

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0323 of 6 October 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik European Technical Assessment: Trade name of the construction product DAA2, KDHT3, KDHT5, KDHTMU3, KDHTMU5, KDHT1, KDHTQ6 Product family Fastening screws for sandwich panels to which the construction product belongs ROSETER INFO TRADE CO., LTD Manufacturer 11F., No.213, Fu-Nong Rd. Gu-Shan Dist. **KAOHSIUNG CITY 80454** TAIWAN R.O.C Manufacturing plant Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 This European Technical Assessment 15 pages including 10 annexes which form an integral part of this assessment contains This European Technical Assessment is EAD 330047-01-0602 issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces ETA-17/0323 issued on 19 June 2017

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-17/0323 English translation prepared by DIBt

Page 2 of 15 | 6 October 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 15 | 6 October 2020

European Technical Assessment ETA-17/0323 English translation prepared by DIBt

Specific part

1 Technical description of the product

The products are fastening screws for sandwich panels (self-drilling screws). The fastening screws for sandwich panels are completed with a metallic washer and an EPDM sealing washer. The fastening screws for sandwich panels are made of austenitic stainless steel or a bimetal combination with drill bits made of galvanised/painted carbon steel. The fastening screws for sandwich panels and the corresponding connections are subject to tension and/or shear forces. Samples of fastenings screws for sandwich panels are shown in Figure 1.

- Califi point

Self drilling screw

Figure 1: Fastening screws for sandwich panels.

The components and the system setup of the product are given in Annex (1-10).

Annex	Fastening Screw
Annex 4	DAA2 x L
Annex 5	KDHT1 x L
Annex 6	KDHT3 x L
Annex 7	KDHT5 x L
Annex 8	KDHTMU3 x L
Annex 9	KDHTMU5 x L
Annex 10	KDHTQ6 x L

Table 1 – Types of the fastening screws for sandwich panels

European Technical Assessment ETA-17/0323

Page 4 of 15 | 6 October 2020

English translation prepared by DIBt

2 Specification of the intended use in accordance with the applicable European Assessment Document 330047-01-0602

The fastening screws for sandwich panels are intended to be used for fastening sandwich panels to metal or timber substructures. The sandwich panel can either be used as wall or roof cladding or as load bearing wall and roof element. The intended use comprises fastening screws for sandwich panels and connections for indoor and outdoor applications. Fastening screws which are intended to be used in external environments with \geq C2 corrosion according to the standard EN ISO 12944-2 are made of stainless steel. Furthermore the intended use comprises connections with predominantly static loads (e.g. wind loads, dead loads). The fastening screws for sandwich panels are not intended for re-use.

The performances given in Section 3 are only valid if the fastening screws for sandwich panels are used in compliance with the specifications and conditions given in Annex (1-10).

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastening screws for sandwich panels of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

Essential characteristic	Performance
Shear Resistance of the Connection	see Annex 2-3 and 4-10
Tension Resistance of the Connection	see Annex 2-3 and 4-10
Design Resistance in case of combined Tension and Shear Forces (interaction)	see Annex 2 and 4-10
Check of Bending Capacity in case of Thermal Expansion of the outer face of Sandwich Panels	see Annex 2 and 4-10
Durability	see Annexes 4-10

3.1 Mechanical resistance and stability (BWR 1)

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1

European Technical Assessment ETA-17/0323

Page 5 of 15 | 6 October 2020

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330047-01-0602, the applicable European legal act is Decision 1998/214/EC, amended by 2001/596/EC.

The system to be applied is: 2+

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 6 October 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Hahn

Page 6 of European Technical Assessment ETA-17/0323 of 6 October 2020

English translation prepared by DIBt

Fastening screws for sandwich panels

Page 7 of European Technical Assessment ETA-17/0323 of 6 October 2020

English translation prepared by DIBt

Determination of Design Values

The design value of tension and shear resistance has to be determined as follows:

$$N_{R,d} = \frac{N_{R,k}}{\gamma_M} \qquad \qquad V_{R,d} = \frac{V_{R,k}}{\gamma_M}$$

The characteristic values $N_{B,k}$ and $V_{B,k}$ are given in the Annexes. For intermediate dimension of sandwich panel or substructure the characteristic value of the thinner dimension is used.

