

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0373 of 4 November 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

SPIT TAPCON

Fasteners for use in concrete for redundant non-structural systems

SPIT Route de Lyon 26500 BOURG-LÉS-VALENCE FRANKREICH

Plant 1

16 pages including 3 annexes which form an integral part of this assessment

EAD 330747-00-0601, Edition 06/02018

ETA-16/0373 issued on 23 September 2016

European Technical Assessment ETA-16/0373

Page 2 of 16 | 4 November 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z91165.20 8.06.01-687/20

European Technical Assessment ETA-16/0373

Page 3 of 16 | 4 November 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The concrete screw SPIT TAPCON is an anchor of size 5 and 6 mm made of galvanised steel and of stainless steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 3

3.2 Safety in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 2, Annex C 1 and C 2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 and C 2
Durability	See Annex B 1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330747-00-0601, the applicable European legal act is: [97/161/EC].

The system to be applied is: 2+

Z91165.20 8.06.01-687/20

European Technical Assessment ETA-16/0373

Page 4 of 16 | 4 November 2020

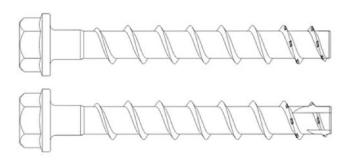
English translation prepared by DIBt

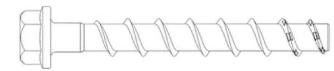
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

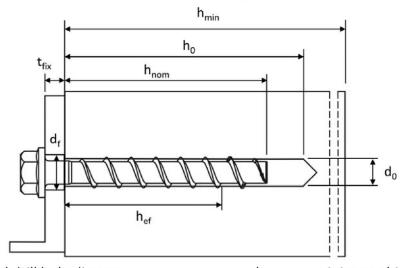
Issued in Berlin 4 November 2020 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Tempel


