

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-16/0338 vom 30. März 2020

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

fischer Zykon Anker FZA-Q

Hinterschnittdübel zur Verankerung in Beton

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke GmbH & Co. KG

16 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330232-01-0601

ETA-16/0338 vom 17. August 2016

Europäische Technische Bewertung ETA-16/0338

Seite 2 von 16 | 30. März 2020

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z6497.20 8.06.01-132/19

Europäische Technische Bewertung ETA-16/0338

Seite 3 von 16 | 30. März 2020

Besonderer Teil

1 Technische Beschreibung des Produkts

Der fischer-Zykon-Anker FZA-Q ist ein Dübel aus feuerverzinktem Stahl, der in ein zylindrisches Bohrloch gesetzt wird und durch kraftkontrollierte Verspreizung und Formschluss verankert wird.

Produkt und Produktbeschreibung sind in Anhang A dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1 und C 2
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1
Verschiebungen (statische und quasi-statische Einwirkungen)	Siehe Anhang C 5
Dauerhaftigkeit	Siehe Anhang B 1
Charakteristischer Widerstand und Verschiebungen für die seismischen Leistungskategorien C1 und C2	Siehe Anhang C 4 und C 5

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Siehe Anhang C 3

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß den Europäischen Bewertungsdokumenten EAD Nr. 330232-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

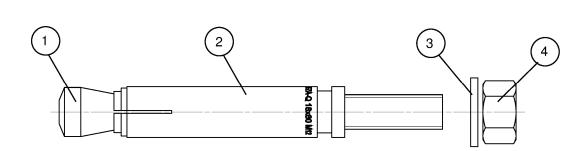
Folgendes System ist anzuwenden: 1

Z6497.20 8.06.01-132/19

Europäische Technische Bewertung ETA-16/0338

Seite 4 von 16 | 30. März 2020

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument


Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 30. März 2020 vom Deutschen Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter

Beglaubigt Ziegler

Z6497.20 8.06.01-132/19

- ① Konusbolzen
- ② Spreizhülse
- 3 Unterlegscheibe
- Sechskantmutter

Einbauzustand

(Abbildungen nicht maßstäblich)

fischer Zykon Anker FZA-Q

Produktbeschreibung
Einbauzustand

Anhang A 1

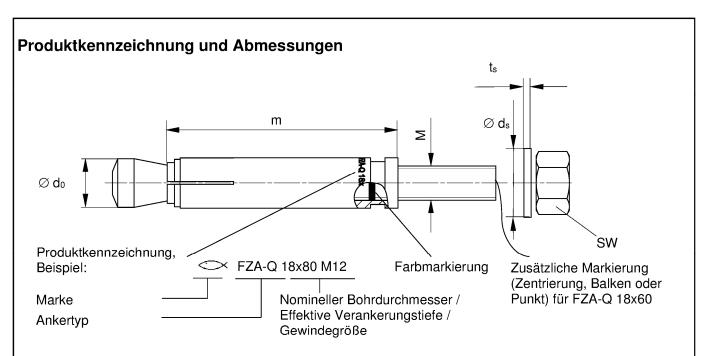


Tabelle A2.1: Abmessungen [mm]

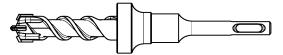
Cualca			FZA-Q	
Größe		14 x 50 M10	18 x 60 M12	18 x 80 M12
M = d		10	12	
$\emptyset d_0$		13,5	17	
m	=	50	60	80
SW		17	19	
ts		1,8	2,3	
Ø ds	≥	19	23	

Tabelle A2.2: Materialien (feuerverzinkt ≥ 50µm, EN ISO 10684:2011¹¹))

Teil	Bezeichnung	Material
1	Konusbolzen ²⁾	Kaltstauch- oder Automatenstahl Festigkeitsklasse 8.8, EN ISO 898-1:2013 Nennstahlzugfestigkeit f _{uk} ≤ 1000 N/mm²
2	Spreizhülse ²⁾	Stahl
3	Unterlegscheibe	Kaltband, EN 10139:2016
4	Sechskantmutter	Stahl, Festigkeitsklasse min. 8, EN ISO 898-2:2012

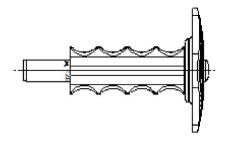
 $^{^{1)}}$ Alternative Methode: sherardisiert $\geq~50~\mu m,~EN~13811:2003$

(Abbildungen nicht maßstäblich)


fischer Zykon Anker FZA-Q	
Produktbeschreibung Produktkennzeichnung, Abmessungen und Materialien	Anhang A 2

