

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0402 of 20 August 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

HAZ Metal - HB-11 undercut anchor

Fastener for rear fixing of facade panels made of natural stones according to EN 1469

HAZ Metal Deutschland GmbH Alfred-Zippe-Straße 1 97877 Wertheim DEUTSCHLAND

Plant 1

14 pages including 3 annexes which form an integral part of this assessment

EAD 330030-00-0601, Edition October 2018

ETA-17/0402 issued on 13 December 2018

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-17/0402 English translation prepared by DIBt

Page 2 of 14 | 20 August 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 14 | 20 August 2020

European Technical Assessment ETA-17/0402 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The HAZ - HB11 undercut anchor is a fastener of sizes M6 and M8 made of stainless steel consists of a threaded bolt with a smooth conical part at the end and an expansion sleeve slides over the threaded part of the bolt in combination with a washer and hexagonal nut. At the threaded end of the bolt, a hexagon socket is formed for fastening the HAZ-HB11 in the undercut hole which results in a backflash-free connection between fastener and the façade panel.

The product description is given in Annex A. The material values, dimensions and tolerances of the components of the fastener not indicated in the annexes shall correspond to the values laid down in the technical documentation¹.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fasteners of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to breakout or pull-out failure under tension load	See Annex C 1
Characteristic resistance to breakout or pull-out failure under shear load	See Annex C 1
Characteristic resistance to breakout or pull-out failure under combined tension and shear load	See Annex C 1
Edge distance and spacing	See Annex B 3 and C 1
Durability	Corrosion Resistance Class (CRC) III in accordance with EN 1993-1-4:2015
Characteristic resistance to steel failure under tension and shear loads	See Annex C 2

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Class A1		

¹

The technical documentation comprises all information of the holder of this ETA necessary for the production, installation and maintenance of the fastener; these are in particular design drawings. The part to be treated confidentially is deposited with Deutsches Institut für Bautechnik and, as far as this is relevant to the tasks of the approved bodies involved in the procedure of attestation of conformity, shall be handed over to the approved body.

Page 4 of 14 | 20 August 2020

European Technical Assessment ETA-17/0402

English translation prepared by DIBt

4

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330030-00-0601 the applicable European legal act is: [97/161/EG]. The system to be applied is: 2+

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 20 August 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Aksünger

HAZ Metal - HB-11 Hinterschnittanker

Product description
Installed condition and marking
Materials

Hexagon nut

Annex A1

Stainless steel A4-80, in accordance with EN 10088:2014

Specifications of intended use

Anchorages subject to:

• Static and quasi-static loading.

Base material:

- Façade panels made of natural stone in accordance with EN 1469:2015.
- Natural stone free of open seams and mechanically active cracks and alterations.
- Natural stone classified in accordance with Table B1.
- Characteristic values of the panels correspond to Table B2.

Table B1: Stone groups

	Stone group	Natural stone type	Boundary conditions		
I	High-quality intrusive rocks (plutonic rocks)	granite, granitite, tonalite, diorite, monzonite, gabbro, other magmatic plutonic rocks	None		
н	Metamorphic rocks with "hard stone characteristics"	quarzite, granulite, gneiss, migmatite	None		
	High quality extrusive rocks (volcanic rocks)	basalt and basaltlava without harmful ingredients (e.g. sun burner basalt)	Minimum density ρ: basalt: 2,7 kg/dm³ basaltic lava: 2,2 kg/dm³		
IV	Sedimentary rocks with "Hard-stone characteristics" ¹⁾	sandstone, limestone and marble	Minimum density ρ: sandstone: 2,1 kg/dm³		

¹⁾ For façade panels made of natural stones with planes of anisotropies, the difference between the flexural strength determined parallel to the planes of anisotropy and perpendicular to the edges of the planes of anisotropy shall not be more than 50 %.

Use conditions (Environmental conditions):

• In accordance with EN 1993-1-4:2015 dependent on Corrosion Resistancy Class (see ETA sect. 3.1).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and façade design.
- Verifiable calculations notes and drawings are prepared taking account of the loads to be anchored.
- Anchorages under static or quasi-static loading are designed in accordance with: EOTA Technical Report TR 062 "Design of fasteners for façade panels made of natural stone".

