]					1	,0				

 $^{^{\}rm 1)}$ $\rm f_{uk}$ ist den Spezifikationen des Betonstahls zu entnehmen $^{\rm 2)}$ Sofern andere nationalen Regelungen fehlen

Chemofast Injektionssystem UM-H für Beton	A., b., 0.44
Leistungen Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 11

Tabelle C12: Verschiebung unter Zugbeanspruchung ¹⁾ (Gewindestange)												
Dübelgröße Gewindes	stange		М8	M10	M12	M16	M20	M24	M27	M30		
Ungerissener Beton unter statischer und quasi-statischer Belastung für eine Nutzungsdauer von 50 und 100 Jahren												
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046		
I: 40°C/24°C II: 80°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060		
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048		
III: 120°C/72°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062		
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179		
IV: 160°C/100°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184		
Gerissener Beton unte	er statischer und	d quasi-statisch	er Belas	tung fü	r eine Nı	utzungs	dauer v	on 50 ur	nd 100 J	ahren		
Temperaturbereich I: 40°C/24°C	δ_{N0} -Faktor	[mm/(N/mm²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106		
II: 80°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137		
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110		
III: 120°C/72°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143		
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412		
IV: 160°C/100°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424		

¹⁾ Berechnung der Verschiebung

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Faktor} \cdot \tau; \hspace{1cm} \tau\text{: einwirkende Verbundspannung unter Zugbelastung}$

 $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor} \cdot \tau;$

Tabelle C13: Verschiebung unter Querbeanspruchung¹⁾ (Gewindestange)

Dübelgröße Gewinde	М8	M10	M12	M16	M20	M24	M27	M30		
Gerissener und unge	rissener Beton u	nter statischer u	ınd qua	si-statis	cher Be	lastung				
Alle	δ_{V0} - Faktor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
Temperaturbereiche	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05		

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · V;

V: einwirkende Querlast

 $\delta_{V\infty} = \delta_{V\infty}\text{-Faktor} \cdot V;$

Chemofast Injektionssystem UM-H für Beton

Leistungen

Verschiebungen unter statischer und quasi-statischer Belastung (Gewindestange)

Anhang C 12

Tabelle C14: Vers	schiebung u	nter Zugbeans	spruchu	ng¹) (Inn	engewir	ndeanke	rstange)	
Dübelgröße Innengew	indeankerstang	je	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Ungerissener Beton u Jahren	nter statischer	und quasi-statisc	her Belast	ung für ei	ne Nutzunç	sdauer vo	on 50 und	100
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,032	0,034	0,037	0,039	0,042	0,046
II: 80°C/50°C	I: $40^{\circ}\text{C}/24^{\circ}\text{C}$ II: $80^{\circ}\text{C}/50^{\circ}\text{C}$ $\delta_{\text{N}_{\infty}}$ -Faktor		0,042	0,044	0,047	0,051	0,054	0,060
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,034	0,035	0,038	0,041	0,044	0,048
III: 120°C/72°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,044	0,045	0,049	0,053	0,056	0,062
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,126	0,131	0,142	0,153	0,163	0,179
IV: 160°C/100°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,129	0,135	0,146	0,157	0,168	0,184
Gerissener Beton unte	er statischer un	d quasi-statische	r Belastun	g für eine	Nutzungso	dauer von	50 und 100) Jahren
Temperaturbereich I: 40°C/24°C	δ_{N0} -Faktor	[mm/(N/mm²)]	0,083	0,085	0,090	0,095	0,099	0,106
II: 80°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,170	0,110	0,116	0,122	0,128	0,137
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,086	0,088	0,093	0,098	0,103	0,110
III: 120°C/72°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,111	0,114	0,121	0,127	0,133	0,143
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,321	0,330	0,349	0,367	0,385	0,412
IV: 160°C/100°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,330	0,340	0,358	0,377	0,396	0,424

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$; τ : einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor} \cdot \tau;$

Tabelle C15: Verschiebung unter Querbeanspruchung¹⁾ (Innengewindeankerstange)

Dübelgröße Innengev	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Gerissener und unge	rissener Beto	n unter statisc	cher und qu	asi-statiscl	ner Belastu	ng		
Alle	δ_{V0} -Faktor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04
Temperaturbereiche	$\delta_{V\infty}$ -Faktor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor· V; V: einwirkende Querlast

