

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0338 of 30 March 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer Zykon Anchor FZA-Q

Undercut Anchor for use in concrete

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke GmbH & Co. KG

16 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601

ETA-16/0338 issued on 17 August 2016

European Technical Assessment ETA-16/0338

Page 2 of 16 | 30 March 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z87015.19 8.06.01-132/19

European Technical Assessment ETA-16/0338

Page 3 of 16 | 30 March 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The fischer Zykon Anchor FZA-Q is an anchor made of hot-dipped galvanized steel which is placed into a drilled hole and anchored by torque controlled expansion and mechanical interlock.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 and C 2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1
Displacements (static and quasi-static loading)	See Annex C 5
Durability	See Annex B 1
Characteristic resistance and displacements for seismic performance category C1 and C2	See Annex C 4 and C 5

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 3

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

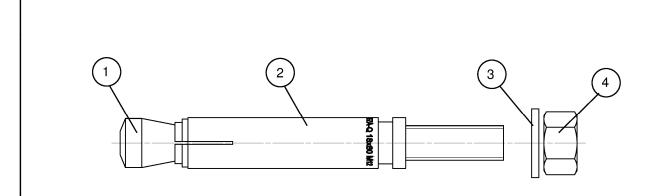
Z87015.19 8.06.01-132/19

European Technical Assessment ETA-16/0338

Page 4 of 16 | 30 March 2020

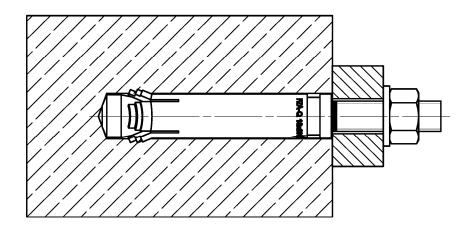
English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 30 March 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:*Ziegler


Z87015.19 8.06.01-132/19

- ① Cone bolt
- ② Expansion sleeve
- 3 Washer
- 4 Hexagon nut

Installed condition

(Fig. not to scale)

fischer Zykon Anchor FZA-Q

Product description
Installed condition

Annex A 1

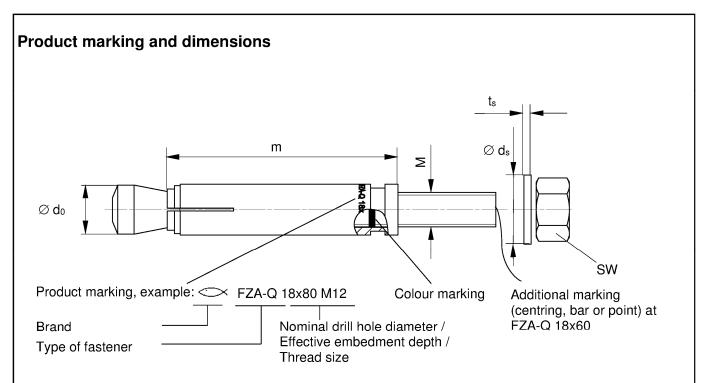


Table A2.1: Dimensions [mm]

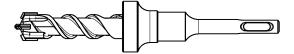
Cina			FZA-Q	
Size		14 x 50 M10	18 x 60 M12	18 x 80 M12
M = d		10	12	2
\emptyset d ₀		13,5	17	,
m	=	50	60	80
SW		17	19	
ts	,	1,8	2,3	3
Ø ds	2	19	23	}

Table A2.2: Materials (hot-dip galvanised $\geq 50\mu m$, EN ISO 10684:2011¹⁾)

Part	Designation	Material
1	Cone bolt ²⁾	Cold form steel or free cutting steel class 8.8 acc. to EN ISO 898-1:2013 Nominal steel tensile strength f _{uk} ≤ 1000 N/mm²
2	Expansion sleeve2)	Steel
3	Washer	Cold strip, EN 10139:2016
4	Hexagon nut	Steel, property class min. 8, EN ISO 898-2:2012

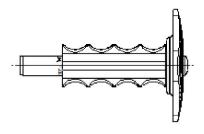
 $^{^{1)}}$ Alternative method: sherardised $\geq~50~\mu m,~EN~13811:2003$

(Fig. not to scale)


fischer Zykon Anchor FZA-Q	
Product description Product marking, dimensions and materials	Annex A 2