Z91165.20 8.06.01-687/20


Product in installed condition

SPIT TAPCON


- Galvanized carbon steel

- Stainless steel A4
- Stainless steel HCR

e.g. SPIT TAPCON concrete screw, with hexagon head and fixture

d₀ = nominal drill hole diameter

t_{fix} = thickness of fixture

d_f = clearance hole diameter

h_{min} = minimum thickness of member

h_{nom} = nominal embedment depth

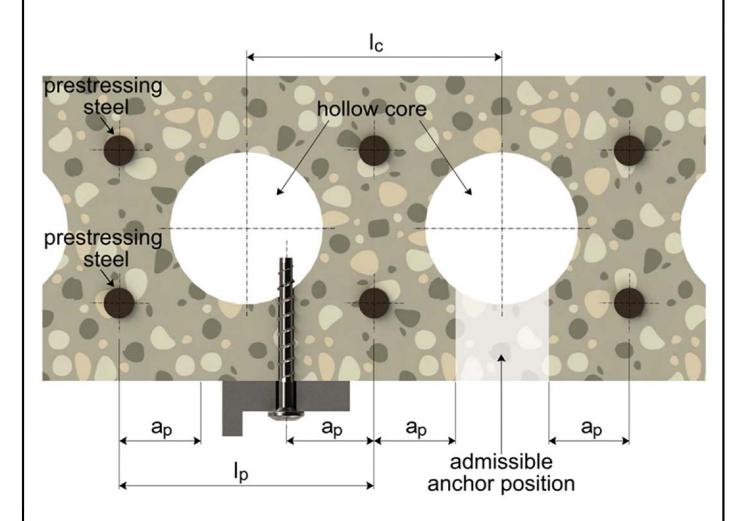
 h_0 = drill hole depth

h_{ef} = effective embedment depth

SPIT TAPCON

Product description

Product in installed condition


Annex A1

Z91162.20

8.06.01-687/20

Installed condition in precast prestressed hollow core slabs

Important ratio: $rac{w}{e} \leq 4$, 2

w = core width

e = web thickness

I_c = core distance ≥ 100 mm

l_p = prestressing steel ≥ 100 mm

 a_p = distance between anchor position and prestressing steel \geq 50mm

SPIT TAPCON

Product description

Installed condition in precast prestressed hollow core slabs

Annex A2

Electronic copy of the ETA by DIBt: ETA-16/0373

8.06.01-687/20

1. Configuration with metric connection threat and hexagon socket e.g. TAPCON 8x105 M10 SW5 2. Configuration with metric connection threat and hexagon drive e.g. TAPCON 8x105 M10 SW7 3. Configuration with washer and hexagon head e.g. TAPCON 8x80 SW13 VZ 40 4. Configuration with washer, hexagon head and TORX drive e.g. TAPCON 8x80 SW13 5. Configuration with hexagon head e.g. TAPCON 8x80 SW13 OS 6. Configuration with countersunk head and TORX drive e.g. TAPCON 8x80 C VZ 40 7. Configuration with pan head and TORX drive e.g. TAPCON 8x80 P VZ 40 8. Configuration with large pan head and TORX drive e.g. TAPCON 8x80 LP VZ 40 9. Configuration with countersunk head and connection thread e.g. TAPCON 6x55 AG M8 10. Configuration with hexagon drive and connection thread e.g. TAPCON 6x55 M8 SW10 11. Configuration with internal thread and hexagon drive e.g. TAPCON 6x55 IM M8/10 **SPIT TAPCON** Annex A3 **Product description** Screw types

Z91162.20

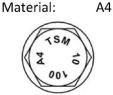
Table 1: Material

Part	Product name	Material
all	TAPCON	- Steel EN 10263-4:2017 galvanized acc. to EN ISO 4042:2018
all types	TAPCON A4	1.4401; 1.4404; 1.4571; 1.4578
сурсз	TAPCON HCR	1.4529

		Nominal chara	Rupture	
Part	Product name	Yield strength f _{yk} [N/mm²]	Ultimate strength f _{uk} [N/mm²]	elongation A ₅ [%]
	TAPCON			
all types	TAPCON A4	560	700	≤ 8
TAPCON HCR	TAPCON HCR			

Table 2: Dimensions

Anchor size			TAPCON 5	TAPCON 6
Screw length	≤L	[mm]	2	200
Core diameter	d _k	[mm]	4,0	5,1
Thread outer diameter	ds	[mm]	6,5	7,5



Marking:

TAPCON high performance TAPCON high performance

Screw type: TAPCON Screw size: 10 Screw length: 100 A4
Screw type: TAPCON
Screw size: 10
Screw length: 100

TAPCON high performance HCR

Screw type: TAPCON
Screw size: 10
Screw length: 100
Material: HCR

Marking "k" or "x" for anchors with connection thread and h_{nom}= 35mm

SPIT TAPCON

Product description

Material, Dimensions and markings

Annex A4

Specification of Intended use

Anchorages subject to:

- static and quasi static loads
- Used only for multiple use for non-structural application according to EN 1992-4:2018
- Used for anchorages with requirements related to resistance of fire (not for using in prestressed hollow core slabs): size 6
- Used for anchorages in prestressed hollow core slabs: size 6

Base materials:

- Compacted reinforced and unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition no particular aggressive conditions exits: screw types made of stainless steel with marking A4.
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition if particular aggressive conditions exits: screw types made of stainless steel with marking HCR.
 - Note: Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be
 anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor
 relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055.
- The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B2, Table 3.

Installation:

- Hammer drilling or hollow drilling.
- Anchor installation carried out by appropriately qualified personnal and under the supervision
 of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.

SPIT TAPCON	
Intended use Specification	Annex B1

Z91162.20 8.06.01-687/20

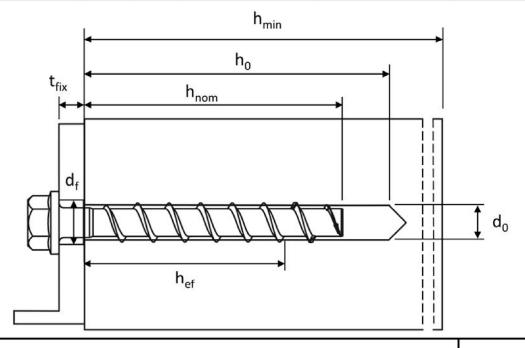
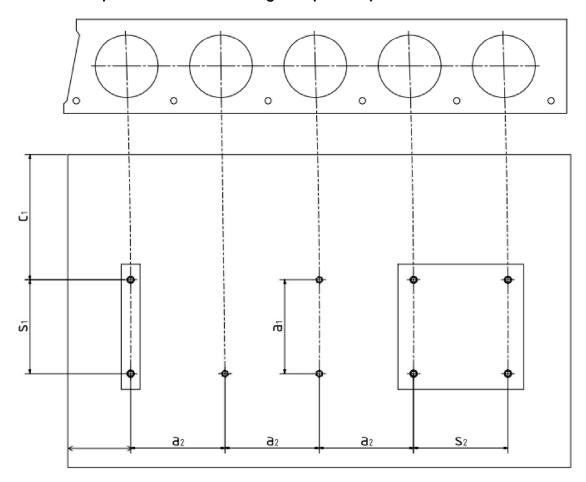


