

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0336 of 9 November 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product Anchor channels (HAC-C) with channel bolts (HBC) Product family Anchor channels to which the construction product belongs Manufacturer Hilti AG Feldkircherstraße 100 9494 Schaan FÜRSTENTUM LIECHTENSTEIN Manufacturing plant Hilti Werke This European Technical Assessment 31 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is EAD 330008-03-0601 issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces ETA-17/0336 issued on 19 May 2020

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-17/0336 English translation prepared by DIBt

Page 2 of 31 | 9 November 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 31 | 9 November 2020

Specific Part

1 Technical description of the product

The anchor channels (HAC-C) with channel bolts (HBC) are a system consisting of C-shaped channel profile of carbon steel or stainless steel and at least two metal anchors non-detachably fixed to the channel back and channel bolts.

The anchor channel is embedded surface-flush in the concrete. Channel bolts (HBC) with appropriate hexagon nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under tension load (static and quasi-static load)	
 Resistance to steel failure of anchors, connection and channel lips 	See Annex C1
- Resistance to steel failure of channel bolt	See Annex C9
 Resistance to steel failure by exceeding the bending strength of the channel 	See Annex B5 and C2
- Max. installation torque	See Annex B5
 Resistance to pull-out failure of the anchor and to concrete cone failure 	See Annex C3 and C4
 Min. edge distance, spacing and member thickness 	See Annex B3
 Characteristic edge distance and spacing to avoid splitting of concrete under load 	See Annex C3 and C4
 Resistance to blow-out failure – bearing area of anchor head 	See Annex A4

European Technical Assessment

ETA-17/0336

English translation prepared by DIBt

Page 4 of 31 | 9 November 2020

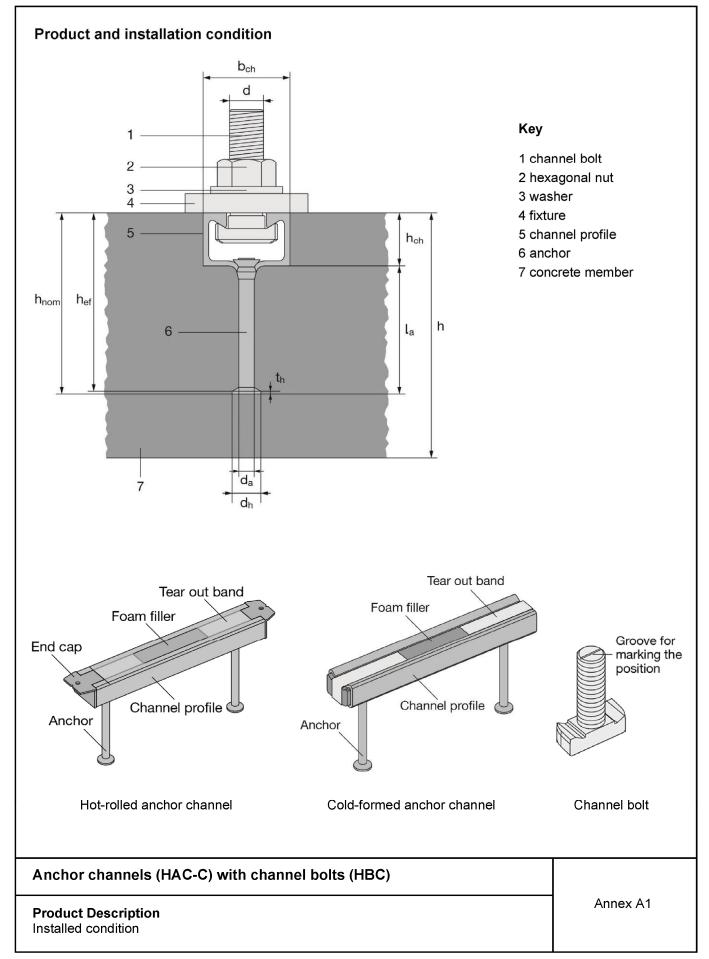
Characteristic resistance under shear load (static and quasi-static load)	
- Resistance to steel failure of channel bolt	See Annex C9 und C10
 Resistance to steel failure of channel lips, connection and anchor (shear load perpendicular to longitudinal axis of channel) 	See Annex C5 und C6
 Resistance to steel failure of channel lips, anchor and connection (shear load in direction of longitudinal axis of channel) 	See Annex C5 und C6
- Resistance to concrete failure	See Annex C7
Characteristic resistance under combined tension and shear load (static and quasi-static load)	See Annex C8
Characteristic resistances under cyclic fatigue tension load	See Annex C12 to C13
Displacements (static and quasi-static load)	See Annex C5 and C7 to C8
Durability	See Annex B1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Characteristic resistance to fire	See Annex C11

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

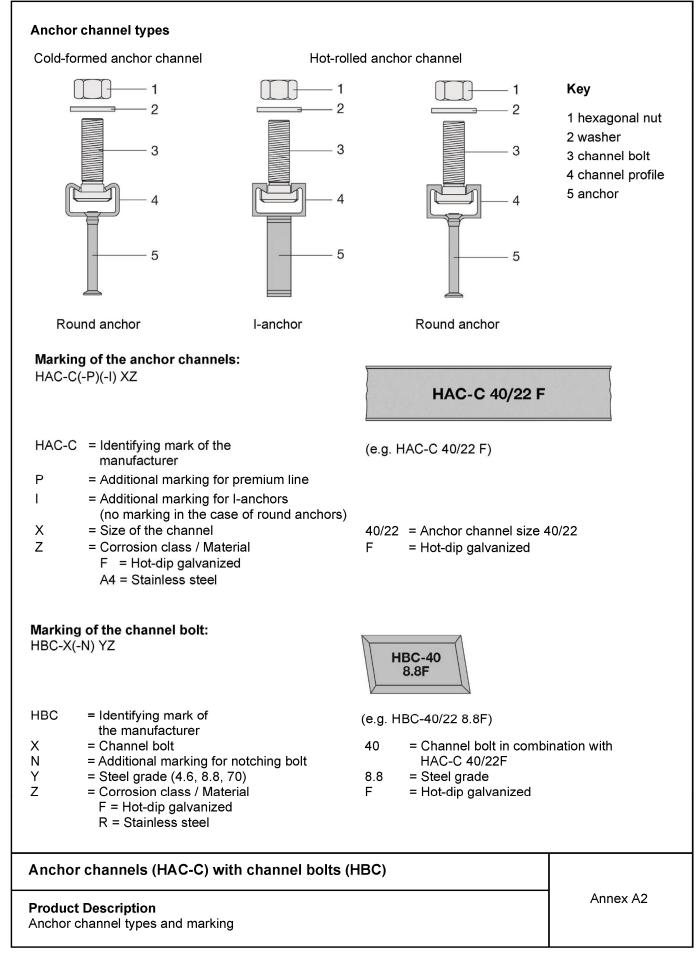
In accordance with EAD No. 330008-03-0601, the applicable European legal act is: [2000/273/EC].