The recommended partial safety factor $\gamma_M = 1,33$ is used, provided no partial safety factor is given in national regulations or national Annexes to Eurocode 3.

For asymmetric metal substructures with thickness $t_{II} < 5 \text{ mm}$ (for instance Z- or C-shaped profiles), the characteristic value $N_{B,k}$ given in the Annexes has to be reduced to 70%.

In case of combined tension and shear forces the following interaction equation is taken into account:

$$\frac{N_{S,d}}{N_{R,d}} + \frac{V_{S,d}}{V_{R,d}} \le 1.0$$

 $N_{S,d}$ and $V_{S,d}$ indicates the design values of applied tension and shear forces.

The design value of bending capacity of the fastening screw in case of thermal expansion of the outer face of sandwich panels corresponds to the maximum allowed displacement of the fastening screw head given in the Annexes.

Installation conditions

The installation is carried out according to the manufacturer's instructions.

The fastening screws are screwed-in with electric screw driver. The use of impact wrenches is not allowed.

The fastening screws are fixed rectangular to the surface of the sandwich panel.

The sandwich panel and substructure are in contact to each other. The use of compression resistant thermal insulation strips up to a thickness of 3 mm is allowed.

The thickness (or minimum thickness) of metal substructure needs to be covered by the clamping length of the fastening screw. Otherwise only the screwed-in clamping length of the fastening screw may be considered.

Basics for the design

Fastening screws for sandwich panels

English translation prepared by DIBt

Timber substructures

Characteristic values of tension and shear resistance of the connection for other k_{mod} or p_k as indicated in the Annexes can be determined as follows:

$$N_{R,k} = \min \left\{ \begin{array}{c} N_{R,l,k} \\ F_{ax,Rk} * k_{mod} \end{array} \right. \qquad \qquad V_{R,k} = \min \left\{ \begin{array}{c} V_{R,l,k} \\ F_{v,Rk} * k_{mod} \end{array} \right.$$

The characteristic values N_{R,I,k} and V_{R,I,k} are given in the corresponding Annex of the fastening screw.

 $F_{ax,Rk}$ indicates the characteristic value of tension resistance of timber substructure. The value has to be determined according to EN 1995-1-1:2004 + A1:2008, equation (8.40a) with $f_{ax,k}$ given in the corresponding Annex of the fastening screw. $F_{v,Rk}$ indicates the characteristic shear resistance of timber substructure. The value has to be determined according to EN 1995-1-1:2004 + A1:2008, equation (8.9) with $M_{y,Rk}$ and $f_{h,k}$ given in the corresponding Annex of the fastening screw.