Table 3: Installation para	meters
----------------------------	--------

TAPCON concrete screw size			TAPCON 5	TAPCON 6	
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}
Nominal embedment depth		[mm]	35	35	55
Nominal drill hole diameter	Nominal drill hole diameter d ₀		5	6	
Cutting diameter of drill bit $d_{cut} \le$		[mm]	5,40	6,40	
Drill hole depth	h ₀ ≥	[mm]	40	40	60
Clearance hole diameter	Clearance hole diameter d _f ≤		7	8	
Installation torque (version with connection thread)			8	1	0
Recommended torque impact screw driver		[NIm]	Max. torque according to manufacturer's instruction		rer's instructions
		[Nm]	110	160	

Table 4: Minimum thickness of member, minimum edge distance and minimum spacing

TAPCON concrete screw size			TAPCON 5	TAPCON 6		
h _{nom1}		h _{nom1}	h _{nom1}	h _{nom2}		
Nominal embedment de	ii embeament depth		35	35	55	
Minimum thickness of member	h _{min}	[mm]	80	80	100	
Minimum edge distance	C _{min}	[mm]	35	35	40	
Minimum spacing	Smin	[mm]	35	35	40	


SPIT TAPCON

Intended use Installation parameters

Annex B2

Installation parameters for anchorages in precast prestressed hollow core slabs

 c_1 , c_2 = edge distance

 s_1, s_2 = anchor spacing

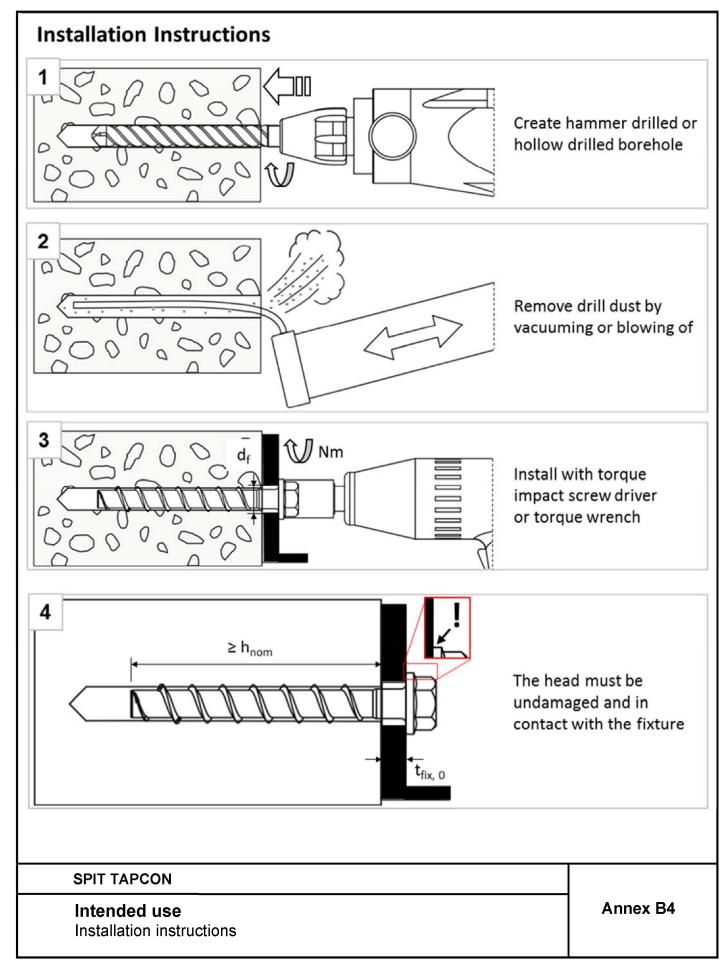
 a_1 , a_2 = distance between anchor groups