The system to be applied is: 1

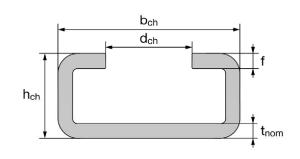
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

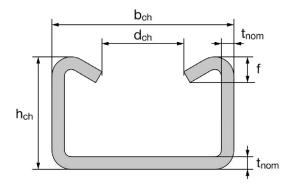
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Müller



Page 6 of European Technical Assessment ETA-17/0336 of 9 November 2020

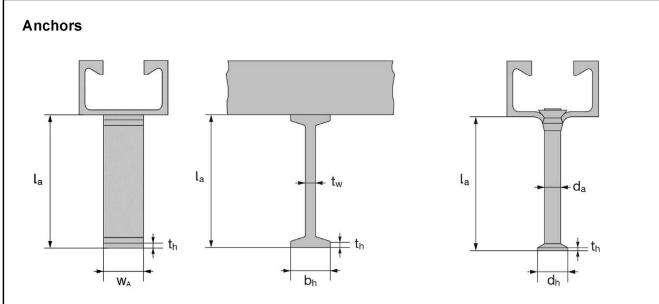

English translation prepared by DIBt



Channel profiles									
h _{ch} HAC-C(-P) 40/22, HAC-C-P 40L, HAC-C(-P) 50/30, HAC-C-P 50L, HAC-C 52/34 Table 1: Dimensions of hot-rolled channel profile									
Ancherchennel	b _{ch}	h _{ch}	t _{nom}	d _{ch}	f	ly			
Anchor channel			[mm]			[mm⁴]			
HAC-C(-P) 40/22	40,1	23,0	2,7	18,0	6,0	21504			
HAC-C-P 40L	40,1	23,0	2,7	18,0	6,0	21504			
HAC-C(-P) 50/30	49,6	30,0	3,2	22,5	8,1	57781			
HAC-C-P 50L	49,6	30,0	3,2	22,5	8,1	57781			
HAC-C 52/34	52,5	34,0	4,0	22,5	11,5	97606			

HAC-C 28/15, HAC-C 38/17

HAC-C 40/25, HAC-C 49/30, HAC-C 54/33


Table 2: Dimensions of cold-formed channel profile

Anchor	b _{ch}	h _{ch}	t _{nom}	d _{ch}	f	ly
channel		[mm⁴]				
HAC-C 28/15	28,0	15,5	2,3	12,0	2,3	4277
HAC-C 38/17	38,0	17,3	3,0	18,0	3,0	8224
HAC-C 40/25	40,0	25,0	2,75	18,0	5,6	20122
HAC-C 49/30	50,0	30,0	3,25	22,0	7,4	43105
HAC-C 54/33	53,5	33,0	5,0	21,5	8,0	74706

Anchor channels (HAC-C) with channel bolts (HBC)

Product Description
Channel profiles (HAC-C)

Table 3: Dimensions of anchor (welded I-anchor or round anchor)

		l-anchor						Ro	und anc	hor		
Anchor channel	min la	tw	bh	th	WA	Ah	min la	da	dh	th	Ah	
onamer		[mm] [mm²]						[m	im]		[mm²]	
HAC-C 28/15				1)			31,0	6,0	12,0	1,3	85	
HAC-C 38/17				1)			60,8					
HAC-C 40/25				1)			56,0 8,0 16,0			2,0	0 151	
HAC-C 40/22	62,0	5,0	20,0	5,0	20,0	300	58,0					
HAC-C-P 40/22	125,0	6,0	25,0	5,0	20,0	380	70,0	10,0	21,5	2,2	285	
HAC-C-P 40L				1)			83,2	10,0	21,5	2,2	285	
HAC-C 49/30				1)			66,0	10,0	20,0		236	
HAC-C 50/30	69,0	5,0	20,0	5,0	25,0	375	00,0	10,0	20,0	2,2	230	
HAC-C-P 50/30	125,0	6,0	25,0	5,0	25,0	475	78,0	11,0	26,0	2,5	436	
HAC-C-P 50L		1)					118,3	11,0	26,0	2,5	436	
HAC-C 54/33		1)					124,5	11.0	24.2	2,5	369	
HAC-C 52/34	125,0	6,0	25,0	5,0	40,0	760	123,5	11,0	24,3	2,5	309	

¹⁾ Product not available

Anchor channels (HAC-C) with channel bolts (HBC)

Product Description Anchors

Channel bolts

Table 4: Dimensions of channel bolt

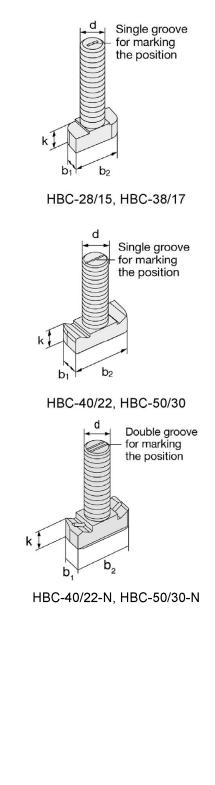
		Dimensions				
Appropriate anchor channel	Channel bolt	b ₁	b ₂	k	d	
			[mm]		
		10,1		5,0	8	
HAC-C 28/15	HBC-28/15	10,1	22,2	5,0	10	
		11,0		6,0	12	
		12.0		6,0	10	
HAC-C 38/17	HBC-38/17	13,0	30,5	7.0	12	
		16,0		7,0	16	
HAC-C(-P) 40/22		14,0	33,0	10,5	10	
HAC-C-P 40L	HBC-40/22			11,5	12	
HAC-C 40/25		17,0		П,Э	16	
HAC-C-P 40/22 HAC-C-P 40L	HBC-40/22-N	17,0	33,0	11,5	16	
HAC-C 49/30 HAC-C(-P) 50/30		17.0		14,5	12	
HAC-C-P 50L	HBC-50/30	17,0	42,0	45.5	16	
HAC-C 52/34 HAC-C 54/33		21,0		15,5	20	
HAC-C-P 50/30	HBC-50/30-N	21,0	42,0	15,5	16	
HAC-C-P 50L HAC-C 52/34	HBC-30/30-N	21,0	42,0	15,5	20	

Table 5: Steel grade and corrosion class

Channel Bolt	Carbo	n steel ¹⁾	Stainless steel ¹⁾		
Steel grade	4.6	8.8	A4-50	A4-70	
f _{uk} [N/mm ²]	400	800 / 830 ²⁾	500	700	
f _{yk} [N/mm ²]	240	640 / 660 ²⁾	210	450	
Corrosion class		3) = 4)	R	5)	