Electronic copy of the ETA by DIBt: ETA-17/0323

Specific notes to the Annexes

Fastening screws for sandwich panels

Page 9 of European Technical Assessment ETA-17/0323 of 6 October 2020

English translation prepared by DIBt

SW8	≥Ø16 Ø12 7 8 8 7	6:5 57 77 4.9			MaterialsFastener:Stainless steel 1.4301- EN 10088Washer:Stainless steel 1.4301- EN 10088 with vulcanized EPDM-sealComponent I:S280GD to S350GD - EN 10346Component II:Timber – EN 14081Drilling-capacity $\Sigma(t_i) \le 2.00 \text{ mm}$				
	254 99	56.5 4.7 브	Ŧ		<u>Cha</u> My,F fax,k f _{h,0,F}	aracteristics Rk = = < = ,k =	14.20 Nm 11.80 N/mm² (24.3 N/mm² (ρ 19.2 N/mm² (ρ	I ₉ = 39 mm, ρ _a _a = 350 kg/m ³) _a = 350 kg/m ³)	= 350 kg/m ³)
						Timber	Component II \geq C24, $\rho_a \geq$ 35	0 kg/m ³	
				L _g ≥ 39	mm	L _g ≥ 44 mm	L _g ≥ 54 mm	L _g ≥ 71 mm	L _g ≥ 80 mm
			0,40	0,8	1	0,81	0,81	0,81	0,81
			0,50	1,07	1)	1,07 ¹⁾	1,07 ¹⁾	1,07 ¹⁾	1,07 ¹⁾
	46	κΝ.	0,55	1,2	5	1,25	1,25	1,25	1,25
	034	Ľ.	0,63	1,50	3	1,53	1,53	1,53	1,53
	Ť.	5	0,75	1,96	<u>;</u>	1,96	1,96	1,96	1,96
	E C		0,88	2,08	5	2,08	2,08	2,08	2,08
	ner 50 (1,00	2,19	1)	2,19"	2,19"	2,19"	2,19"
	S35		0,40	1,60)	1,60		1,60	1,60
	to		0,50	1,85	1))	1,85"	1,85"	1,85"	1,85"
	о е	Ŝ.	0,55	2,12	<u> </u>	2,12	2,12	2,12	2,12
	30 (ز. الا	0,63	2,5	5	2,55	2,55	2,55	2,55
	526	Δ _{R,k}	0,75	2,5	5	2,91	3,19	3,19	3,19
		~	0,88	2,5	5	2,91	3,19	3,19	3,19
		:	1,00	2,5	5	2,91	3,19	3,19	3,19
			NR,k,II	2,53	5	2,91	3,68	4,99	5,68
			30				3,0		
	tu _		40				4,0		
	ead Jen		50				5,0		
	. hé		60				6,0		
	אפר כומכ ח]		80				8,0		
	n disp		100				10,0		
	0		120				12,0		
			≥ 140				14,0		

¹⁾ If component I is made of S320GD to S350GD the values may be increased by 8.3%.

sandwich screw

DAA2 x L

Page 10 of European Technical Assessment ETA-17/0323 of 6 October 2020

English translation prepared by DIBt

≥Ø16 Ø10-12 ♀		Mate Faste	rials ener: Stain	less steel 1.4301	- EN 10088 - EN 10088	3					
		VVasi	with v	,							
5 Ø5.4		Com	ponent I: S280								
5W 8		Com	ponent II: S280 S235								
		<u>Drillin</u>	<u>Drilling-capacity</u> $\Sigma(t_1 + t_{11}) \le 3.00 \text{ mm}$								
Ø3.75											
			Com	inonent II							
			S280 GE S23! t	D to S350 GD 5 to S355 II [mm]							
			1,50	2,00							
		0,40	0,90	- 0,90	-						
	-	0,50	1,72 ¹⁾	- 1,72 ¹⁾	-						
	Ţ.	0,55	1,94 ¹⁾	- 1,94 ¹⁾	-						
346	± 	0,63	2,29 ¹⁾	- 2,29 ¹⁾	-						
10	>	0,75	2,81 ¹⁾	- 2,81 ¹⁾	-						
	-	0,88	3,471)	- 3,471)	-						
	Ē	1,00	4,08 ¹⁾	- 4,08 ¹⁾	-						
	<u> </u>	0,40	1,81	- 1,81	-						
t 3	÷ .	0,50	2,281)	- 2,28 ¹⁾	-						
GD (5	0,55	2,701)	- 2,70 ¹⁾	-						
8	ĽĽ	0,63	3,381)	- 3,381)	-						
S2	- N _{R,}	0,75	4,40"	- 4,40 ¹⁾	-						
	-	0,88	4,40"	- 4,40"	-						
	-	1,00 N.	= 4,40 ¹⁷	- 4,40''	-						
		INR,k,ll	0,03	- 5,03	-						
	-	40 E0	6,0 7 5	6,U							
r mr	-	- 00 60		C, 1 0 0							
and a set of the set o	<u> </u>	80	12.0	9,0							
lax.	<u>ح</u> -	100	15.0	15.0							
	· -	120	18.0	18.0							
	-	≥ 140	18,0	18.0							
¹⁾ if component I and component II are	made of	S320G	D to S350GD the	values may be inc	creased by	8.3%.					
	sandv	vich so	crew								
	KD	HT1 x	: L			Annex 5					