 $\delta_{V\infty} = \delta_{V\infty}$ -Faktor· V;

Chemofast Injektionssystem UM-H für Beton	
Leistungen Verschiebungen unter statischer und quasi-statischer Belastung (Innengewindeankerstange)	Anhang C 13

Tabelle C16: Verschiebung unter Zugbeanspruchung ¹⁾ (Betonstahl)												
Dübelgröße Betons	tahl		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Ungerissener Betor Jahren	n unter statis	scher und quas	si-statis	cher B	elastur	ıg für e	ine Nut	zungsd	auer vo	on 50 u	nd 100	
Temperaturbereich	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,042	0,043	0,045	0,048
I: 40°C/24°C II: 80°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,054	0,055	0,058	0,063
Temperaturbereich	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,044	0,045	0,047	0,050
III: 120°C/72°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,056	0,057	0,060	0,065
Temperaturbereich	$\delta_{\mbox{N0}}\mbox{-Faktor}$	[mm/(N/mm²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,163	0,164	0,172	0,186
IV: 160°C/100°C	$\delta_{N\infty}\text{-Faktor}$	[mm/(N/mm²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,168	0,169	0,177	0,192
Gerissener Beton u	nter statisch	ner und quasi-	statisch	er Bela	stung	für eine	Nutzu	ngsdau	er von	50 und	100 Ja	hren
Temperaturbereich I: 40°C/24°C	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,108
II: 80°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm ²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,141
Temperaturbereich	$\delta_{\mbox{N0}} ext{-}\mbox{Faktor}$	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113
III: 120°C/72°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148
Temperaturbereich	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,425
IV: 160°C/100°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,449

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0} \text{-Faktor} \cdot \tau; \hspace{1cm} \tau\text{: einwirkende Verbundspannung unter Zugbelastung}$

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor $\cdot \tau$;

Tabelle C17: Verschiebung unter Querbeanspruchung¹⁾ (Betonstahl)

Dübelgröße Betons	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Gerissener und ung	Berissener und ungerissener Beton unter statischer und quasi-statischer Belastung											
Alle	δ_{V0} - Faktor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
Temperaturbereiche	$\delta_{V\infty}$ - Faktor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor· V;

V: einwirkende Querlast

 $\delta_{V\infty} = \delta_{V\infty}\text{-Faktor}\cdot V;$

Chemofast Injektionssystem UM-H für Beton Anhang C 14 Leistungen Verschiebungen unter statischer und quasi-statischer Belastung (Betonstahl)

Tabelle C18: Charakteristische Werte der Zugtragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1) für eine Nutzungsdauer von 50 und 100 Jahren

Dübe	elgröße Gewinde:	stange				M8	M10	M12	M16	M20	M24	M27	M30	
Stah	lversagen													
	akteristische Zugti tungskategorie C1		keit	N _{Rk,s,eq,C1}	[kN]				1,0 •	N _{Rk,s}				
Teilsi	icherheitsbeiwert			Y _{Ms,N}	[-]			8	siehe Ta	abelle C	1			
Kom	biniertes Versage	en durc	h Heraus	sziehen und I	Betonausl	oruch								
Char	akteristische Verb	undtragf	ähigkeit	im gerissener	und unge	rissene	n Beton	C20/25	5					
Li	I: 40°C/24°C	trocken	er und	^τ Rk,eq,C1	[N/mm²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0	
Temperatur bereich	II: 80°C/50°C III: 120°C/72°C		r Beton,	^τ Rk,eq,C1	[N/mm²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0	
empe	III: 120°C/72°C	wasser	gefülltes	^τ Rk,eq,C1	[N/mm²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0	
1	IV: 160°C/100°C	Bohrloo	GT 1	^τ Rk,eq,C1	[N/mm²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5	
Erhöl	hungsfaktor für Be	ton ψ _c		C25/30 bis C	50/60				1	,0				
Mont	tagebeiwert			I	'									
für tro	für trockenen und feuchten CAC		CAC						1	,0				
Betor	Beton HDB		HDB	γ inst	[-]	1,2								
für wassergefülltes Bohrloch CAC									1	,4				