¹⁾ Material properties according to Annex A6

²⁾ Material properties according to EN ISO 898-1: 2013


³⁾ Electroplated

⁴⁾ Hot-dip galvanized

⁵⁾ Stainless steel

Anchor channels (HAC-C) with channel bolts (HBC)

Product Description Channel bolts (HBC)

		Stainless steel				
Component	Mechanical properties		Coating	Mechanical properties		
1	2a	2b	2c	3		
Channel Profile	1.0038, 1.0044, 1.0045 according to EN 10025: 2005 1.0976, 1.0979 according to EN 10149: 2013	Hot dip galvanized ≥ 50 μm according to EN ISO 10684: 2004/AC: 2009		according to Hot dip galvanized ≥ 8 EN 10025: 2005 according to 1.0976, 1.0979 according to according to EN ISO 10684: 2004/A		1.4362, 1.4401 1.4404, 1.4571, 1.4578 according to EN 10088: 2005
Anchor	1.0038, 1.0213, 1.0214 according to EN 10025: 2005 1.5523, 1.5535 according to EN 10263: 2002-02	-	Hot dip galvanized ≥ 50 µm according to EN ISO 10684: 2004/AC: 2009	1.4362, 1.4401 1.4404, 1.4571, 1.4578 according to EN 10088: 2005 ³⁾		
Channel bolt	Steel grade 4.6 and 8.8 according to EN ISO 898-1: 2013	Electroplated according to EN ISO 4042: 1999	Hot dip galvanized ≥ 50 μm according to EN ISO 10684: 2004/ AC: 2009	Grade 50 or 70 according to EN ISO 3506: 2009		
Plain washer ¹⁾ according to ISO 7089: 2000 and ISO 7093-1: 2000	ording to Hardness class a 7089: 2000 A ≥ 200 HV		ding to D89: 2000Hardness class A \geq 200 HVElectroplated according to EN ISO EN ISO		Hot dip galvanized ≥ 50 μm according to EN ISO 10684: 2004/ AC: 2009	1.4401, 1.4404 1.4571, 1.4578 according to EN 10088: 2005
Hexagonal nut according to ISO 4032: 2012 or DIN 934: 1987-10 ²⁾	agonal nut Property class 5 or 8 according to 4032: 2012 or ENLICE 2022 0: 2012		Hot dip galvanized ≥ 50 μm according to EN ISO 10684: 2004/ AC: 2009	Property class 50, 70 or 80 according to EN ISO 3506: 2009		

¹⁾ In scope of delivery only for notched bolts

²⁾ Hexagonal nuts according to DIN 934: 1987-10 for channel bolts made from carbon steel (4.6) and stainless steel

³⁾ Anchors made of carbon steel according column 2a may also be used if they are welded and their concrete cover is more than 50mm and the tempering colors are removed

Anchor channels (HAC-C) with channel bolts (HBC)

Product Description Materials

Specifications of intended use

Anchor channels and channel bolts subject to:

- Static and guasi-static loads in tension, shear perpendicular to the longitudinal axis of the channel and shear in the direction of the longitudinal axis.
- Fire exposure: only for concrete class C20/25 to C50/60.
- Fatigue cycling tension loads.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1: 2000.
- Strength classes C12/15 to C90/105 according to EN 206-1: 2000.
- Cracked or uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (anchor channels and channel bolts according to Annex A6, Table 6, column 2 and 3).
- Structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional permanent damp conditions and application under water) (anchor channels and channel bolts according to Annex A6, Table 6, column 2c and 3).
- According to EN 1993-1-4: 2006 + A2: 2015 relating to corrosion resistance class CRC III (anchor channels, channel bolts according to Annex A6, Table 6, column 3)

Design:

- Anchor channels are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading as well as fire exposure the anchor channels are designed in accordance with EOTA TR 047 "Calculation Method for the Performance of Anchor Channels", March 2018 or EN 1992-4: 2018.
- For fatigue loading the anchor channels are designed in accordance with EOTA TR 050 "Calculation Method for the Performance of Anchor Channels under Fatigue Loading", November 2015.
- The characteristic resistances are calculated with the minimum effective embedment depth.

Anchor channels (HAC-C) with channel bolts (HBC)

Intended Use

Specifications

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex B3, Table 7and Table 8 are generated including end spacing and minimum channel length and in case of hot-dip galvanised anchor channels only to be used in dry internal conditions.
- Installation in accordance with the manufacturer's specifications given in Annexes B6, B7 and B8
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no
 movement of the channels will occur during the time of laying the reinforcement and of placing and
 compacting the concrete.
- The concrete around the head of the anchors are properly compacted. The channels are protected from penetration of concrete into the internal space of the channels.
- Washer may be chosen according to Annex A6 and provided separately by the user.
- Orientating the channel bolt (groove according to Annex B7 and Annex B8) rectangular to the channel axis.
- The required installation torques given in Annex B5 must be applied and must not be exceeded.

Anchor channels (HAC-C) with channel bolts (HBC)

Intended Use Specifications

Deutsches Institut für Bautechnik

Anchor channel			HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Minimum effective embedment depth	h ef,min		79	91	106	94	106	148	155
Minimum spacing	Smin		100	50	50	100	50 ¹⁾	50	100
Maximum spacing	Smax		250						
End spacing	x	[mm]			25	2)			35 ³⁾
Minimum channel length	I _{min}		150	100	100	150	100	100	170 ⁴⁾
Minimum edge distance	Cmin		50 75					75	
Minimum thickness of concrete member	h _{min}	-	100	100	120	105	120	162	165

 $^{(1)}$ s_{min} = 100 mm when used in combination with notched bolts

²⁾ The end spacing may be increased from 25 mm to 35 mm

³⁾ x = 25 mm for welded I-anchors

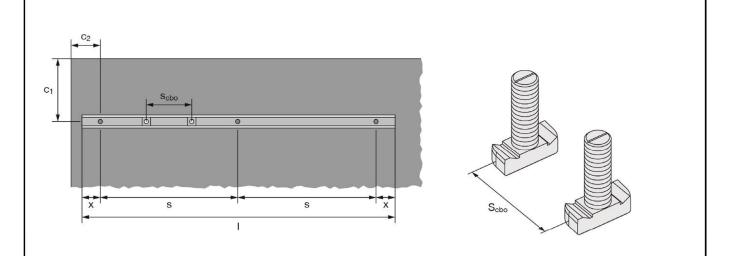
⁴⁾ I_{min} = 150 mm for welded I-anchors

Table 8: Installation parameters for cold-formed anchor channel

Anchor channel		HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33		
Minimum effective embedment depth	h _{ef,min}		45	76	79	94	155	
Minimum spacing	Smin		50		100			
Maximum spacing	Smax		20	00	250			
End spacing	x	[mm]			25 ¹⁾			
Minimum channel length	I _{min}		100		150			
Minimum edge distance	Cmin		40	5	0	75	100	
Minimum thickness of concrete member	h _{min}		70	100		120	180	