²⁾ Optional: Klarlack

Werkzeuge


Bohrer FZBB

Standardbohrer

Setzwerkzeug FZE

Maschinensetzgerät FZA-Q

Optional fischer Verfüllscheibe FFD für z.B. Anwendungen unter Erdbebenbeanspruchung

(Abbildungen nicht maßstäblich)

fischer Zykon Anker FZA-Q

Verwendungszweck

Werkzeuge

Anhang A 3

Angaben zum Verwendungszeck							
Größe			FZA-Q				
Grobe		14 x 50 M10	18 x 60 M12	18 x 80 M12			
Feuerverzinkt							
Statische und quasi-statische Belastunge	n						
Gerissener und ungerissener Beton			/				
Seismische Einwirkung für Leistungs- C1			V				
kategorie	C2						
Brandbeanspruchung							

Verankerungsgrund:

 Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern der Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013+A1:2016

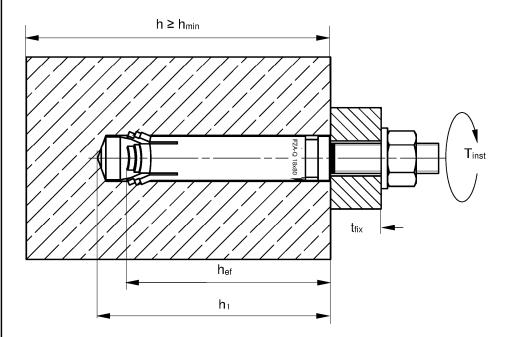
Anwendungsbedingungen (Umweltbedingungen):

· Bauteile unter den Bedingungen trockener Innenräume

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. In den Konstruktionszeichnungen ist die Position der Dübel anzugeben (z.B. Lage des Dübels zur Bewehrung oder zu Auflagern usw.)
- Bemessung der Verankerungen gemäß EN 1992-4:2018

fischer Zykon Anker FZA-Q	
Verwendungszweck Spezifikationen	Anhang B 1



Montagekennwerte

Tabelle B2.1: Einbauparameter

Größe		FZA-Q				
Große			14 x 50 M10	18 x 60 M12	18 x 80 M12	
Nomineller Bohrdurchmesser	d ₀			14	18	3
Bohrlochtiefe in Beton	h ₁	=		58	74	94
Schneidendurchmesser des Bohrers	d _{cut}		[mm]	14,50	18,	50
Durchmesser des Durchgangslochs im Anbauteil	d _f	≤		12	14	4
Maximales Montagedrehmoment1)	Tinst		[Nm]	20	45	5