 c_{min} = minimum edge distance \geq 100 mm

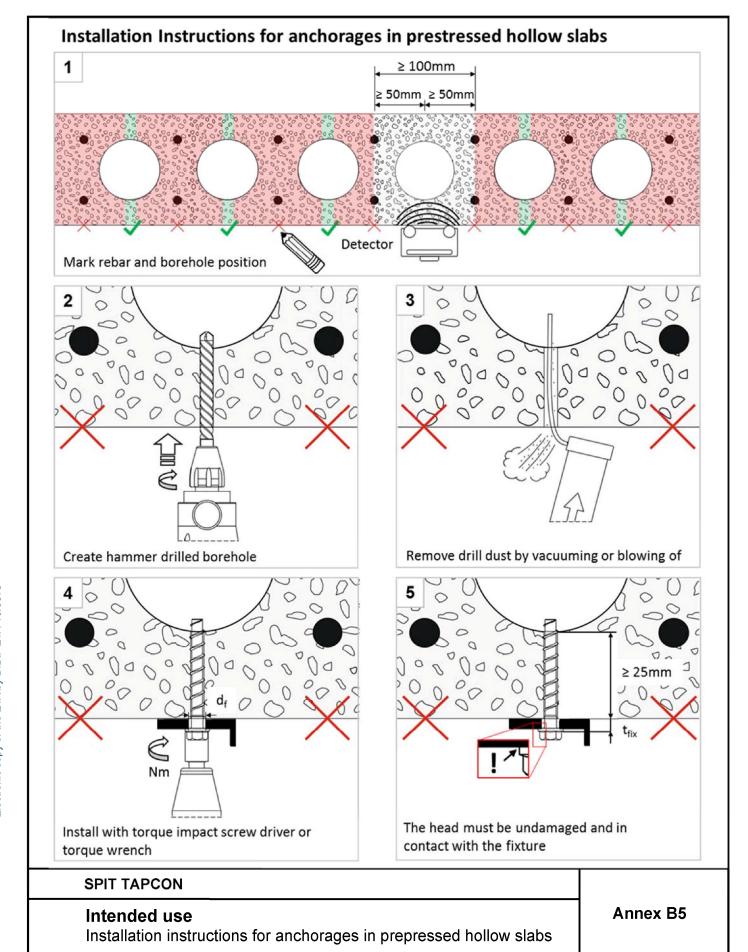
 s_{min} = minimum anchor spacing ≥ 100 mm

a_{min} = minimum distance between anchor groups ≥ 100 mm

SPIT TAPCON


Intended use

Installation parameters for anchorages in precast prestressed hollow slabs


Annex B3

Electronic copy of the ETA by DIBt: ETA-16/0373

Z91162.20

TAPCON concrete screw size				TAPCON 5	TAPCO	ON 6
		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	
Nominal emp	edment depth		[mm]	35	35	55
Steel failure	for tension an	d shear	loading		·	
Characteristic		N _{Rk,s}	[kN]	8,7	14,	0
Partial factor		γ _{Ms,N}	[-]	1	1,5	
Characteristic	shear load	V ⁰ _{Rk,s}	[kN]	4,4	7,0)
Partial factor		γ _{Ms,V}	[-]	1	1,25	
Ductility facto	r	k ₇	[-]		0,8	
Characteristic	bending load	M ⁰ _{Rk,s}	[Nm]	5,3	10,	9
Pull-out failu	re					
Characte-	cracked	N _{Rk,p}	[kN]	1,5	3,0	7,5
ristic tension load C20/25	uncracked	N _{Rk,p}	[kN]	1,5	3,0	7,5
	C25/30			<u> </u>	1,12	
Increasing	C30/37	111	,		1,22	
factor for N _{Rk,p}	C40/50	Ψ_{c}	[-]	1,41		
πκ,ρ	C50/60				1,58	
Concrete fail	ure: Splitting f	ailure,	concrete	cone failure and p	pry-out failure	
Effective emb	edment depth	h _{ef}	[mm]	27	27	44
1.6	cracked	k ₁ =k _{cr}	[-]		7,7	
k-factor	uncracked	k ₁ = k _{ucr}	[-]		11,0	
Concrete	spacing	S _{cr,N}	[mm]		3 x h _{ef}	
cone failure	edge distance	C _{cr,N}	[mm]		1,5 x h _{ef}	
	resistance	N ⁰ Rk,Sp	[kN]		$min(N^0_{Rk,c}; N_{Rk,p})$	
Splitting failure	spacing	S _{cr} ,Sp	[mm]	120	120	160
Tanare	edge distance	C _{cr,Sp}	[mm]	60	60	80
Factor for pry-	out failure	k ₈	[-]		1,0	
Installation fa	ctor	γinst	[-]	1,2	1,0	1,0
Concrete edg	ge failure				·	
Effective lengt		I _f = h _{ef}	[mm]	27	27	44
Nominal outer diameter of screw d _{nom} [mi		[mm]	5	6		
SPIT T.	APCON					
	mances					Annex C1