¹⁾ The end spacing may be increased from 25 mm to 35 mm

Anchor channels (HAC-C) with channel bolts (HBC)


Intended Use

Installation parameters for anchor channels (HAC-C)

Page 14 of European Technical Assessment ETA-17/0336 of 9 November 2020

English translation prepared by DIBt

Table 9: Minimum spacing for channel bolts

Channel bolt	M8	M10	M12	M16	M20		
Minimum spacing between channel bolts	S cbo,min	[mm]	40	50	60	80	100

 s_{cbo} = spacing between channel bolts

Intended Use

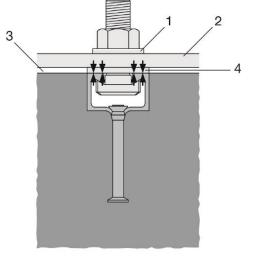
Installation parameters for anchor channels (HAC-C)

			T _{inst} ¹⁾ [Nm]		
Channel	bolt	General: T _{inst,g}	St	eel - steel c	ontact: T _{in}	st,s
		4.6, 8.8, A4-50, A4-70	4.6	8.8	A4-50	A4-70
	M8	7		20	7	15
HBC-28/15	M10	10	2)	40		30
	M12	13		60		50
	M10	15	13	2)		22
HBC-38/17	M12	25	2)	45		50
	M16	40	2)	100		90
	M10	15	13	2)	1	22
HBC-40/22	M12	25		45		50
	M16	30		100	2)	90
HBC-40/22-N	M16	160		160		2)
	M12	25	2)	45		50
HBC-50/30	M16	55	2)	100		130
	M20	55		360	1	250
	M16	185		185		2)
IBC-50/30-N	M20	320		320		2)

 $^{1)}$ T_{inst} must not be exceeded

²⁾ Product not available

General: The fixture is in contact with the channel profile and the concrete surface



1 washer

2 fixture

3 gap

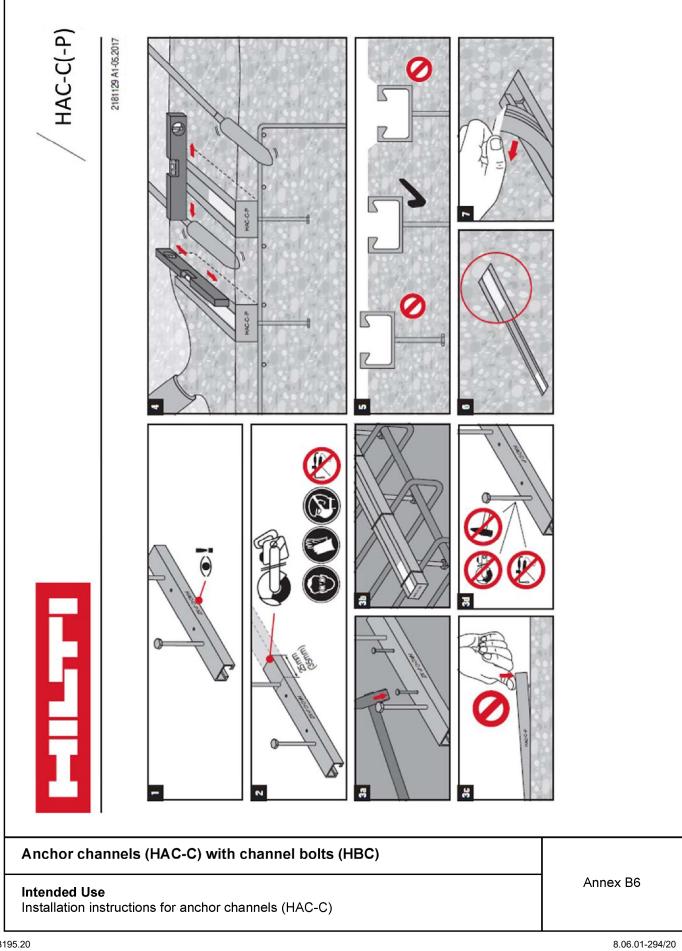
4 suitable steel part

Steel-steel contact: Fixture is not in contact with

the concrete surface. The fixture is fastened to the

anchor channel by suitable steel part (e.g. washer)

Anchor channels (HAC-C) with channel bolts (HBC)


Intended Use

Installation parameters for channel bolts (HBC)

Page 16 of European Technical Assessment ETA-17/0336 of 9 November 2020

English translation prepared by DIBt

Page 17 of European Technical Assessment ETA-17/0336 of 9 November 2020

English translation prepared by DIBt

					/	нвс
						2194125 A3-08.2020
			HBC-28/15 HBC-38/17 HBC-40/22 HBC-50/30 HBC-52/34	HAC-C-P 50/30, HA HAC		19/30, HAC-C 50/30 1/33
5		D				6.0
4					<u>~</u>]	•
Channe	i bolt -	4.6, 8.8, A4-50,				A4 70
		A4-70	4.6	20	A4-50 7	A4-70 15 30
HBC-28/15	M8 M10 M12	7 10 13	-	40 60		50
HBC-28/15 HBC-38/17	M10	10	- 13 -			50 22 50 90
	M10 M12 M10 M12	10 13 15 25	13	60 15 45	-	22 50
HBC-38/17	M10 M12 M10 M12 M16 M10 M12	10 13 15 25 40 15 25	13 -	60 15 45 100 15 45	-	22 50 90 22 50

Anchor channels (HAC-C) with channel bolts (HBC)

Intended Use

Installation instructions for channel bolts (HBC)

			HBC-N	
0		HAC-C	2257118 A1-08.2020	
C HI-	3			
			· 🔟 📀	
Anchor Channel	Channel Bolt	Tinst	[Nm]	
HAC-C-P 40/22 HAC-C-P 40L HAC-C 40/22	HBC-40/22-N M16	160 60	160 160	
HAC-C-P 50/30 HAC-C-P 50L HAC-C 50/30 HAC-C 52/34	HBC-50/30-N M16	185	185	
HAC-C-P 50/30 HAC-C-P 50L HAC-C 50/30 HAC-C 52/34	HBC-50/30-N M20	320	320	
chor channels (H	AC-C) with channel	bolts (HBC)		

Installation instructions for channel bolts (HBC)