1) Min. Drehmoment = Hand angezogen

h_{ef} = Effektive Verankerungstiefe

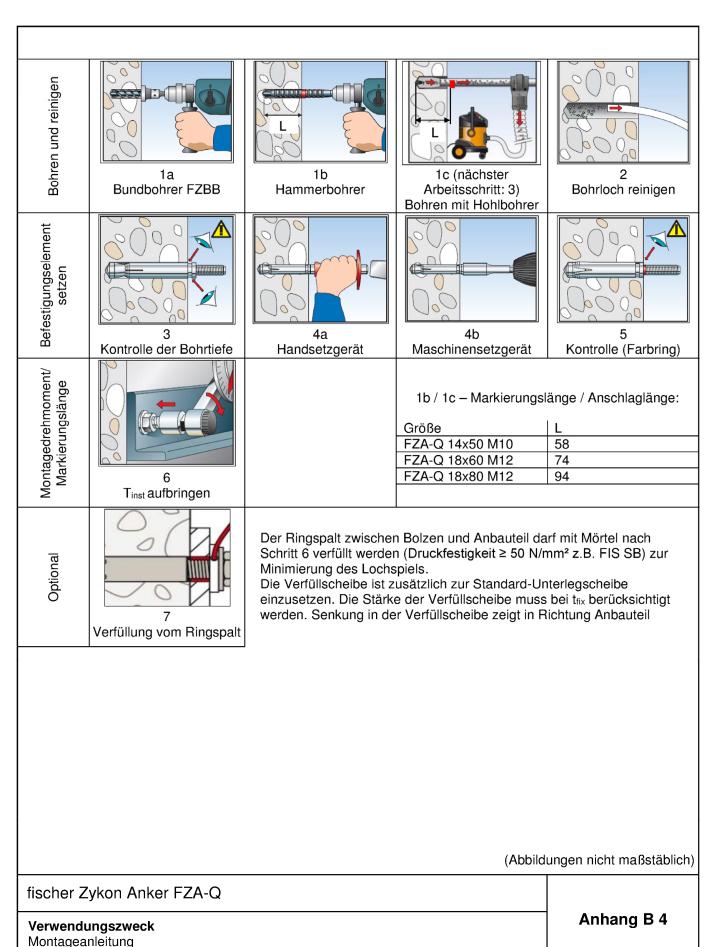
t_{fix} = Befestigungsteildicke

h₁ = Tiefe des Bohrlochs bis zum tiefsten Punkt

 $\begin{array}{lll} h & = & \text{Dicke des Betonbauteils} \\ h_{\text{min}} & = & \text{Mindestdicke des Betonbauteils} \\ T_{\text{inst}} & \leq & \text{Maximales Montagedrehmoment} \end{array}$

fischer Zykon Anker FZA-Q	
Verwendungszweck Montagekennwerte	Anhang B 2

Montageanleitung


- · Einbau durch geschultes Personal unter Aufsicht des Bauleiters
- Verwendung des Befestigungselements nur wie vom Hersteller geliefert, ohne die Bestandteile des Befestigers auszutauschen
- Prüfung vor dem Einsetzen des Befestigungselements, ob die Festigkeitsklasse des Betons, in den das Befestigungselement eingesetzt werden soll, im angegebenen Bereich liegt und nicht niedriger als diejenige des Betons ist, für den die charakteristischen Lasten gelten
- · Prüfung, ob der Beton gut verdichtet ist, z.B. ohne signifikante Hohlräume
- Bohrung ist senkrecht +/- 5 ° zur Betonoberfläche zu erstellen, ohne die Bewehrung zu beschädigen
- Im Falle einer Fehlbohrung: Ein neues Bohrloch muss in einem Mindestabstand der doppelten Tiefe der Fehlbohrung erstellt werden, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und nur, wenn die Fehlbohrung nicht in Richtung der Schräg- oder Querlast liegt.

fischer Zykon Anker FZA-Q

Verwendungszweck
Montageanleitung

Anhang B 3

Tabelle C1.1: Charakteristische **Zugtragfähigkeit** unter statischer und quasistatischer Belastung

Größe				FZA-Q		
Clobe			14 x 50 M10	18 x 60 M12	18 x 80 M12	
Stahlversagen						
Charakteristischer Wi	derstand	N _{Rk,s}	[kN]	40,7	60	,1
Teilsicherheitsbeiwert		γMs	[-]		1,5	
Elastizitätsmodul		Es	[N/mm ²]		210.000	
Herausziehen						
Charakeristischer	gerissener Beton	— N _{Rk,p}	[kN]	10,0	16,0	22,0
Widerstand in C20/25	ungerissener Beton			17,4	22,9	35,5
Erhöhungsfaktor N _{Rk,p})	Ψc	[-]		$(f_{ck}/20)^{0,5}$	
Montagebeitwert		γinst	[-]	1,0		
Betonversagen und	Spalten		,			
Effektive Verankerung	gstiefe	h _{ef}	[mm]	50	60	80
Faktor für gerissenen	Beton	k _{cr,N}			7,7	
Faktor für ungerissen	en Beton	k ucr,N	— [-] 	11,0		
Charakteristischer Ac	hsabstand	Scr,N		3 h _{ef}		
Charakteristischer Randabstand		C _{cr} ,N	[mm]	1,5 h _{ef}		
Charakteristischer Achsabstand		S _{cr,sp}	— [mm] —	3,5 h _{ef}		
Charakteristischer Randabstand		C _{cr,sp}		1,75 h _{ef}		
Charakteristischer Wi Spalten	derstand gegen	N ⁰ Rk,sp	[kN]	ı	min $\{N^0_{Rk,c}; N_{Rk,p}\}^{1}$	

¹⁾ N⁰Rk,c nach EN 1992-4:2018

Tabelle C1.2: Charakteristische **Quertragfähigkeit** unter statischer und quasistatischer Einwirkung

Größe			FZA-Q		
Grobe			14 x 50 M10	18 x 60 M12	18 x 80 M12
Stahlversagen ohne Hebelarm					
Charakteristischer Widerstand	$V^0_{Rk,s}$	[kN]	20,4	33	3,7
Teilsicherheitsfaktor	γMs			1,25	
Faktor für Duktilität	k_7	[-]		1,0	
Stahlversagen mit Hebelarm und Pr	youtversage	n			
Charakteristisches Biegemoment	$M^0_{Rk,s}$	[Nm]	60,0 105,0		
Teilsicherheitsbeiwert	γMs		1,25		
Faktor für Duktilität	k_7	[-]		1,0	
Faktor für Pryoutversagen	k ₈		1,0	2	,0
Betonkantenbruch					
Effektive Verankerungslänge	lf	[mm]	50	60	80
Dübeldurchmesser	d_{nom}	[!!!!!]	14 18		
fischer Zykon Anker FZA-Q					