Page 11 of European Technical Assessment ETA-17/0323 of 6 October 2020

English translation prepared by DIBt

	≥Ø16				Mat	erials						
	Ø10-12	m			Fas	tener:	Stainle	ss steel 1.4	4301- EN 1	8800		
		5	1		Washer: Stainless steel 1.4301- EN 10088 with vulcanized EPDM-seal							
•	Ø6.3	12 7			Cor							
LSM 8		- 1										
	F.			S235 to S355 – EN 10025-2								
	Ø5.5 Ø3.9	2	-		<u>Drilling-capacity</u> $\Sigma(t_1 + t_{11}) \le 6.50 \text{ mm}$							
	S .	Lt										
	<u>y</u> 04.0											
							Comp	onent II				
				1,50	D	2,00	2,50	3,00	4,00	5,0	0	
			0,40	1,01	-	1,01 -	1,01 -	1,01 -	1,01 -	1,01	-	
			0,50	1,28 ¹⁾	-	1,28 ¹⁾ -	1,28 ¹⁾ -	1,28 ¹⁾ -	1,28 ¹⁾ -	1,28 ¹⁾	-	
		Ŝ	0,55	1,48	-	1,48 -	1,48 -	1,48 -	1,48 -	1,48	-	
	346	ž.	0,63	1,79	-	1,79 -	1,79 -	1,79 -	1,79 -	1,79	-	
	10,	>	0,75	2,26	-	2,26 -	2,26 -	2,26 -	2,26 -	2,26	-	
	Ξģ		0,88	2,75	-	2,75 -	2,75 -	2,75 -	2,75 -	2,75	-	
			1,00	3,21 ¹⁾	-	3,21 ¹⁾ -	3,21 ¹⁾ -	3,21 ¹⁾ -	3,21 ¹⁾ -	3,21 ¹⁾	-	
	E S35		0,40	1,11	-	1,11 -	1,11 -	1,11 -	1,11 -	1,11	-	
	to Som		0,50	1,67 ¹⁾	-	1,67 -	1,67 -	1,67 -	1,67 -	1,67	-	
	6	7	0,55	1,82	-	2,14 -	2,14 -	2,14 -	2,14 -	2,14	-	
	80	ِ[k	0,63	1,82	-	2,77 -	2,89 -	2,89 -	2,89 -	2,89	-	
	S2	NR,k	0,75	1,82	-	2,77 -	3,88 -	4,02 -	4,02 -	4,02	-	
			0,88	1,82	-	2,77 -	3,88 -	4,02 -	4,02 -	4,02	-	
			N	1.02	-	2,11 -	3,00 -	4,02 -	4,02 -	4,02	-	
			1NR,k,ll 20	1,02	-	2,11 -	3,00 - 20	20	2,30 ¹⁷ -	10,02" ດີ	-	
	Ē		40	4,0		2,0	2,0	2,0	2,0	2,0	,	
	ق ج		50	6.7		3.3	3.3	3.3	3.3	3.3	3	
	nt u		60	8.0		4.0	4.0	4.0	4.0	4.0)	
	tx. t me		80	9.3	1	4,7	4,7	4,7	4,7	4.7	,	
	ma lace		100	10.7	7	5,3	5,3	5,3	5,3	5,3	3	
	lispl		120	13,	3	6,7	6,7	6,7	6,7	6,7	,	
			≥ 140	16,0)	8,0	8,0	8,0	8,0	8,0)	
1) if component I and	d compone	ent II	are ma	de of S	320	GD to S350	GD the va	lues may b	be increase	d by 8.	3%.	
			S	andwi	ch	screw						
				KDH	т3	x L						Annex 6