Annex B8

Electronic copy of the ETA by DIBt: ETA-17/0336

Anchor channel			HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Steel failure: Anchor									
Characteristic resistance	N _{Rk,s,a}	[kN]	20,0	40,0	40,0	31,0	57,0	57,0	55,0
Partial factor	γ _{Ms} ¹⁾	[-]				1,8			
Steel failure: Connecti			n anchor	and chanr	nel				
Characteristic resistance	N _{Rk,s,c}	[kN]	20,0	39,6	39,6	31,0	50,6	50,6	55
Partial factor	γMs,ca ¹⁾	[-]				1,8			
Steel failure: Local fle			nnel lips						
Characteristic spacing of the channel bolts for N _{Rk,s,l}	SI,N	[mm]	79	79	79	98	98	98	105
Characteristic	N ⁰ Rk,s,I	[kN]	47,9	47,9	47,9	50,5	50,5	50,5	65,0
Partial factor	γMs,I ¹⁾	[-]	1,8						

¹⁾ In absence of other national regulations

Table 12: Characteristic resistances under tension load – steel failure of cold-formed anchor channels

Anchor channel			HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33
Steel failure: Anchor							
Characteristic resistance	N _{Rk,s,a}	[kN]	9,0	18,0	20,0	31,0	55,0
Partial factor	Partial factor $\gamma_{Ms}^{(1)}$ [-]				1,8		•
Steel failure: Connection	betweer	n anch	or and chanr	nel			
Characteristic resistance	N _{Rk,s,c}	[kN]	9,0	18,0	20,0	31,0	55,0
Partial factor	γMs,ca ¹⁾	[-]			1,8		
Steel failure: Local flexur	e of cha	nnel lip	os				
Characteristic spacing of the channel bolts for $N_{Rk,s,l}$	SI,N	[mm]	56	76	80	100	107
Characteristic resistance	N ⁰ Rk,s,I	[kN]	9,0	18,0	20,0	31,0	55,0
Partial factor	γ _{Ms,I} 1)	[-]			1,8		

¹⁾ In absence of other national regulations

Anchor channels (HAC-C) with channel bolts (HBC)

Performance Data Characteristic resistances of anchor channels under tension load

Anchor channel			HAC-C	HAC-C-P	HAC-C-P	HAC-C	HAC-C-P	HAC-C-P	HAC-C		
Anchor channel			40/22	40/22	40L	50/30	50/30	50L	52/34		
Steel failure: Flexure of channel											
Characteristic flexural resistance of channel	$M_{Rk,s,flex}$	[Nm]	1013	1704	1704	2084	3448	3448	3435		
Partial factor	γMs,flex ¹⁾	[-]		1	1	1,15	1	1			

¹⁾ In absence of other national regulations

Table 14: Characteristic flexural resistance of cold-formed anchor channels under tension load

Anchor channel				HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33
Steel failure: Fle	exure of cha	nnel						
Characteristic flexural	carbon steel	M _{Rk,s,flex}	[Nm]	316	538	979	1669	2929
resistance of channel	stainless steel	IVIRK, s, flex		510	527	979	1702	2832
Partial factor	γMs,flex ¹⁾	[-]			1,15			

¹⁾ In absence of other national regulations

Anchor channels (HAC-C) with channel bolts (HBC)

Performance Data Characteristic resistances of anchor channels under tension load

Page 21 of European Technical Assessment ETA-17/0336 of 9 November 2020

English translation prepared by DIBt

Anchor o	hannel			HA 40			:-С-Р /22		C-P	1	C-C /30	HAC 50			C-C-P	HA 52	C-C
Type of a	nchor				R	I I	R		R		R		R	1	R		R
Concrete	failure: P	ull-out													•		
Characte resistanc cracked o C12/15 Characte resistanc uncracke concrete	e in concrete ristic e in d	N _{Rk,p}	[kN]				25,6 35,8		25,6 35,8							68,4 95,8	
	0.12,10	C16/20					1			1,	33		1		1		
		C20/25								1,0	67						
	·	C25/30								2,	08						
Factor for	actor for N _{Rk,p}		1							2,	50						
N _{Rk,p} –	C35/45	Ψc		2,92													
	C40/50	[-]	3,33														
N Rk,p (C12/1	₅₎ · Ψc	C45/55		3,75													
		C50/60		4,17													
		C55/67		4,58													
		<u>></u> C60/75								5,	00						
Partial fa	ctor	$\gamma_{Mp} = \gamma_{Mc}^{2}$	[-]							1	,5						
Concrete	e failure: C	oncrete c	one	1						1		1		1		1	
Product	cracked concrete	k cr,N	[-]	7	9	8	,0	8	,2	8	,1	8	,2	8	6,6	8	7
factor k₁	uncracked concrete	k _{ucr,N}	[-]	11	,2	11	1,5	1'	1,7	11	,6	11	٦,	1:	2,3	12	2,4
Partial fa	ctor	γMc ²⁾	[-]							1	,5						
	failure: S	<u> </u>															
distance	ristic edge	C cr,sp	[mm]	23	37	2	73	3	18	28	32	3	18	4	44	46	65
Characte spacing	ristic	S cr,sp	[mm]	47	74	54	46	6	36	56	64	63	36	8	88	93	30
Partial factor $\gamma_{Msp} = \gamma_{Mc}^{2}$ [-]								1	,5								

¹⁾ Product not available

²⁾ In absence of other national regulations

Anchor channels (HAC-C) with channel bolts (HBC)

Performance Data

Characteristic resistances of anchor channels under tension load

Annex C3

Electronic copy of the ETA by DIBt: ETA-17/0336

Anchor char	nnel			HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33			
Type of anch	ıor			R	R	R	R	R			
Concrete fai	lure: Pul	ll-out	·		•	· · · ·					
Characteristic resistance in concrete C12	cracked			7,6	13,6	13,6	21,2	33,2			
Characteristic resistance in uncracked co C12/15		N _{Rk,p}	[kN]	10,7	19,0	19,0	29,7	46,5			
		C16/20				1,33					
		C20/25				1,67					
		C25/30				2,08					
Factor for NR	k,p	C30/37				2,50					
NI	NRk,p -	C35/45				2,92					
:	C40/50	ψc [-]			3,33						
NRk,p (C12/15)	IRk,p (C12/15) ・ Ψс	C45/55				3,75					
		C50/60		4,17							
		C55/67		4,58							
		<u>></u> C60/75		5,00							
Partial factor		$\gamma_{Mp} = \gamma_{Mc} ^{1)}$	[-]			1,5					
Concrete fai	lure: Co	ncrete con	e								
Product co	acked oncrete	k _{cr,N}	[-]	7,2	7,8	7,9	8,1	8,7			
	ncracked oncrete	kucr,N	[-]	10,3	11,2	11,2	11,6	12,4			
Partial factor		γMc ¹⁾	[-]			1,5					
Concrete fai		litting			1	T					
Characteristic distance		C _{cr,sp}	[mm]	135	228	237	282	465			
Characteristic spacing	0	S _{cr,sp}	[mm]	270	456	474	564	930			
Partial factor $\begin{array}{c} \gamma_{Msp} = \\ \gamma_{Mc}^{(1)} \end{array}$ [-]						1,5					