Leistungen

Charakteristische Zugtragfähigkeit unter statischer und quasi-statischer Belastung Charakteristische Quertragfähigkeit unter statischer und quasi-statischer Belastung

Anhang C 1

Tabelle C2.1: Mindestdicke der Betonbauteile, minimale Achs- und Randabstände

				FZA-Q				
Größe			14 x 50 M10	14 x 50 M10 18 x 60 M12	14 x 50 M10 18 x 60 M12 18 x 80 M12			
Mindestdicl	ke des Betonbauteils	h _{min}	[mm]	100	120	160		
Gerissene	r Beton							
Minimaler	Achsabstand	Smin	[mm]	120	120	75		
IVIIIIIIIIIIII	Randabstand	C _{min}		100	100	75		
Ungerisse	ner Beton							
Minimalar /	N ahaahatan d	Smin	[mama]	120	100	75		
Minimaler Achsabstand fü		für c≥	[mm]	120	120	90		
$\begin{array}{c} \text{Minimaler Randabstand} & \frac{c_{\text{min}}}{\text{für s} \geq} \end{array}$		[100	100	90			
		für s≥	[mm]	180	160	75		

Zwischenwerte für s_{min} und c_{min} dürfen interpoliert werden

fischer Zykon Anker FZA-Q	
Leistungen Mindestdicke der Betonbauteile, minimale Achs- und Randabstände	Anhang C 2

F74.0		R30			R60		
FZA-Q		$N_{Rk,s,fi}$	$N_{Rk,p,fi}$	N _{Rk,c,fi}	N _{Rk,s,fi}	$N_{Rk,p,fi}$	N _{Rk,c,fi}
14 x 50 M10		2,6	2,7	3,0	1,4	2,7	3,0
18 x 60 M12	[kN]	0.4	4,0	4,8		4,0	4,8
18 x 80 M12		8,4	5,5	9,9	4,2	5,5	9,9

FZA-Q		R90			R120		
FZA-Q	ZA-Q		$N_{Rk,p,fi}$	$N_{Rk,c,fi}$	$N_{Rk,s,fi}$	$N_{Rk,p,fi}$	$N_{Rk,c,fi}$
14 x 50 M10	[kN]	1,0	2,7	3,0	0,8	2,1	2,4
18 x 60 M12		2.5	4,0	4,8	1,7	3,2	3,8
18 x 80 M12		2,5	5,5	9,9		4,4	7,9

Tabelle C3.2: Charakteristische Quertragfähigkeit unter Brandbeanspruchung

FZA-Q	R30)	R60		
FZA-Q	V _{Rk,s,fi} [kN]	M ⁰ _{Rk,s,fi} [Nm]	$V_{Rk,s,fi}\left[kN\right]$	M ⁰ Rk,s,fi [Nm]	
14 x 50 M10	2,6	3,4	1,4	1,8	
18 x 60 M12	0.4	10.1	4.0	0.5	
18 x 80 M12	8,4	13,1	4,2	6,5	

FZA-Q	R90)	R120		
FZA-Q	V _{Rk,s,fi} [kN]	М ⁰ _{Rk,s,fi} [Nm]	V _{Rk,s,fi} [kN]	$M^0_{Rk,s,fi}$ [Nm]	
14 x 50 M10	1,0	1,3	0,8	1,0	
18 x 60 M12	2.5	2.0	1.7	2,6	
18 x 80 M12	2,5	3,9	1,7		

Tabelle C3.3: Minimale Achs- und Randabstände unter Brandbeanspruchung für zentrischen Zug und Querlast

Size			FZA-Q				
			14 x 50 M10	18 x 80 M12			
Achsabstand	S _{min,fi}		4⋅h _{ef}				
Randabstand	Cmin,fi	[mm]	c _{min,fi} = 2·h _{ef} , bei mehrseitiger Brandbeanspruchung c _{min,fi} ≥ 300				

	<u>-</u>
fischer Zykon Anker FZA-Q	
Leistungen Charakteristischer Widerstand unter Brandbeanspruchung	Anhang C 3

Tabelle C4.1:	Charakteristische Zugtragfähigkeit und Quertragfähigkeit unter
	Einwirkung der seismischen Leistungskategorie C1