Page 12 of European Technical Assessment ETA-17/0323 of 6 October 2020

English translation prepared by DIBt

		ð16			Materials									
	- Ø10	0-12	23		Fastener	: 8	Stainless ste	el 1.4301-	EN 10088					
			-	Ť	Washer:	S	Stainless ste with vulcaniz							
	8	Ø6.	<u>3</u> 12		Component I: S280GD to S350GD - EN 10346									
SW 8	-1	3	- 1											
)				S235 to S355 – EN 10025-2									
	1.06	ø5.5 ø3.9	-	-	Drilling-c	<u>Drilling-capacity</u> $\Sigma(t_1 + t_{11}) \le 14.00 \text{ mm}$								
		Mannan	Ľ											
		H												
	<u>Ø5.1</u>	-												
							Component	II						
						S280 GI	D to S350 G	D – 10346						
				3.00	4 00	5.00	6.00	8.00	10.00	12 00				
			0.40	1.02 -	1.02 -	1.02 -	1.02 -	1.02 -	1.02 -	1.02 -				
			0,50	1,38 ¹⁾ -	1,38 ¹⁾ -	1,38 ¹⁾ -	1,38 ¹⁾ -	1,38 ¹⁾ -	1,38 ¹⁾ -	1,38 ¹⁾ -				
		Σ	0,55	1,69 -	1,69 -	1,69 -	1,69 -	1,69 -	1,69 -	1,69 -				
	346	₹	0,63	2,18 -	2,18 -	2,18 -	2,18 -	2,18 -	2,18 -	2,18 -				
	103	2	0,75	2,92 -	2,92 -	2,92 -	2,92 -	2,92 -	2,92 -	2,92 -				
	<u> </u>		0,88	3,37 -	3,37 -	3,37 -	3,37 -	3,37 -	3,37 -	3,37 -				
	n G D G		1,00	3,79 ¹⁾ -	3,79 ¹⁾ -	3,79 ¹⁾ -	3,79 ¹⁾ -	3,79 ¹⁾ -	3,79 ¹⁾ -	3,79 ¹⁾ -				
	335(mr		0,40	1,52 -	1,52 -	1,52 -	1,52 -	1,52 -	1,52 -	1,52 -				
	to S t I		0,50	1,68 ¹⁾ -	1,68 ¹⁾ -	1,68 ¹⁾ -	1,68 ¹⁾ -	1,68 ¹⁾ -	1,68 ¹⁾ -	1,68 ¹⁾ -				
	0 g	_	0,55	2,04 -	2,04 -	2,04 -	2,04 -	2,04 -	2,04 -	2,04 -				
	30 (۲N N	0,63	2,62 -	2,62 -	2,62 -	2,62 -	2,62 -	2,62 -	2,62 -				
	S2{	Ч ^{н,} к	0,75	3,48 -	3,48 -	3,48 -	3,48 -	3,48 -	3,48 -	3,48 -				
		۷	0,88	3,48 -	3,48 -	3,48 -	3,48 -	3,48 -	3,48 -	3,48 -				
		:	1,00	3,48 -	3,48 -	3,48 -	3,48 -	3,48 -	3,48 -	3,48 -				
			N _{R,k,II}	4,56 ¹⁾ -	5,88 ¹⁾ -	6,71 ¹⁾ -	7,61 ¹⁾ -	7,61 ¹⁾ -	7,61 ¹⁾ -	7,61 ¹⁾ -				
			30	2,0	2,0	2,0	2,0	2,0	2,0	2,0				
	E E		40	2,7	2,7	2,7	2,7	2,7	2,7	2,7				
	ad t u [50	3,3	3,3	3,3	3,3	3,3	3,3	3,3				
	. he		60	4,0	4,0	4,0	4,0	4,0	4,0	4,0				
	nax cer		80	4,7	4,7	4,7	4,7	4,7	4,7	4,7				
	n pla(100	5,3	5,3	5,3	5,3	5,3	5,3	5,3				
	dis		120	6,7	6,7	6,7	6,7	6,7	6,7	6,7				
			≥ 140	8,0	8,0	8,0	8,0	8,0	8,0	8,0				
¹⁾ if component	I and cor	npon	ent II ar	e made of S	S320GD to	S350GD	the values	may be inc	reased by a	8.3%.				
				sandw	ich screv	N								