¹⁾ In absence of other national regulations

Anchor channels (HAC-C) with channel bolts (HBC)

Performance Data

Characteristic resistances of anchor channels under tension load

Table 17: Displacements of hot-rolled anchor channels under tension load

Anchor channel			HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Tension load	Ν	[kN]	13,9	15,3	15,3	14,3	25,8	25,8	25,8
Short-term displacement 1)	δΝο	[mm]	2,3	1,1	1,1	2,2	1,4	1,4	1,4
Long-term displacement ¹⁾	δ _{N∞}	[mm]	4,6	2,2	2,2	4,4	2,8	2,8	2,8

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips, bending of the channel and slip of the anchor channel in concrete

Table 18: Displacements of cold-formed anchor channels under tension load

Anchor channel				HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33
Tension load	N	[kN]	3,6	7,1	7,9	12,3	21,8
Short-term displacement 1)	δΝΟ	[mm]	0,6	1,3	1,4	1,4	1,6
Long-term displacement 1)	δ _{N∞}	[mm]	1,2	2,6	2,8	2,8	3,2

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips, bending of the channel and slip of the anchor channel in concrete

Table 19: Characteristic resistances under shear load – steel failure of hot-rolled anchor channel

Anchor channel			HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Steel failure: Anch	or				•				
Characteristic resistance	V _{Rk,s,a,y}	[kN]	26,0	58,1	58,1	40,3	100,0	100,0	121,5
Characteristic resistance	V _{Rk,s,a,x}	[kN]	2)	24,0	24,0	2)	34,2	34,2	33,1
Partial factor	γ Ms ¹⁾	[-]				1,5			
Steel failure: Conn	ection	betw	een ancl	hor and cha	nnel				
Characteristic resistance	VRk,s,c,y	[kN]	26,0	58,1	58,1	40,3	100,0	100,0	121,5
Characteristic resistance	V _{Rk,s,c,x}	[kN]	2)	23,8	23,8	2)	30,4	30,4	28,1
Partial factor	γMs,ca ¹⁾	[-]				1,8			
Steel failure: Local of the	flexur chanı		hannel l	ips under s	hear load p	perpendic	ular to the	longitudina	al axis
Characteristic spacing of channel bolts for V _{Rk,s,l}	SI,V	[mm]	80	80	80	99	99	99	105
Characteristic resistance	V ⁰ Rk,s,l,y	[kN]	55,0	55,0	55,0	91,7	91,7	91,7	71,5
Partial factor	γ _{Ms,I} 1)	[-]				1,8			

Anchor channels (HAC-C) with channel bolts (HBC)

Performance Data

Displacements under tension load.

Characteristic resistances of anchor channels under shear load

Table 20: Characteristic resistances under shear load in direction of the longitudinal axis of the channel – steel failure of hot-rolled anchor channel

Anchor chann	nel		HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Steel failure:	Connec	tion between	channe	l lips and	channel b	olt			
		HBC-40/22-N M16 8.8F		12,5	12,5			1)	
Characteristic resistance	V ⁰ _{Rk,sl,x} [kN]	HBC-50/30-N M16 8.8F	2)	2	2	2)	8,3	8,3	8,3
		HBC-50/30-N M20 8.8F			-)	2)	8,3	8,3	8,3
Installation factor	γinst	[-]		1	,4			1,0	

¹⁾ Product not available

²⁾ No performance assessed

Table 21: Characteristic resistances under shear load – steel failure of cold-formed anchor channel

Anchor channel			HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33
Steel failure: Anchor							
Characteristic resistance	V _{Rk,s,a,y}	[kN]	9,0	18,0	20,0	31,0	55,0
Partial factor	γ _{Ms} 1)	[-]			1,5		
Steel failure: Connection	n betwee	n anch	or and chan	nel			
Characteristic resistance	V _{Rk,s,c,y}	[kN]	9,0	18,0	20,0	31,0	55,0
Partial factor	γMs,ca ¹⁾	[-]		-	1,8		
Steel failure: Local flexu of the char		nnel li	ps under sh	ear load per	pendicular to	o the longitu	idinal axis
Characteristic spacing of channel bolts for V _{Rk,s,I}	SI,V	[mm]	56	76	80	100	107
Characteristic resistance	V ⁰ Rk,s,l,y	[kN]	9,0	18,0	20,0	31,0	55,0
Partial factor	γMs,I ¹⁾	[-]			1,8		

¹⁾ In absence of other national regulations

Anchor channels (HAC-C) with channel bolts (HBC)

Performance Data

Annex C6

Characteristic resistances of anchor channels under shear load

Anchor c	hannel		HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Concrete	failure: Pry out								
Product fa	actor	k ₈ [-]				2,0			
Partial fac	tor	γ _{Mc} ¹⁾ [-]				1,5			
Concrete	failure: Concrete e	dge							
Product	cracked concrete	k cr,V [-]				7,5			
factor k12	uncracked concrete	k _{ucr,∨} [-]				10,5			
Partial fac	tor	γ _{Mc} ¹⁾ [-]				1,5			

¹⁾ In absence of other national regulations

Table 23: Characteristic resistances under shear load – concrete failure of cold-formed anchor channel

Anchor ch	annel			HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33
Concrete	failure: Pry out							
Product fa	ctor	k ₈	[-]	1,0		2	,0	
Partial fact	or	γMc ¹⁾	[-]			1,5		
Concrete	failure: Concrete edg	je						
Product	cracked concrete	k cr,V	[-]	6,9	6,9		7,5	
factor k12	uncracked concrete	k ucr,∨	[-]	9,6	9,6		10,5	
Partial fact	or	γMc ¹⁾	[-]			1,5		

¹⁾ In absence of other national regulations

Table 24: Displacements under shear load of hot-rolled anchor channel

Anchor channel			HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Shear load	Vy	[kN]	10,3	29,0	29,0	16,0	39,7	28,4	28,4
Short-term displacement ¹⁾	δ∨0,у	[mm]	2,1	2,0	2,0	2,6	2,7	3,7	3,7
Long-term displacement ¹⁾	δ ∨∞ ,y	[mm]	3,1	3,5	3,5	3,9	4,0	5,5	5,5
Shear load	Vx	[kN]	2)	5,2	5,2	2)	3,3	3,3	7,9
Short-term displacement ¹⁾	δ _{V0,x}	[mm]	2)	0,1	0,1	2)	0,1	0,1	1,4
Long-term displacement ¹⁾	δv∞,x	[mm]	2)	0,2	0,2	2)	0,2	0,2	2,0

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete

²⁾ No performance assessed

Anchor channels (HAC-C) with channel bolts (HBC)