²⁾ Optional: clear paint

Tools


Drill bit FZBB

Standard drill bit

Setting tool FZE

Machine setting tool FZA-Q

Optional fischer filling disc FFD for e.g. seismic applications

fischer Zykon Anchor FZA-Q

Intended Use

Tools

Annex A 3

Deutsches
Institut
für
Bautechnik

Specifications of intended use				
Size	FZA-Q			
Size	14 x 50 M10	18 x 60 M12	18 x 80 M12	
Hot-dip galvanised				
Static and quasi-static loads				
Cracked and uncracked concrete		/		
C1		V		
Seismic action for performance category C2				
Fire exposure				

Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibers (cracked and uncracked) of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

Structures subject to dry internal conditions

Design:

- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.)
- Design of fastenings according to EN 1992-4:2018

fischer Zykon Anchor FZA-Q	
Intended Use Specifications	Annex B 1



Installation parameters

 Table B2.1:
 Installation parameters

Size		FZA-Q				
		14 x 50 M10	18 x 60 M12	18 x 80 M12		
Nominal drill hole diameter	d ₀			14	18	3
Depth of drill hole in concrete	h ₁	=	[mm]	58	74	94
Cutting diameter of drill bit	d _{cut}		· [mm]	14,50	18,	50
Diameter of clearance hole in the fixture	df	\leq		12	14	ļ
Maximum installation torque1)	Tinst		[Nm]	20	45	5

¹⁾ Minimum installation torque = hand - tightening

= Effective embedment depth

= Thickness of the fixture

Depth of drill hole to deepest point = Thickness of the concrete member

 h_{min} = Minimum thickness of concrete member

 $T_{inst} \leq Maximum installation torque$

fischer Zykon Anchor FZA-Q	
Intended Use Installation parameters	Annex B 2

Page 10 of European Technical Assessment ETA-16/0338 of 30 March 2020

English translation prepared by DIBt

Installation instructions

- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener
- Checking before placing the fastener to ensure that the strength class of the concrete in which the fastener
 is to be placed is in the range given and is not lower than that of the concrete to which the characteristic
 loads apply
- · Check of concrete being well compacted, e.g. without significant voids
- Drill hole created perpendicular +/- 5° to concrete surface, positioning without damaging the reinforcement
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load is not in the direction of load application

fischer Zykon Anchor FZA-Q	
Intended Use Installation instructions	Annex B 3

Z23067.20 8.06.01-132/19

Electronic copy of the ETA by DIBt: ETA-16/0338

fischer Zykon Anchor FZA-Q

Intended Use

Installation instructions

Electronic copy of the ETA by DIBt: ETA-16/0338

Drill and clean 1b 1c (next step: 3) 2 1a Stop drill FZBB Hammer drill Drill the hole with Clean drill hole hollow driller Set fastener 3 4a 4b 5 Check drill depth Hand-setting Machine-setting Check control colour installation torque marking length 1b / 1c – marking length / stop length: Size FZA-Q 14x50 M10 58 FZA-Q 18x60 M12 74 FZA-Q 18x80 M12 94 6 Apply Tinst The gap between bolt and fixture may be filled with mortar (compressive strength ≥ 50 N/mm² e.g. FIS SB) after step 6 (for Optional eliminating the annular gap). The filling disc is additional to the standard washer. The thickness of the filling disc must be considered for definition of $t_{\mbox{\scriptsize fix}}.$ Countersunk of the filling disc in direction to the anchor plate. Filling of the annular gap (Fig. not to scale)

Z23067.20 8.06.01-132/19

Annex B 4

			FZA-Q			
Size			14 x 50 M10	18 x 60 M12	18 x 80 M12	
Steel failure		·				
Characteristic resistance	N _{Rk,s}	[kN]	40,7 60,1		,1	
Partial factor for steel failure	γMs	[-]	1,5			
Modulus of elasticity	Es	[N/mm²]	210.000			
Pullout failure		•				
Characteristic cracked concrete		FL A 17	10,0	16,0	22,2	
resistance in C20/25 uncracked concrete	─ N _{Rk,p}	[kN]	17,4	22,9	35,2	
Increasing factor for N _{Rk,p}	Ψc	[-]		(f _{ck} / 20) ^{0,5}		
Installation safety factor	γinst	[-]		1,0		
Concrete cone and splitting failure						
Effective embedment depth	h _{ef}	[mm]	50	60	80	
Factor for cracked concrete	k _{cr,N}	. 1	7,7			
Factor for uncracked concrete	k _{ucr,N}	— [-] 	11,0			
Characteristic spacing	S _{cr,N}			3 h _{ef}		
Characteristic edge distance	C _{cr} ,N		1,5 h _{ef}			
Characteristic spacing	Scr,sp	— [mm]	3,5 h _{ef}			
Characteristic edge distance	Ccr,sp	_		1,75 h _{ef}		
Characteristic resistance to splitting	N ⁰ Rk,sp	[kN]	min {N ⁰ _{Rk,c} ; N _{Rk,p} } ¹⁾			