Z91162.20 8.06.01-687/20

Table 6: Characteristic values of resistance in precast prestressed hollow core slabs C30/37 to C50/60

TAPCON concrete screw size			TAPCON 6		
Bottom flange thickness	d₀	[mm]	≥ 25	≥ 30	≥ 35
Characteristic resistance	F ⁰ Rk	[kN]	1	2	3
Edge distance	C _{cr}	[mm]		100	
Spacing	Scr	[mm]		200	
Installation factor	γinst	[-]		1,0	

Table 7: Limiting distances for application in precast prestressed hollow core slabs

Distances for application in precast prestressed hollow core slabs					
Minimum edge distance	C _{min}	[mm]	≥ 100		
Minimum anchor spacing	S _{min}	[mm]	≥ 100		
Minimum distance between anchor groups	a _{min}	[mm]	≥ 100		
Distance of core	I_{c}	[mm]	≥ 100		
Distance of prestressing steel	Ip	[mm]	≥ 100		
Distance between anchor position and prestressing steel	a _p	[mm]	≥ 50		

SPIT TAPCON	
Performances Characteristic values and limiting distances in precast prestressed hollow core slabs	Annex C2

Z91162.20 8.06.01-687/20

TAPCON conc	rete screw	size			TAPC	ON 6	
Material				TAPCON TAPCON A4		A4/HCR	
Nominal embedment depth		th	h _{nom}	h _{nom1}	h _{nom2}	h _{nom1} 35	h _{nom2}
Steel failure fo	or tension	and shear lo		ad ($F_{Rk,s,fi} = N_{Rk,s,fi} = V_{Rk,s,fi}$)			
	R30		[kN]	0,9		1,2	
	R60	F _{Rk,s,fi60}	[kN]	0,8		1,2	
	R90	F _{Rk,s,fi90}	[kN]	0,6		1,2	
Characteristic	R120	F _{Rk,s,fi120}	[kN]	0,4		0,8	
Resistance	R30	M ⁰ Rk,s,fi30	[Nm]	0,7		0,9	
	R60	M ⁰ Rk,s,fi60	[Nm]	0,6		0,9	
	R90	M ⁰ Rk,s,fi90	[Nm]	0,5		0,9	
	R120	M ⁰ Rk,s,fi120	[Nm]	0,3		0,6	
Pull-out failur	e						
Characteristic Resistance	R30-R90	N _{Rk,p,fi}	[kN]	0,75	1,875	0,75	1,875
	R120	N _{Rk,p,fi}	[kN]	0,6	1,5	0,6	1,5
Concrete con	e failure						
Characteristic Resistance	R30-R90	N ⁰ Rk,c,fi	[kN]	0,86	2,76	0,86	2,76
	R120	N ⁰ Rk,c,fi	[kN]	0,68	2,21	0,68	2,21
Edge distance	!						
R30 - R120 C _{cr,fi}		[mm]	2 x h _{ef}				
In case of fire a	ttack from	more than o	ne side, t	he minimum	edge distance	shall be ≥300r	nm.
Spacing							
R30 - R120 S _{cr,fi}		S _{cr,fi}	[mm]	4 x h _{ef}			
Pry-out failure							
R30 - R120		k ₈	[-]		1,	,0	

±)	Not for	application	in pres	tressed ho	llow core slabs
----	---------	-------------	---------	------------	-----------------

SPIT TAPCON	
Performances Characteristic values under fire exposure	Annex C3