HAZ Metal - HB-11 Hinterschnittanker

Intended use Specifications

Installation:

- The undercut drill holes are prepared at the factory or on site under workshop conditions. In case of
 drilling on site, supervision of the person responsible for technical matters of the site or a skilled
 representative thereof is required.
- The undercut drill holes are drilled with a special drill bit in accordance with Table B4. The drill bit should be used with a special HAZ-MC-11 drilling machine. Other suitable drilling machines may also be used.
- The drill dust shall be removed from the drill hole.
- In case of an aborted drill hole, the newly drilled hole must be placed with a minimum spacing of twice the depth of the aborted drill hole.
- The geometry of the drill holes shall be checked in 1 % of all drillings. The following dimensions are to be checked and documented following the manufacturer's instructions and using the gauge in accordance with Table B3:

h₁;

- Diameter of the drill hole d₀;
- Depth of the drill hole
- Diameter of the undercut d₁;
- Height of the undercut h₂.

If the tolerances in accordance with Table B3 are not met, the drill hole geometry shall be checked in 25 % of the performed drillings. No subsequently checked drill hole max exceed the tolerances, otherwise all drill holes shall be controlled. Drill holes not meeting the tolerances shall not be used for anchor installation.

Note: Checking the drill hole geometry of 1 % of the drill holes means that on one out of 25 slabs with four drill holes in each slab (100 drill holes) one drill hole shall be checked. If the tolerances given in Table B3 are not met, then the control shall be increased to 25 % of the drilling holes e.g. one drill hole on each of the 25 slabs.

- During transport and storage on site the façade panels are protected from damages. The façade panels shall not be mounted with jerking motions to avoid damage to the panels. It necessary, lifting devices can be used. Façade panels or reveal slabs with incipient cracks shall not be installed.
- Overhead installation is allowed.

HAZ Metal - HB-11 Hinterschnittanker

Intended use Specifications

Deutsches Institut für Bautechnik

Table B2: Properties	of natural stone panel	S		
Nominal panel thickness		h _{nom}	[mm]	≥ 25 (30) ²⁾
Minimum panel thickness		h _{min} 1)	[mm]	h₅ + 12,5 mm
Maximum panel size		А	[m²]	3)
Maximum side length		H and L	[m]	3)
Number of anchors (figure B1)	Ν	[-]	4
Minimum edge distance		arH,min, ar∟,min	[mm]	100
Maximum edge distance		a rH,max, a rL,max	[mm]	0,25 * H 0,25 * L
Minimum spacing		a∟ und a _H	[mm]	8 * hs
Minimum characteristic flex	ural strength in accorda	nce with EN 1237	72:2006	
Granito Crema Julia Rosa	Stone group I	0 5%	[N/mm²]	12,0
Warthauer Sandstone	Stone group IV	σ _{5%}	[N/mm²]	3,9
Jura Lage 18	Stone group IV	0 5%	[N/mm ² }	11,4

¹⁾ Minimum panel thickness is equal to the lower limit tolerance.

²⁾ For sandstone, limestone and basaltic lava: panel thickness $d \ge 30$ mm, if the panel manufacturer warranted lowest expected value (5 %- fractile) of the flexural strength is < 8 N/mm².

³⁾ Depends on loads

Figure B1: Façade panel with fixing points

HAZ Metal - HB-11 Hinterschnittanker

Intended use
Parameters of the natural stone panel

Table B3: Installation parameters				
Size			M6	M8
Embedment depth	hs	[mm]	12,5 ≤ 0,5	* h _{nom} ≤ 30
Drill hole depth	h₁	[mm]	h₅ +	· 1,0
Diameter of the drill hole	d_0	[mm]	8 ^{+0,5} / _{+0,1}	10 ^{+0,5} / _{+0,1}
Diameter of the undercut	d ₁	[mm]	11 ± 0,5 13 ± 0,5	
Height of the undercut	h ₂	[mm]	11 ± 0,5	
Installation torque moment	T _{inst}	[Nm]	5	
Width across flats	SW	[mm]	10	13
Max. diameter of clearance hole in fixture	df	[mm]	7	9
Max. fixture thickness	t _{fix}	[mm]	1	2