Performance Data

Characteristic resistances and displacements of anchor channels under shear load

Anchor channel			HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33
Shear load	Vy	[kN]	3,6	7,1	7,9	12,3	21,8
Short-term displacement 1)	δ _{V0,у}	[mm]	0,6	1,3	1,4	1,4	1,6
Long-term displacement ¹⁾	δ ∨∞ ,y	[mm]	0,9	2,0	2,1	2,1	2,4

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete

Table 26: Characteristic resistances under combined tension and shear load of hot-rolled anchor channel

Anchor channel			HAC-C 40/22	HAC-C-P 40/22	HAC-C-P 40L	HAC-C 50/30	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34
Steel failure: Local flex	cure of	f cha	nnel lips	and flexur	e of channe	I			
Product factor	k 13	[-]		Values acc	cording to EN	1992-4 :	2018, Secti	on 7.4.3.1	
Steel failure: Anchor a	nd co	nnec	tion betw	veen ancho	r and chann	nel			
Product factor	k 14	[-]		Values acc	cording to EN	1992-4 :	2018, Secti	on 7.4.3.1	

Table 27: Characteristic resistances under combined tension and shear load of cold-formed anchor channel

Anchor channel			HAC-C 28/15	HAC-C 38/17	HAC-C 40/25	HAC-C 49/30	HAC-C 54/33
Steel failure: Lo	cal fle	xure	of channel lips	and flexure of	channel		
Product factor	k ₁₃	[-]	Va	lues according f	o EN 1992-4:20	18, Section 7.4.3	5.1
Steel failure: An	chora	and c	onnection betw	veen anchor an	d channel		
Product factor	k14	[-]	Va	lues according f	:o EN 1992-4:20 ⁻	18, Section 7.4.3	5.1

Performance Data Displacements of anchor channels under shear load Characteristic resistances under combined tension and shear load

Page 27 of European Technical Assessment ETA-17/0336 of 9 November 2020

English translation prepared by DIBt

Channel bolt					M8	M10	M12	M16	M20
Steel failure									
				4.6			1)		
			HBC-28/15	8.8	22,4	35,4	44,3	1	I)
			пвс-20/15	A4-50 ²⁾	17,2			1)	
				A4-70 ²⁾	25,6	38,9	51,3	1	1)
				4.6		23,2		1)	
			HBC-38/17	8.8		1)	35,4	55,8	1)
				A4-70 ²⁾		20,5	47,2	53,0	.,
Characteristic resistance	N	FLANT		4.6		23,2		1)	
(tension load)	N _{Rk,s}	[kN]	HBC-40/22	8.8		1)	67,4	125,6	1)
				A4-70 ²⁾	1)	20,5	59,0	91,0	.,
			HBC-40/22-N	8.8			1)	125,6	1)
				4.6				1)	
			HBC-50/30	8.8		1)	67,4	125,6	147,
				A4-70 ²⁾		.,	59,0	109,9	121,2
			HBC-50/30-N	8.8			1)	125,6	186,6
			HBC-52/34	8.8			1)		203,4
			HBC-28/15	4.6			2,00		
	2)		HBC-38/17	8.8			1,50		
Partial factor	γMs ³⁾	[-]	HBC-40/22	A4-50 ²⁾			2,86		
			HBC-50/30	A4-70 ²⁾			1,87		
				4.6			1)		
				8.8	14,6	23,2	33,7	1	I)
			HBC-28/15	A4-50 ²⁾	11,0	,		1)	
				A4-70	15,4	24,4	35,4	1	I)
				4.6	,.	13,9		1)	
			HBC-38/17	8.8		1)	33,7	62,8	-
				A4-70 ²⁾		24,4	35,4	65,9	1)
Characteristic resistance				4.6		13,9		1)	1
(shear load)	VRk,s	[kN]	HBC-40/22	8.8		23,2	33,7	62,8	
				A4-70 ²⁾		24,4	35,4	65,9	1)
			HBC-40/22-N	8.8	1)		1)	62,8	1)
				4.6				1)	1
			HBC-50/30	8.8			33,7	62,8	101,7
				A4-70 ²⁾		1)	35,4	65,9	102,9
			HBC-50/30-N	8.8			1)	62,8	101,7
			HBC-52/34	8.8			1)		101,7
			HBC-28/15	4.6		1	1,67		
			HBC-28/15	8.8			1,07		
Partial factor	γMs ³⁾	[-]	HBC-40/22						
			HBC-50/30	A4-50 ²⁾ A4-70			<u>2,38</u> 1,56		

¹⁾ Product not available

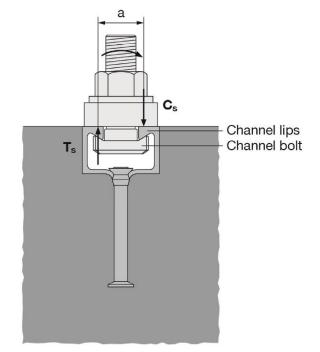
²⁾ Materials according to Table 6, Annex A6

³⁾ In absence of other national regulations

Anchor channels (HAC-C) with channel bolts (HBC)

Performance Data

Characteristic resistance of channel bolts under tension and shear load


Channel bolt					M8	M10	M12	M16	M20
Steel failure						•			
			HBC-28/15	4.6	4)	29,9 ³⁾		4)	
Characteristic	M0 5)	[N.l.ma]	HBC-38/17	8.8	30,0	59,8	104,8	266,4	538,7
flexural resistance	M ⁰ Rk,s ⁵⁾	[Nm]	HBC-40/22(-N) HBC-50/30(-N)	A4-50 ²⁾	18,7		2	4)	
			HBC-52/34	A4-70 ²⁾	26,2	52,3	91,7	233,1	454,4
			HBC-28/15	4.6			1,67		•
Partial factor		r 1	HBC-38/17	8.8			1,25		
	γMs ¹⁾	[-]	HBC-40/22(-N) HBC-50/30(-N)	A4-50 ²⁾			2,38		
			HBC-52/34	A4-70 ²⁾			1,56		
			HBC-28/15	28/15	17,3	18,7	20,0	4	4)
			HBC-38/17	38/17		23,0	24,3	26,3	4)
Internal lever arm	а	[mm]	HBC-40/22(-N)	40/22	4)	24,3	25,7	27,3	
ann			HBC-50/30(-N)	50/30	1)	4)	29,9	31,7	33,9
			HBC-52/34	52/34			4)		33,9

¹⁾ In absence of other national regulations

²⁾ Materials according to Table 6, Annex A6

³⁾ Not applicable for HBC-28/15 and HBC-50/30

⁴⁾ Product not available

⁵⁾ The characteristic flexure resistance according to Table 29 is limited as follows:

 $M^{0}_{Rk,s} \leq 0,5 \cdot N_{Rk,s,l} \cdot a$ (N_{Rk,s,l} according to Table 11 and Table 12)