KDHT5 x L

Annex 7

Electronic copy of the ETA by DIBt: ETA-17/0323

Page 13 of European Technical Assessment ETA-17/0323 of 6 October 2020

English translation prepared by DIBt

	≥Ø14			Ν	Nat	erials								
	Ø14			F	as	tener:	Stainle	ss steel 1.4	567- EN 1	0088				
4.0	0	4.4	-	V	Na	sher:	Stainle: with vu	ss steel 1.4 Icanized El	301- EN 1 PDM-seal	0088				
8	Ø6.3	15			Cor	nponent I:	S280G	S280GD to S350GD - EN 10346						
		+			or	nponent II:	S280G	D to \$3500	3D - EN 10	346				
No.3 SQ/PH		1		S235 to S355 – EN 10025-2										
	Ø5.5													
No 3 550	Ø3.9		-	<u>Drilling-capacity</u> $\Sigma(t_1 + t_{11}) \le 6.50 \text{ mm}$										
2-1N0.3 SQ		Ħ												
No.3 SQ/PH														
(\diamond)	0													
No.3 SQ	Ø4.8													
-	* *													
							Comp	onent II						
						528	0 GD to S?	350 GD – 1	0346					
						S20								
		t II [mm]												
				1,50		2,00	2,50	3,00	4,00	5,0	0			
			0,40	1,01	-	1,01 -	1,01 -	1,01 -	1,01 -	1,01	-			
		V _{R,k} [kN]	V _{R.k} [kN]	—	0,50	1,28"	-	1,28 ¹⁷ -	1,28 ¹⁾ -	1,28 ¹⁾ -	1,28 ¹⁾ -	1,28	-	
	و			0,55	1,48	-	1,48 -	1,48 -	1,48 -	1,48 -	1,48	-		
	034			$V_{R,k}$	$V_{R,k}$	0,03	2.26	-	226 -	226 -	2 26 -	2 26 -	2.26	-
	- 1	-	0.88	2.75	-	2.75 -	2,25 -	2,20	2,20	2.75	-			
	ent) GE		1,00	3,21 ¹⁾	-	3,21 ¹⁾ -	3,21 ¹⁾ -	3,21 ¹⁾ -	3,21 ¹⁾ -	3,21 ¹⁾	-			
	350 [mn		0,40	0,96	-	0,96 -	0,96 -	0,96 -	0,96 -	0,96	-			
	to S to S		0,50	1,27 ¹⁾	-	1,27 ¹⁾ -	1,27 ¹⁾ -	1,27 ¹⁾ -	1,27 ¹⁾ -	1,27 ¹⁾	-			
	gD C	7	0,55	1,58	-	1,58 -	1,58 -	1,58 -	1,58 -	1,58	-			
	80 -	Ĺ ĸ	0,63	1,82	-	2,08 -	2,08 -	2,08 -	2,08 -	2,08	-			
	S2	N _{R,k}	0,75	1,82	-	2,77 -	2,83 -	2,83 -	2,83 -	2,83	-			
			1.00	1,82	-	2,11 -	2,83 -	2,83 -	2,83 -	2,83	-			
			NBR1	1.82	-	2 771) -	3 88 ¹⁾ -	4 98 ¹⁾ -	5 30 ¹⁾ -	2,00 5 62 ¹⁾	_			
			30	4.0		20	20	20	2.0	2	0			
	Ē		40	5.3		2,7	2,7	2,7	2,7	2.	7			
	n [r		50	6,7		3,3	3,3	3,3	3,3	3,	3			
	hea ent u		60	8,0		4,0	4,0	4,0	4,0	4,	0			
	lax. eme		80	9,3		4,7	4,7	4,7	4,7	4,	7			
	m plac		100	10,7		5,3	5,3	5,3	5,3	5,	3			
	disl		120	13,3		6,7	6,7	6,7	6,7	6,	7			
			2 140	16,0		8,0	8,0	8,0	8,0	8,	0			
¹⁾ if component I and	d compone	ent II	are ma	de of S3	200	GD to S350	GD the va	llues may b	be increase	d by 8	.3%.			
			S	andwic	h s	screw								
			I	KDHTN	/U	3 x L						Annex 8		