Tabelle C19: Charakteristische Werte der Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1)

Dübelgröße Gewindestange		М8	M10	M12	M16	M20	M24	M27	M30	
Stahlversagen										
Charakteristische Quertragfähigkeit (Leistungskategorie C1)	V _{Rk,s,eq,C1}	[kN]	0,70 · V ⁰ _{Rk,s}							
Teilsicherheitsbeiwert	siehe Tabelle C1									
Faktor für Ringspalt	$\alpha_{\sf gap}$	[-] 0,5 (1,0) ¹⁾								

Wert in der Klammer ist für gefüllte Ringspalte zwischen der Gewindestange und dem Durchgangsloch im Anbauteil gültig. Die Verwendung einer Verfüllscheibe gemäß Anhang A 3 wird empfohlen.

Chemofast Injektionssystem UM-H für Beton

Leistungen
Charakteristische Werte der Zug- und Quertragfähigkeit unter seismischer Einwirkung
(Leistungskategorie C1) für eine Nutzungsdauer von 50 und 100 Jahren (Gewindestange)

Tabelle C20: Charakteristische Werte der Zugtragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1) für eine Nutzungsdauer von 50 und 100 Jahren

Düb	elgröße Betonsta	hl				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32				
Stah	nlversagen																		
Cha	rakteristische Zugtı	ragfähigke	eit	N _{Rk,s,eq,C1}	[kN]					1,0 • A	s • f _{uk})							
Stah	nlspannungsquersc	hnitt		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804				
Teils	sicherheitsbeiwert			γ _{Ms,N}	[-]	1,42)													
Kon	nbiniertes Versage	en durch	Heraus	ziehen und	Betonau	sbruc	h												
Cha	rakteristische Verb	undtragfäl	n und un	gerisse	enen B	Beton C	20/25												
7	I: 40°C/24°C	trockene	r und	^τ Rk,eq,C1	[N/mm²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0				
mperatu bereich	II: 80°C/50°C		feuchter Beton,		feuchter Beton,	feuchter Beton, sowie	, , ,	^τ Rk,eq,C1	[N/mm²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
emperatur bereich	III: 120°C/72°C	wasserge		^τ Rk,eq,C1	[N/mm²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0				
≝	IV: 160°C/100°C	Bohrloch	l	^τ Rk,eq,C1	[N/mm²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0				
Erhö	hungsfaktor für Be	ton ψc		C25/30 bis	S C50/60		•			1	,0								
Mon	ıtagebeiwert			•															
für tr	für trockenen und feuchten CAC		CAC							1	,0								
Beto	Beton HDB		HDB	γ_{inst}	[-]					1	,2								
für wassergefülltes Bohrloch CAC			1,4																

¹⁾ fuk ist den Spezifikationen des Betonstahls zu entnehmen

Tabelle C21: Charakteristische Werte der Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1)

Dübelgröße Betonstahl		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Stahlversagen												
Charakteristische Quertragfähigkeit	V _{Rk,s,eq}	[kN]				(),35 • <i>F</i>	اs • f _{uk}	2)			
Stahlspannungsquerschnitt	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]	1,5 ²⁾									
Faktor für Ringspalt	$\alpha_{\rm gap}$ [-] 0,5 (1,0) ³⁾											

 $^{^{1)}}$ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen

Chemofast Injektionssystem UM-H für Beton	
Leistungen Charakteristische Werte der Zug- und Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1) für eine Nutzungsdauer von 50 und 100 Jahren (Betonstahl)	Anhang C 16

²⁾ Sofern andere nationalen Regelungen fehlen

²⁾ Sofern andere nationalen Regelungen fehlen

³⁾ Wert in der Klammer ist für gefüllte Ringspalte zwischen der Gewindestange und dem Durchgangsloch im Anbauteil gültig. Die Verwendung einer Verfüllscheibe gemäß Anhang A 3 wird empfohlen.