¹⁾ N⁰Rk,c according to EN 1992-4:2018

Table C1.2: Characteristic shear resistance under static and quasi-static action

		FZA-Q			
ize			18 x 60 M12	18 x 80 M12	
V^0 Rk,s	[kN]	20,4	33	3,7	
γMs	_ r ı		1,25		
k ₇	[-]	1,0			
crete pryout	failure				
M^0 Rk,s	[Nm]	60,0	10:	5,0	
γMs			1,25		
k 7	[-]		1,0		
k ₈		1,0 2,0			
lf	[mm]	50	60	80	
d _{nom}	[,,,,,,,]	14	1	8	
	γMs K7 Crete pryout M ⁰ Rk,s γMs K7 K8	γMs [-] k ₇ crete pryout failure M ⁰ Rk,s [Nm] γMs k ₇ k ₈ If [-]	γMs [-] crete pryout failure M ⁰ Rk,s [Nm] 60,0 γMs k7 [-] k8 1,0	γMs [-] 1,25 k7 1,0 crete pryout failure M ⁰ Rk,s [Nm] 60,0 10 γMs 1,25 k7 [-] 1,0 k8 1,0 2 If [mm] 50 60	

Z23067.20 8.06.01-132/19

Characteristic shear resistance under static and quasi-static action

Table C2.1: Minimum thickness of concrete members, minimum spacings and edge distances

				FZA-Q					
Size				14 x 50 M10	14 x 50 M10 18 x 60 M12	14 x 50 M10 18 x 60 M12 18 x 80 M12			
Minimum tl member	hickness of concrete	h _{min}	[mm]	100	120	160			
Cracked c	oncrete								
Minimum	spacing	Smin	[mm]	120	120	75			
Willimmum	edge distance	C _{min}	[mm]	100	100	75			
Uncracked	d concrete								
Minimum spacing		Smin	[mama]	120	100	75			
		for c≥	[mm]	120	120	90			
Minimum edge distance		C _{min}	[mm]	100	100	90			
I WIII III III II E	tuge distance	$ \text{for s} \! \geq \!$	[mm]	180	160	75			

Intermediate values for $s_{\text{\scriptsize min}}$ and $c_{\text{\scriptsize min}}$ by linear interpolation

fischer Zykon Anchor FZA-Q	
Performances Minimum thickness of concrete member, minimum spacings and edge distances	Annex C 2

Electronic copy of the ETA by DIBt: ETA-16/0338

Deutsches Institut für **Bautechnik**

Table C3.1:	Characteristic tension resistance under fire exposure						
E74.0			R30			R60	
FZA-Q		$N_{Rk,s,fi}$	$N_{Rk,p,fi}$	N _{Rk,c,fi}	N _{Rk,s,fi}	$N_{Rk,p,fi}$	$N_{Rk,c,fi}$
14 x 50 M10		2,6	2,7	3,0	1,4	2,7	3,0
18 x 60 M12	[kN]	0.4	4,0	4,8		4,0	4,8
18 x 80 M12		8,4	5,5	9,9	4,2	5,5	9,9

FZA-Q		R90			R120		
FZA-Q		N _{Rk,s,fi} N _R		N _{Rk,c,fi}	N _{Rk,s,fi}	$N_{Rk,p,fi}$	$N_{Rk,c,fi}$
14 x 50 M10	[kN]	1,0	2,7	3,0	0,8	2,1	2,4
18 x 60 M12		2.5	4,0	4,8	1,7	3,2	3,8
18 x 80 M12		2,5	5,5	9,9		4,4	7,9

Characteristic shear resistance under fire exposure Table C3.2:

FZA-Q	R30)	R60		
FZA-G	V _{Rk,s,fi} [kN]	M ⁰ _{Rk,s,fi} [Nm]	$V_{Rk,s,fi}\left[kN\right]$	M ⁰ Rk,s,fi [Nm]	
14 x 50 M10	2,6	3,4	1,4	1,8	
18 x 60 M12	0.4	10.1	4.0	6 6	
18 x 80 M12	8,4	13,1	4,2	6,5	

FZA-Q	R90)	R120		
FZA-Q	V _{Rk,s,fi} [kN]	M ⁰ _{Rk,s,fi} [Nm]	$V_{Rk,s,fi}\left[kN\right]$	M ⁰ _{Rk,s,fi} [Nm]	
14 x 50 M10	1,0	1,3	0,8	1,0	
18 x 60 M12	2.5	3.0	1 7	2.6	
18 x 80 M12	2,5	3,9	1,7	2,6	