Page 14 of European Technical Assessment ETA-17/0323 of 6 October 2020

English translation prepared by DIBt

	2	Ø14			Materials						
	- 9	ð14 -	4.4		Fastener	: s	tainless ste	el 1.4567-	EN 10088		
4		Ø6.3 Ø4.7	12	1	Washer:	S	tainless ste ith vulcaniz	el 1.4301- ed EPDM-	EN 10088 seal		
	-1-5	2.4			Compone	ent I: S	280GD to 5	6350GD - E	EN 10346		
(A		_			Compone	ent II: S	280GD to \$	350GD - E	EN 10346		
(the		Ø5.5	5			S	235 to S35	5 – EN 100)25-2		
<no.3 <="" sq="" td=""><td>PH 011</td><td>ø3.9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></no.3>	PH 011	ø3.9									
)				Drilling-c	apacity Σ	$I(t_1 + t_1) \le 14$	1.00 mm			
No.3 SQ			Ħ								
(🗇											
-No.3 SQ	/PH										
		11									
No 2 50	Ø5.1			ł.							
∠110.3 SQ		-4									
							Component				
						S280 GE) to \$350 G	D – 10346			
						S235 to	S355 – EN	10025-2			
							t II [mm]				
				3,00	4,00	5,00	6,00	8,00	10,00	12,00	
			0,40	1,02 -	1,02 -	1,02 -	1,02 -	1,02 -	1,02 -	1,02 -	
			0,50	1,38 ¹⁾ -	1,38 ¹⁾ -	1,38 ¹⁾ -	1,38 ¹⁾ -	1,38 ¹⁾ -	1,38 ¹⁾ -	1,38 ¹⁾ -	
	Ģ	N N	0,55	1,69 -	1,69 -	1,69 -	1,69 -	1,69 -	1,69 -	1,69 -	
	034	ζR,k	0,03	2,10 -	2,10 -	2,10 -	2,10 -	2,10 -	2,10 -	2,10 -	
		-	0.88	3.37 -	3.37 -	3.37 -	3.37 -	3.37 -	3.37 -	3.37 -	
	ent		1,00	3,79 ¹⁾ -	3,79 ¹⁾ -	3,79 ¹⁾ -	3,79 ¹⁾ -	3,79 ¹⁾ -	3,79 ¹⁾ -	3,79 ¹⁾ -	
	350 [mm		0,40	1,01 -	1,01 -	1,01 -	1,01 -	1,01 -	1,01 -	1,01 -	
	to S t		0,50	1,20 ¹⁾ -	1,20 ¹⁾ -	1,20 ¹⁾ -	1,20 ¹⁾ -	1,20 ¹⁾ -	1,20 ¹⁾ -	1,20 ¹⁾ -	
	оġ	_	0,55	1,49 -	1,49 -	1,49 -	1,49 -	1,49 -	1,49 -	1,49 -	
	80 (Z×]	0,63	1,96 -	1,96 -	1,96 -	1,96 -	1,96 -	1,96 -	1,96 -	
	S2	N _{R,k}	0,75	2,66 -	2,66 -	2,66 -	2,66 -	2,66 -	2,66 -	2,66 -	
			0,88	2,66 -	2,66 -	2,66 -	2,66 -	2,66 -	2,66 -	2,66 -	
			1,00	2,66 -	2,66 -	2,66 -	2,66 -	2,66 -	2,66 -	2,66 -	
			NR,k,II	4,56" -	5,88" -	6,/1" -	7,61" -	7,61" -	7,61" -	7,61" -	
	٦		30	2,0	2,0	2,0	2,0	2,0	2,0	2,0	
	يت س		40 50	2,/	2,/	2,/	2,/	2,/ 33	2,/	2,/	
	ieac nt u		60	4.0	3,3 4 0	4 0	4 0	3,3 4 0	4.0	3,3 4 0	
	ix. h		80	4.7	4.7	4.7	4.7	4.7	4.7	4.7	
	ma ace		100	5,3	5,3	5,3	5,3	5,3	5,3	5,3	
	ldsit		120	6,7	6,7	6,7	6,7	6,7	6,7	6,7	
			≥ 140	8,0	8,0	8,0	8,0	8,0	8,0	8,0	
¹⁾ if component			ont II or	o mado of S	220GD to	\$350GD	the values r	nav bo incr	roacod by 9	3 30/	

component I and component II are made of \$320GD to \$350GD the values may be increased by 8.3%.