Tabelle C22: Charakteristische Werte der Zugtragfähigkeit unter seismischer Einwirkung (Leistungskategorie C2) für eine Nutzungsdauer von 50 und 100 Jahren

Düb	elgröße Gewinde	stange				M12	M16	M20	M24			
Stal	nlversagen											
(Leis Stah Nich	Charakteristische Zugtragfähigkeit (Leistungskategorie C2) Stahl, Festigkeitsklasse 8.8 Nichtrostender Stahl A4 und HCR, Festigkeitsklasse ≥70			N _{Rk,s,eq,C2}	[kN]		1,0 • N _{Rk,s}					
Teils	sicherheitsbeiwert			γ _{Ms,N}	Ms,N [-] siehe Tabelle C1							
Kon	nbiniertes Versage	en durc	h Heraus	sziehen und l	Betonausk	oruch						
Cha	Charakteristische Verbundtragfähigkeit im gerissenen und ungerissenen Beton C20/25											
ا	I: 40°C/24°C	trockener und feuchter Beton,		^τ Rk,eq,C2	[N/mm²]	3,6	3,5	3,3	2,3			
emperatur bereich	II: 80°C/50°C			feuchter Beton, sowie wassergefülltes	feuchter Beton, sowie wassergefülltes	^τ Rk,eq,C2	[N/mm ²]	3,6	3,5	3,3	2,3	
empe	III: 120°C/72°C	wassergefülltes				^τ Rk,eq,C2	[N/mm²]	3,1	3,0	2,8	2,0	
	IV: 160°C/100°C	Bonnoc	en	^τ Rk,eq,C2	[N/mm²]	2,5	2,7	2,5	1,8			
Erhö	öhungsfaktor für Be	ton ψc		C25/30 bis C	50/60		1	,0				
Mor	ntagebeiwert		•									
für t	für trockenen und feuchten CAC						1	,0				
Beto	Beton HDB		HDB	γ _{inst} [-]		1,2						
für wassergefülltes Bohrloch CAC]		1,4						

Tabelle C23: Charakteristische Werte der Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C2)

Dübelgröße Gewindestange			M12	M16	M20	M24		
Stahlversagen								
Charakteristische Quertragfähigkeit (Leistungskategorie C2) Stahl, Festigkeitsklasse 8.8 Nichtrostender Stahl A4 und HCR, Festigkeitsklasse ≥70	V _{Rk,s,eq,C2}	[kN]	0,70 • V ⁰ _{Rk,s}					
Teilsicherheitsbeiwert	$\gamma_{Ms,V}$	[-]	siehe Tabelle C1					
Faktor für Ringspalt	$\alpha_{\sf gap}$	[-]	0,5 (1,0)1)					

Wert in der Klammer ist für gefüllte Ringspalte zwischen der Gewindestange und dem Durchgangsloch im Anbauteil gültig. Die Verwendung einer Verfüllscheibe gemäß Anhang A 3 wird empfohlen.

Chemofast Injektionssystem UM-H für Beton

Leistungen
Charakteristische Werte der Zug- und Querzugtragfähigkeit unter seismischer Einwirkung
(Leistungskategorie C2) für eine Nutzungsdauer von 50 und 100 Jahren (Gewindestange)

Tabelle C24: Verschiebung unter Zugbeanspruchung ¹⁾ (Gewindestange)											
Dübelgröße Gewindestange M12 M16 M20 M24											
Gerissener und ungerissener Beton unter seismischer Einwirkung (Leistungskategorie C2)											
Alle	δ _{N,eq,C2(DLS)}	[mm]	0,24	0,27	0,29	0,27					
Temperaturbereiche $\delta_{N,eq,C2(ULS)}$ [mm] 0,55 0,51 0,50											

Tabelle C25: Verschiebung unter Querbeanspruchung (Gewindestange)

Dübelgröße Gewinde	stange		M12	M12 M16 M20						
Gerissener und ungerissener Beton unter seismischer Einwirkung (Leistungskategorie C2)										
Alle	$\delta_{V,eq,C2(DLS)}$	[mm]	3,6	3,0	3,1	3,5				
Temperaturbereiche	$\delta_{V,eq,C2(ULS)}$	[mm]	7,0	6,6	7,0	9,3				

Chemofast Injektionssystem UM-H für Beton

Leistungen
Verschiebungen unter seismischer Einwirkung (Leistungskategorie C2) (Gewindestange)

Anhang C 18