Größe						
Globe			14 x 50 M10	18 x 60 M12	18 x 80 M12	
Stahlversagen						
Charakteristische Zugtragfähigkeit C1	$N_{Rk,s,C1}$	[kN]	40,7	60,1		
Teilsicherheitsbeiwert	γ Ms,C1	[-]	1,5			
Herausziehen						
Charakteristische Zugtragfähigkeit in gerissenem Beton C1	$N_{\text{Rk},p,C1}$	[kN]	10,0	16,0	22,0	
Montagebeiwert	γ2,C1	[-]		1,0		
Stahlversagen ohne Hebelarm						
Charakteristische Quertragfähigkeit C1	$V_{Rk,s,C1}$	[kN]	15,9	30,	,3	
Teilsicherheitsbeiwert	γMs,C1	[-]		1,25		

Tabelle C4.2: Charakteristische **Zugtrag-** und **Quertragfähigkeit** unter Einwirkung der **seismischen Leistungskategorie C2**

Cräße			FZA-Q			
Größe			14 x 50 M10	18 x 60 M12	18 x 80 M12	
Stahlversagen						
Charakteristische Zugtragfähigkeit C2	$N_{\text{Rk,s,C2}}$	[kN]	40,7 60,1			
Teilsicherheitsbeiwert	γMs,C2	[-]	1,5			
Herausziehen		·				
Charakteristische Zugtragfähigkeit in gerissenem Beton C2	$N_{Rk,p,C2}$	[kN]	4,0	4,7	6,5	
Montagebeiwert	γ2,C2	[-]		1,0		
Stahlversagen ohne Hebelarm	·					
Charakteristische Quertragfähigkeit C2	$V_{Rk,s,C2}$	[kN]	11,8	23	,3	
Teilsicherheitsbeiwert	γMs,C2	[-]		1,25		

Tabelle C4.3: Ringspalt für Erdbebenbeanspruchung C1 und C2

14.50	9 9	-			· • · · · · · · · · · · · · · · · · · ·			
Δ_{Spalt}								
$\Delta_{\text{Spalt}} = d_{\text{f}} - d$	[mm]	0,001)	0,25	0,50	0,75	1,00	1,25	≥ 1,50
αSpalt		1,00	0,86	0,75	0,66	0,60	0,54	0,50

 $^{^{1)}}$ Verfüllen von $\Delta_{ ext{Spalt}}$ gemäß Anhang B4

fischer Zykon Anker FZA-Q	
Leistungen Charakteristischer Widerstand unter Einwirkung der seismischen Leistungskategorien C1 und C2	Anhang C 4

Tabelle C5.1: Verschiebungen aufgrund von Zuglasten						
CväOa			FZA-Q			
Größe		14 x 50 M10	18 x 60 M12	18 x 80 M12		
Zuglast in gerissenem Beton C20/25	N	[kN]	5,1	10,5		
Wassahilahan na	δηο	[]	0,4	0,8		
Verschiebungen		0,9	1,7			
Zuglast in ungerissenem Beton C20/25	N	[kN]	12,2	16,2		
Verseleieleungen	δηο	[]	0,9	1,0		
Verschiebungen		- [mm]	1.5	1 7		

Tabelle C5.2: Verschiebungen aufgrund von Querlasten

Größe		FZA-Q			
Grobe			14 x 50 M10	18 x 60 M12	18 x 80 M12
Querlast in gerissenem und ungerissenem Beton C20/25	V	[kN]	9,5	19,3	
Versehisbungen	δνο [mm]		0,9	2,1	
Verschiebungen	δν∞	- [mm]	1,6	3,1	

Tabelle C5.3: Verschiebungen aufgrund von Zuglasten für die seismische Leistungskategorie C2

Größe			FZA-Q		
Grobe			14 x 50 M10 18 x 60 M12 18 x 8		18 x 80 M12
Verschiebung	DLS	δ _{N,C2} [mm]	3,2	4,0	
	ULS	$\frac{\delta_{N,C2}}{\delta_{N,C2}}$ [mm]	13,3	12,9	

Tabelle C5.4: Verschiebungen aufgrund von Querlasten für die seismische Leistungskategorie C2

Größe		FZA-Q			
Ciobe			14 x 50 M10	18 x 60 M12	18 x 80 M12
Verschiebung	DLS	δv,c2	3,6	4,6	4,6
	ULS	$\frac{\delta_{\text{V,C2}}}{\delta_{\text{V,C2}}}$ [mm]	6,8	6,8	6,6

fischer Zykon Anker FZA-Q	
Leistungen Verschiebungen aufgrund von Zug- und Querlasten	Anhang C 5