 $M^{0}_{Rk,s} \leq 0,5 \cdot N_{Rk,s} \cdot a$ (N_{Rk,s} according to Table 29)

a = internal lever arm according to Table 29

 T_s = tension force acting on the channel lip

 C_s = compression force acting on the channel lip

Anchor channels (HAC-C) with channel bolts (HBC)

Performance Data

Characteristic flexural resistances of channel bolts under shear load with lever arm

Channe	el bolt									M10	M12	2	M16
Steel fa	ilure: /	Ancho	r, conn	ection	betwee	en anch	or and cha	annel	I, loca	l flexure o	of channe	l lip	
						R60				0,	8		
			HA	AC-C 28	3/15	R90				0,	6		2)
						R120				0,	5		
						R60				2))		1,9
			HA	AC-C 38	3/17	R90				2))		1,3
Charact	eristic					R120	N _{Rk,s,fi}			2))		1,0
resistan		racked	HA	AC-C 40)/25	R60	=	[kN	1]	1,7		3,5	
concrete	e C20/2	25		-C(-P)		R90	$V_{Rk,s,fi}$	-		1,2		2,2	
			HA	C-C-P	40L	R120				0,9		1,5	
			НА	AC-C 49	9/30	R60					3,8	:	3,9
				-C(-P)		R90				2)	2,5		2,9
				AC-C 52						2)			_,0
			HA	C-C-P	50L	R120					1,9		2,4
Partial f	actor						γ _{Ms,fi} 1)	[-]	1		1,0		
Table			ssessed axis di		of reir	nforcem	ent						
Table Anchor	31: Mir channo R60	nimum el	axis di HAC-C 28/15	stance	HAC-0 40/25		(-P)HAC-C	- 4	19/30	HAC-C(-P) 50/30	50L	54/33	52/34
Anchor Min. axis	31: Mir chann R60 R90	nimum	axis di HAC-C 28/15	stance HAC-C	HAC-C 40/25 3	CHAC-C 40/2	(-P)HAC-C	- 4					
Anchor /lin.	31: Mir channo R60 R90 R120	nimum el a [mm	axis di HAC-C 28/15	stance HAC-C 38/17	HAC-0 40/25 3	5 5	(-P) <mark>HAC-0</mark> 2 40L	- 4 55	19/30 50	50/30	50L 50	54/33 50	52/3 4

Anchor channels (HAC-C) with channel bolts (HBC)

Performance Data

Characteristic resistances of anchor channels and channel bolts under fire exposure

Anchor channel			Channel bolt				
Channel profile	Anchor type	Corrosion protection	Channel bolt	Diameter	Steel grade	Corrosion protection	
HAC-C-P 40/22		F	HBC-40/22	M12			
HAC-C-P 40L	R			M16		G	
HAC-C-P 50/30 HAC-C-P 50L				M16			
			HBC-50/30	M20	8.8	F	
HAC-C 52/34				M16			
			HBC-50/30	M20			

Table 33: Characteristic resistances under fatigue tension load – steel failure after n load cycleswithout static preload ($N_{Ed} = 0$) (Design method I according to EOTA TR 050)

Anchor channel		HAC-C-P 40/22	HAC-C-P 40L	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34		
Steel failure	n	$\Delta N_{Rk,s,0,n}$ [kN]						
Characteristic resistance under fatigue tension load after n load cycles without static preload (N _{Ed} = 0)	≤ 10 ⁴	16,4		20,9		24,3		
	≤ 10 ⁵	7,7		9,0		12,5		
	≤ 10 ⁶	3,2		4,2		7,1		
	≤ 2 · 10 ⁶	2,6		3,7		6,4		
	≤ 5 · 10 ⁶	2,2		3,4		5,9		
	≤ 10 ⁸	2,0		3,3		5,7		
	> 10 ⁸	1,8		3,2		5,5		

Anchor channels (HAC-C) with channel bolts (HBC)

Performance Data Characteristic resistances under fatigue tension load

Table 34: Reduction factor $\eta_{c,fat}$ of characteristic fatigue resistance - concrete failure after n load cycles without static preload (N_{Ed} = 0) (Design method I according to EOTA TR 050)

Anchor channel			HAC-C-P 40L	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34		
Pull-out and Concrete cone failure	η _{c,fat} [-]							
Reduction factor after n load cycles without static preload ($N_{Ed} = 0$) for:	≤ 10 ⁴	0,736						
	≤ 10 ⁵	0,665						
$\Delta N_{\rm Rk,p,0,n} = \eta_{\rm c,fat} \cdot N_{\rm Rk,p}$	≤ 10 ⁶	0,600						
$\Delta N_{\text{Rk},c,0,n} = \eta_{c,\text{fat}} \cdot N_{\text{Rk},c}$	≤ 2 · 10 ⁶			0,582				
with $N_{Rk,p}$ calculated according to Annex C3	≤ 5 · 10 ⁶	⁶ 0,559						
and N _{Rk,c} calculated according to EOTA TR047, March 2018 or EN 1992-4: 2018	≤ 6 · 10 ⁷	0,500						
LOTA 11047, March 2010 01 EN 1992-4. 2010	> 6 · 10 ⁷			0,500				

Table 35: Characteristic resistances under fatigue tension load – steel failure with $n \rightarrow \infty$ load cycles without static preload (N_{Ed} = 0) (Design method II according to EOTA TR 050)

Anchor channel	HAC-C-P 40/22	HAC-C-P 40L	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34			
Steel failure	∆N _{Rk,s,0,} ∞ [kN]							
$\begin{array}{l} Characteristic fatigue limit resistance \\ (n \rightarrow \infty) \mbox{ without static preload} \\ (N_{Ed}=0) \end{array}$	1,8		3,	5,5				

Table 36: Reduction factor $\eta_{c,fat}$ of characteristic fatigue limit resistance - concrete failure with $n \rightarrow \infty$ load cycles without static preload (N_{Ed} = 0) (Design method II according to EOTA TR 050)

Anchor channel	HAC-C-P 40/22	HAC-C-P 40L	HAC-C-P 50/30	HAC-C-P 50L	HAC-C 52/34		
Pull-out and Concrete cone failure			η _{c,fat} [-]				
Reduction factor for fatigue limit resistance $(n \rightarrow \infty)$ without static preload (N _{Ed} = 0) for:							
$ \Delta N_{\text{Rk},p,0,n} = \eta_{\text{c,fat}} \cdot N_{\text{Rk},p} \Delta N_{\text{Rk},c,0,n} = \eta_{\text{c,fat}} \cdot N_{\text{Rk},c} $		0,5					
with $N_{Rk,p}$ calculated according to Annex C3 and $N_{Rk,c}$ calculated according to EOTA TR047, March 2018 or EN 1992-4: 2018							

Anchor channels (HAC-C) with channel bolts (HBC)

Performance Data

Characteristic resistances under fatigue tension load