sandwich screw

KDHTMU5 x L

Page 15 of European Technical Assessment ETA-17/0323 of 6 October 2020

English translation prepared by DIBt

	≥Ø16		Mate	<u>erials</u>								
	Ø12		Fas	tener:	Stainles	ss steel 1.4	301 or 1.4	567- EN 10	0088			
		<u>-</u>	Was	sher:	Stainles with vul	ss steel 1.4 canized EF	301- EN 10 PDM-seal	0088				
SW 8 00	\$26.3		Con	nponent I:	S280GI	D to S3500	GD - EN 10	346				
			Con	nonent II.	S280GI	D to \$3500	D - EN 10	346				
				ipononi in	S235 to	s355 – El	N 10025-2	010				
	Ø5.5 Ø3.9		Drill	ling-capacit	t <u>y</u> Σ(tı + tıı) ≤ 16.00 m	ım					
	() eq											
	4											
Ø	5.0											
					Compo	onent II						
			S280 GD to S350 GD – 10346									
			S235 to S355 – EN 10025-2									
		3,00	4,00	5,00	6,00	8,00	10,00	12,00	15,00			
	0,40	0,72	0,72	0,72	0,72	0,72	0,72	0,72	0,72			
_	0,50	1,14	1,14	1,14	1,14	1,14	1,14	1,14	1,14			
	0,55	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30			
)34 "r		1,55	1,55	1,55	1,55	1,55	1,55	1,55	1,55			
	0,75	1,94	1,94	1,94	1,94	1,94	1,94	1,94	1,94			
- G -	1.00	2,70	2,70	2,70	2,70	2,70	2,70	2,70	2,70			
	1,00	1 71	1 71	1 71	1 71	1 71	1 71	1 71	1 71			
T_r S3	0,40	2301	2 301)	2 301)	2 301)	2 301)	2301	2 301)	2 301)			
	0,50	2,00 / 2 91 ¹⁾	2 911)	2 91 ¹⁾	2 911)	2 911)	2 911)	2 911)	2 911)			
	0.63	3.13	3 13	3.13	3.13	3.13	3.13	3.13	3 13			
528(<u>0,00</u>	3 77 ¹⁾	3.89	3.89	3.89	3.89	3.89	3.89	3 89			
	0.88	3.77 ¹⁾	4.11	4.11	4.11	4.11	4.11	4.11	4.11			
	1,00	3,77 ¹⁾	4,31	4,31	4,31	4,31	4,31	4,31	4,31			
	N _{R.k.II}	3,77 ¹⁾	4,73 ¹⁾	5,68 ¹⁾	6,09 ¹⁾	6,89 ¹⁾	7,97 ¹⁾	7,97 ¹⁾	7,97 ¹⁾			
	40	6.0	6,0	5.0	5.0	5.0	5.0	5.0	5,0			
_	50	7,5	7,5	6,0	6,0	6,0	6,0	6,0	6,0			
ead]	60	9,0	9,0	7,5	7,5	7,5	7,5	7,5	7,5			
in the line line line line line line line lin	80	12,0	12,0	10,0	10,0	10,0	10,0	10,0	10,0			
	100	15,0	15,0	12,5	12,5	12,5	12,5	12,5	12,5			
- o												
ਰ	120	18,0	18,0	15,0	15,0	15,0	15,0	15,0	15,0			

¹⁾ if component I and component II are made of S320GD to S350GD the values may be increased by 8.3%.

sandwich screw

KDHTQ6 x L