Minimum spacings and minimum edge distances under fire Table C3.3: exposure for tension and shear load

Size			FZA-Q				
Size			14 x 50 M10	18 x 60 M12	18 x 80 M12		
Spacing	S _{min,fi}		4⋅h _{ef}				
Edge distance	C min,fi	[mm]	$c_{\text{min},fi} = 2 \cdot h_{ef},$ for fire exposure from more than one side $c_{\text{min},fi} \geq 300$ mm				

fischer Zykon Anchor FZA-Q	
Performances	Annex C 3
Characteristic resistance under fire exposure	

Table C4.1:	Characteristic values of tension and shear resistance under seismic
	performance category C1

Size				FZA-Q	
Size			14 x 50 M10	18 x 60 M12	18 x 80 M12
Steel failure					
Characteristic resistance tension load C1	$N_{\text{Rk,s,C1}}$	[kN]	40,7	60,	,1
Partial factor for steel failure	γ Ms,C1	[-]		1,5	
Pullout failure					
Characteristic resistance tension load in cracked concrete C1	$N_{Rk,p,C1}$	[kN]	10,0	16,0	22,0
Installation sensitivity factor	γ2,C1	[-]		1,0	
Steel failure without lever arm					
Characteristic resistance shear load C1	$V_{Rk,s,C1}$	[kN]	15,9	30,	,3
Partial factor for steel failure	γMs,C1	[-]		1,25	

Table C4.2: Characteristic values of tension and shear resistance under seismic performance category C2

Size	ze			FZA-Q	
Size			14 x 50 M10	18 x 60 M12	18 x 80 M12
Steel failure					
Characteristic resistance tension load C2	$N_{\text{Rk,s,C2}}$	[kN]	40,7	60,	,1
Partial factor for steel failure	γ Ms,C2	[-]		1,5	
Pullout failure					
Characteristic resistance tension load in cracked concrete C2	$N_{\text{Rk},p,C2}$	[kN]	4,0	4,7	6,5
Installation safety factor	γ2,C2	[-]		1,0	
Steel failure without lever arm					
Characteristic resistance shear load C2	$V_{\text{Rk,s,C2}}$	[kN]	11,8	23,	,3
Partial factor for steel failure	γMs,C2	[-]		1,25	

Table C4.3: Annular gap for seismic performance categories C1 and C2

Δ_{gap}								
$\Delta_{gap} = d_f - d$	[mm]	0,001)	0,25	0,50	0,75	1,00	1,25	≥ 1,50
α_{gap}		1,00	0,86	0,75	0,66	0,60	0,54	0,50

 $^{^{1)}}$ Filling of the $\Delta_{ exttt{gap}}$ according Annex B4

fischer Zykon Anchor FZA-Q	
Performances Characteristic resistance under seismic performance categories C1 and C2	Annex C 4

Table C5.1: Displacements under static and quasi-static tension loads							
C:	FZA-Q						
Size		14 x 50 M10	18 x 60 M12	18 x 80 M12			
Tension load in cracked concrete C20/25	N	[kN]	5,1	10,5			
Diaglacamenta	δηο	[]	0,4	0,8			
Displacements	δn∞	- [mm]	0,9	1,7			
Tension load in uncracked concrete C20/25	N	[kN]	12,2	16,2			
Dioplesements	δηο []		0,9	1,0			
Displacements		- [mm]	1,5	1,7			

Table C5.2: Displacements under static and quasi-static shear loads

Size			FZA-Q			
Size			14 x 50 M10	18 x 60 M12	18 x 80 M12	
Shear load in cracked and uncracked concrete C20/25	V	[kN]	9,5	19,	3	
Dianlacements	δνο	[mm]	0,9	2,	1	
Displacements	δν∞	[mm]	1,6	3,	1	

Table C5.3: Displacements under tension loads for seismic performance category C2

Size				FZA-Q			
3126				14 x 50 M10	18 x 60 M12	18 x 80 M12	
Dianlacement	DLS	$\delta_{\text{N,C2}}$	[mm]	3,2	4,0		
Displacement	ULS	$\delta_{N,C2}$	[mm]	13,3	12,9		

Table C5.4: Displacements under shear loads for seismic performance category C2

Size			FZA-Q			
Size			14 x 50 M10	18 x 60 M12	18 x 80 M12	
Displacement	DLS	δv,c2	3,6	4,6	4,6	
	ULS	$\frac{1}{\delta V,C2}$ [mm]	6,8	6,8	6,6	

fischer Zykon Anchor FZA-Q	
Performances Displacement under tension and shear loads	Annex C 5