Figure B2: Geometry of drill hole

Intended use IInstallation parameters

Anchor	Drilling	Drill hole check	Installation		
HAZ M8 x 40	HAZ M8 x 40		HAZ-ST-11		
HB11-M6x	HAZ-DB-M6x	HAZ-CB-M6x	HAZ-ST-11-M6		
HB11-M8x	HAZ-DB-M8x	HAZ-CB-M8x	HAZ-ST-11-M8		

HAZ Metal - HB-11 Hinterschnittanker

Intended use Drill bit, gauge and setting tool

Installation instructions	
Drilling and cleaning of the undercut drill hole	
Checking dimensions of the drill hole with gauge	
A) Drill hole diameter d ₀	
C) Diameter of the undercut d ₁	
D) Height of the undercut h ₂	
<u>h2</u>	
Metal - HB-11 Hinterschnittanker	
nded use allation instructions	Annex B6

Page 12 of European Technical Assessment ETA-17/0402 of 20 August 2020

English translation prepared by DIBt

Deutsches Institut für Bautechnik

Size	M6				
Designation of natural stone			Jura Lage 18	Crema Julia Rosa	
Country of origin			Germany	Spain	
Petrographic description			Limestone	Granite	
Panel thickness	h	[mm]	30	30	
Edge distance	ar	[mm]	100	100	
Embedment depth	h₅	[mm]	15	15	
Characteristic resistance:					
Tension load	$N_{Rk}^{1)}$	[kN]	3,90	7,65	
Shear load	$V_{\text{Rk}}^{1)}$	[kN]	5,48	8,16	
Partial safety factor	γм	[-]	1,8		
Combined tension and shear load:		·			
	Х		1,	,0	
	Y		1	,0	

¹⁾ For other natural stones according to Table B1, the resistance is determined in accordance with Technical Report TR 062 "Design of façade panels made of natural stone (without slate)".

Table C1.1: Characteristic resistance M8

Size				M	8				
Designation of natural stone		Warthauer Sandstone		Jura Lage 18			Crema Julia Rosa		
Country of origin				Poland		(Germany	/	Spain
Petrographic description			S	andston	е	L	imeston	Granite	
Panel thickness	h	[mm]	30	30	40	30	65	65	30
Edge distance	ar	[mm]	100	100	100	100	100	100	100
Embedment depth	hs	[mm]	15	20	20	20	15	20	15
Characteristic resistan	ce:								
Tension load	$N_{Rk}^{1)}$	[kN]	2,39	3,05	3,05	4,16	6,12	9,71	7,40
Shear load	$V_{Rk}^{1)}$	[kN]	2)	3,01	2)	6,24	2)	2)	10,56
Partial safety factor	γм	[-]	1,8						
Combined tension and shear load:									
	Х		2)	1,0	2)	1,2	2)	2)	1,0
	Y		2)	1,0	2)	1,5	2)	2)	1,0

¹⁾ For other natural stones according to Table B1, the resistance is determined in accordance with Technical Report TR 062 "Design of façade panels made of natural stone (without slate)".

²⁾ No performance assessed

HAZ Metal - HB-11 Hinterschnittanker

Performances Characteristic resistance in natural stone

Annex C1

Table C2: Characteristic resistance for steel failure						
Size				M6	M8	
Characteristi	c resistance under tension load	N _{Rk,s}	[kN]	12,81	25,63	
Partial safety	factor	$\gamma_{ m M\ s}$ s $^{1)}$	[-]	1,87		
Characteristi	c resistance under shear load	V _{Rk,s}	[kN]	7,04	12,81	
Partial safety	factor	$\gamma_{ m M\ s}$ s $^{1)}$	[-]	1,56		

¹⁾ In absence of national regulations.

HAZ Metal - HB-11 Hinterschnittanker

Performances Characteristic resistance in steel resistance Annex C2